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Abstract 
In this paper, new techniques to improve whisper-to-speech 
conversion are investigated, in the framework of silent speech 
telephone communication. A preliminary conversion method 
from Non-Audible Murmur (NAM) to modal speech, based 
on statistical mapping trained using aligned corpora has been 
proposed. Although it is a very promising technique, its 
performance is still insufficient due to the difficulties in 
estimating F0 from unvoiced speech. In this paper, two 
distinct modifications are proposed, in order to improve the 
naturalness of the synthesized speech. In the first 
modification, LDA (Linear Discriminant Analysis) is used 
instead of PCA (Principal Component Analysis) to reduce the 
dimensionality of the input spectral vectors. In addition, the 
influence of long-term variation of spectral information on 
pitch estimation is examined. The second modification is an 
attempt to integrate visual information as a complementary 
input to improve spectral estimation, F0 estimation and 
voicing decision.   
Index Terms: audiovisual voice conversion, non-audible 
murmur, whispered speech. 

1. Introduction 
Speech conveys a wide range of information. Among them, 
the linguistic content of the message being uttered is of prime 
importance. However, paralinguistic information such as the 
speaker’s mood, identity or position with respect to what 
he/she says also plays a crucial part in oral communication 
[12]. Unfortunately, when a speaker murmurs or whispers, 
this information is degraded. 

To solve this problem, Nakajima et al. [10] found that 
acoustic vibrations in the vocal tract can be captured through 
the soft tissues of the head with a special acoustic sensor 
called a Non-Audible Murmur (NAM) microphone attached 
to the surface of the skin. Using this stethoscopic microphone 
to capture non-audible murmur, Toda et al. [14] proposed a 
NAM-to-Speech conversion system based on the GMM 
model in order to convert “non-audible speech” to modal 
speech. It was shown that this system effectively works but 
the naturalness of the converted speech is still unsatisfactory. 
This is due to the poor F0 estimation from unvoiced speech. 
These authors conclude that it is necessary to improve the 
performance of NAM-to-Speech systems. Nakagiri et al. [9] 
propose to simply convert NAM to whisper. F0 values do not 
need to be estimated for converted whispered speech because 
whisper is another type of unvoiced speech, just like NAM, 
but more intelligible. 

Another direction of research consists in using a phonetic 
pivot by combining speech recognition and synthesis 
techniques as in the Ouisper project [6]. By introducing 
higher linguistic levels, such systems can potentially predict a 
phonological structure that can be used in speech resynthesis. 
Although excellent results have been reported for Japanese 

[3], NAM recognition for languages with a richer phoneme 
inventory such as French, using spontaneous speech and open 
domain is unrealistic. 

In this paper, we propose two different methods to 
improve signal-based GMM mapping from whisper to speech. 
Whisper is used instead of NAM because of the difficulties in 
getting accurate phonetic NAM segmentation. The first 
method consists in using Linear Discriminant Analysis (LDA) 
instead of using Principal Component Analysis (PCA) to 
obtain the spectral vector for whisper. Classes clustering 
different F0 ranges and phonemes are used for LDA. 
Furthermore, we compare different sizes of the context 
window to study the influence of spectral variation on the 
pitch estimation performance. In the second method, visual 
information is integrated as a complement to the audio 
information. The visual parameters are obtained by the face 
cloning methodology developed at ICP [11]. 

The paper is organized as follows. Section 2 describes 
some characteristics of whispered speech. Section 3 briefly 
describes the framework of our Whisper-to-speech conversion 
system already explained in [15]. Modifications in this system 
concerned pitch estimation. Although the results of the 
modifications lead to satisfactory improvements, we also 
investigate other direction to improve the quality of the 
converted speech by adding other source of information. For 
this reason, section 4 presents our preliminary study on the 
promising contribution of visual information to the conver-
sion system proposed by Toda [14]. Finally, conclusions are 
drawn in Section 5. 

2. Whispered speech 
In recent years, advances in wireless communication techno-
logy have led to the widespread use of mobile phones for 
private communication as well as information access using 
speech. Speaking loudly to a mobile phone in public places 
may be a nuisance to others. Whispered speech, however, can 
only be heard by a limited set of listeners surrounding the 
speaker and can therefore effectively be used for quiet and 
private communication [7]. However, it is hard to directly use 
whispered speech as a medium for human communication 
because of its lesser intelligibility and unfamiliar perception. 
The conversion of whispered speech to modal voice is neces-
sary for the realization of a “silent speech telephone”. 

2.1. Acoustic features 

In normal speech, voiced sounds involve a modulation of the 
air flow from the lungs by vibrations of the vocal folds. 
However, there is no vibration of the vocal folds in the 
production of whispered speech. Exhalation of air is used as 
the sound source, and the shape of the pharynx is adjusted 
such that the vocal folds do not vibrate. Due to this difference 
in the production mechanism, the acoustic characteristics of 
whisper differ from those of normal speech. A study on the 



acoustic properties of vowels [7] has shown an upward shift 
of the formant frequencies for vowels in whispered speech 
compared to normal speech. The shift is larger for vowels 
with low formant frequencies. The authors also found that the 
cepstral distances between normal and whispered speech for 
vowels and voiced consonants are higher than those of un-
voiced consonants: vocal tract characteristics of vowels and 
voiced consonants change more significantly in whisper rela-
tive to ordinary speech than those of unvoiced consonants. 

The perception of vowel pitch in normal speech is mainly 
related to the fundamental frequency (F0) which corresponds 
to periodic pulsing. In whispered speech, however, although 
there is no periodic pulsing, some pitch-like perception may 
occur. Higashikawa et al. [4] have shown that listeners can 
perceive pitch during whispering and formant frequency 
could be one of the cues used in perception. More precisely, 
the authors in [5] indicate that “whisper pitch” is more 
influenced by simultaneous changes in F1 and F2 than by 
changes in only one of the formants. 

 
Figure 1: Position of NAM microphone. 

2.2. NAM microphone 

Nakajima et al. [10] proposes a new communication interface 
which can capture acoustic vibrations in the vocal tract from a 
sensor placed on the skin, below the ear (figure 1). This 
position offers a high quality recording of various types of 
body transmitted speech such as normal speech, whisper and 
NAM. Body tissue and lip radiation act as a low-pass filter 
and the high frequency components are attenuated. However, 
the non-audible murmur spectral components still provide 
sufficient information to distinguish and recognize sound 
accurately [3]. Currently, the NAM microphone can record 
sound with frequency components up to 4 kHz while being 
little sensitive to external noise. 

 
Figure 2:  Whisper-to-Speech conversion process. 

3. Using LDA for whisper-to-speech 
Toda et al. [14] proposed a NAM-to-Speech conversion 
system based on GMM model [12][8] in order to convert 
“non-audible speech” to ordinary speech. Although the 
segmental intelligibility of synthetic signals computed by 
statistical feature mapping is quite acceptable, listeners have 
difficulty in chunking the speech continuum into meaningful 
words. This is mainly due to impoverished synthetic intona-
tion. In this study, we focus on improving the pitch estimation 

of the converted speech. We use the same schema as in the 
system we proposed in [15] except that the dimensionality of 
the spectral sequence is reduced by an LDA instead of a PCA. 
The diagram is shown in figure 2. In order to synthesize 
speech, we need to estimate not only spectral features but also 
excitation features, including F0 and aperiodic components.  

The spectral segment feature at each frame is constructed 
by concatenating spectral vectors for several frames around 
the current frame, in order to compensate for the impove-
rished phonetic features (especially for unvoiced fricatives 
losing their high frequency bands). Three GMMs are used to 
convert the segment features of whisper to three speech 
features, i.e., the spectrum, the F0 and an aperiodic 
component which captures the noisy strength on each 
frequency band of excitation signal. Only voiced segments 
are used to train the model of F0 estimation in order to avoid 
wasting Gaussian components for representing zero or 
undefined values of F0 of unvoiced segments. These voiced 
segments are detected by a small feed-forward neural net-
work. Estimated F0 and aperiodic components are passed 
through a mixed excitation module before being combined 
with estimated spectra to compute the converted speech. 

3.1. Evaluation 

Two evaluations have been conducted, comparing this system 
with the system we proposed in [15]. 

The training corpus consists of 200 utterance pairs of 
whisper and speech uttered by a French male speaker and 
captured by a NAM microphone and a head-set microphone. 
The spectral characteristics of each frame are the 0th through 
24th mel-cepstral coefficients.  The context-dependent spectral 
feature of whispered frames are constructed by concatenating 
the spectral vectors at current ± 8 frames (context window). 
This vector is then reduced to 50 by LDA. We test the impact 
of the size of the context window by choosing one frame 
every 2, 3, 4 and 5 frames to combine with the current frame 
(windows varied from phoneme size ~100 ms to syllable size 
~350 ms). Log-scaled F0 characterize the target speech. 

The test corpus consists of 70 utterance pairs not included 
in the training data which were uttered by the same speaker. 

3.1.1. F0 estimation 

For this evaluation, the F0 values of the target speech are 
classified into 13 classes: unvoiced frames are set to 0 Hz and 
voiced frames fall into 12 intervals, from 70Hz to 300 Hz. 
The class of a whispered frame is deduced from the class of 
the corresponding speech frame by aligning the two 
utterances. This information was then used to guide the 
dimension reduction of whispered vector in hopping that the 
relation between whispered vector and speech vector will 
improve the performance of the system. The number of 
Gaussian mixtures for F0 estimation varies from 8 to 64 (8, 
16, 32, 64). The size of the context window is also varied 
from the phoneme size (~100 ms) to the syllable size (~350 
ms) (by picking one frame every 1-5 frames). 

Table 1 shows that LDA improves the precision of pitch 
estimation with respect to PCA. Larger window sizes also 
improve the prediction. The F0 error decreases by 16% 
compared to the system proposed in [15] (10.90% → 9.15%). 

Figure 3 shows an example of a natural (target) F0 curve 
and the synthetic F0 curves generated by the two systems 
(LDA + large context window vs. PCA + small context 
window). It shows that our new system is closer to the natural 
F0 curve than the old one. 

 



Table 1. F0 errors (%) between converted and target speech 
 

method 
Number of Gaussian mixtures 

 

window size 
(frame 

interval) 8 16 32 64 
1 10.96 10.90 10.92 10.90 
2 10.77 10.41 10.29 10.44 
3 10.33 9.98 10.08 10.28 
4 9.90 9.58 9.47 9.82 

 
 

PCA 

5 9.44 9.17 9.32 9.31 
1 10.85 10.58 10.56 10.64 
2 10.36 10.23 10.11 10.36 
3 9.98 9.94 9.93 10.29 
4 9.45 9.43 9.62 9.67 

 
 

LDA 

5 9.15 9.22 9.25 9.37 

Table 2. Spectral distortion (dB) between converted speech 
and target speech 

Number of Gaussian mixtures  
method 

window size 
(frame interval) 8 16 

1 7.23 6.96 
2 7.20 7.01 
3 7.42 7.26 

 
PCA 

4 7.25 7.55 
1 6.96 6.83 
2 6.98 7.01 
3 7.03 7.17 

 
LDA 

4 7.19 7.34 
 

 
Figure 3: Comparing natural and synthetic F0 curves 

3.1.2. Spectral estimation 

We also test the influence of LDA and long-term spectral 
variation to the spectral estimation. This time, we use 
phonetic information to get the label for whispered data to 
train the LDA. Each whispered frame is classified in one of 
34 allophones, depending on what phoneme it belongs to. 

Table 2 shows again that LDA is slightly better than 
PCA. Contrary to the evaluation on the F0 estimation, when 
the size of the context window increases, the spectral 
distortion increases. In this case, the discontinuities in the 
input whispered vector probably degrade the performance of 
the system. Another plausible interpretation is that a 
phoneme-sized window optimally contains necessary 
phonetic cues for conversion. 

4. Preliminary study of audiovisual 
whisper-to-speech conversion 

To convey a message, humans produce various linguistic 
sounds by controlling the configuration of oral cavities. The 
articulators determine the resonance characteristics of the 
vocal tract during speech production. Therefore, speech can 
be characterized not only by acoustic properties but also by 
articulatory properties. The articulatory parameters, which 
vary much slower than acoustic parameters, can effectively 
characterize speech [13]. Some important articulators are the 
lips, which significantly contribute to the intelligibility of 

visual speech face-to-face human interaction. In the field of 
man and machine communication, the visual signal 
corresponding to speaking lips can be helpful both in input 
and output modalities [1]. The contribution of visual 
information is explored here using an accurate but unpractical 
lip capture system. More appropriate systems may be used in 
the future using wearable headset cameras. 

 
Figure 4: Characteristic points used for capturing the 

movements. 

 
Figure 5: Diagram of the audiovisual conversion system. 

4.1. Audiovisual conversion system 

The conversion system is built using audiovisual data. The 
system captures, at a sampling rate of 50 Hz, the 3D positions 
of 142 colored beads glued on the speaker's face (Figure 4) 
synchrony with the acoustic signal sampled at 16000 Hz. 

The shape model is built using a so-called guided 
Principal Component Analysis (PCA) where a priori 
knowledge is introduced during the linear decomposition. We 
compute and iteratively subtract predictors using carefully 
chosen data subsets [11]. For speech movements, this 
methodology extracts 5 components that are directly related 
to the rotation of the jaw, to lip rounding, upper and lower lip 
vertical movements and movements of the throat linked 
underlying movements of the larynx and hyoid bone. The 
resulting articulatory model also includes components for 
head movements and facial expressions but only components 
related to speech articulation are considered here. 

The audiovisual feature vector is obtained by combining 
whispered spectral and visual feature vectors in an identical 
way to the AAM (Active Appearance Models) introduced by 
Cootes [2]: each articulatory vector is multiplied with a 
weight w before concatenation with the corresponding acous-
tic vector. The dimension of the joint vector is further 
decreased by an additional PCA (see Figure 5). 

4.2. Preliminary results 

The database consists of 120 sentences for training and 25 
sentences for the testing, pronounced by a native Japanese 
speaker. The 0th through 19th mel-cepstral coefficients are 
used as spectral features at each frame. The input feature 
vector for computing speech spectrum is constructed by 
concatenating feature vectors at current ±8 frames and further 
reduced to a 40-dimention vector by a PCA. Similarly to the 
processing of the acoustic signal, each visual frame is interpo-
lated at 200 Hz – so as to be synchronous with the audio 
processing – and characterized by a feature vector obtained 
by concatenating and projecting ±8 frames centered around 
the current frame on the first n principal components. The 
dimension of the visual vector n is set to 10, 20, 40 or 50. The 



weight w was also changed from 0.25 to 2. The conversion 
system uses the first 40 principal components of joint 
audiovisual vector. In this evaluation, the number of Gaussian 
was fixed at 16 for the spectral estimation, 8 for the F0 
estimation and 8 for the aperiodic components estimation. 

Table 3 shows the positive contribution of visual 
information on the performance of the conversion. The best 
results are obtained with w = 1 and a dimension of the visual 
vector of 20. The spectral distortion between the converted 
speech and the modal speech is decreased by 2.3% while the 
error decreases by 16.5 % for voiced/unvoiced detection and 
10.3% for F0 estimation. With visual information only, the 
performance of the system is significantly degraded. 

5. Conclusions 
This paper describes our modifications to improve the 
intelligibility and the naturalness of the converted speech of 
the whisper-to-speech system based on GMM model. First, 
the use of LDA with a large context window significantly 
improved the converted speech, compared with using PCA 
with a small window. Secondly, the preliminary results on the 
contribution of visual information on a Japanese corpus 
encourage us to continue in this direction using a larger 
audiovisual corpus. Although the performance of the system 
is improved and the difference is clearly audible, the 
estimated pitch is still too flat due to the GMMs. In the future, 
we will investigate how to obtain audible speech from 
whisper by using a HMM which is more appropriate for 
modelling a time sequence of speech parameters. 
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Table 3. Contribution of visual information to (a) spectral estimation; (b) voiced/unvoiced decision; (c) F0 estimation. Best 
performance (bold) is obtained for a balanced contribution of audio and visual parameters. 

 Visual weight 
Distorsions Visual 

dimension 
Audio-

only 
0.25 0.5 0.75 1 1.25 1.5 1.75 2 Video-

only 
10  5.66 5.63 5.61 5.58 5.60 5.63  5.62 5.65  
20  5.68 5.63 5.60 5.56 5.60 5.61 5.60 5.62  
40 5.69 5.68 5.63 5.60 5.61 5.57 5.61 5.60 5.62 9.89 

(a) Cepstral 
distortion in dB 

50  5.68 5.63 5.60 5.60 5.57 5.61 5.59 5.62  
           

10  13.79 13.48 12.90 12.67 20.71 20.67 20.97 21.22  
20  13.24 13.58 12.56 12.36 20.73 20.28 20.57 19.53  
40 14.81 13.24 13.58 12.56 12.70 20.45 20.53 20.36 20.26 31.34 

(b) Voiced/ 
unvoiced 
detection (%) 

50  13.24 13.58 12.56 13.38 20.45 20.51 20.74 20.26  
           

10  18.39 18.14 17.54 17.27 24.58 24.52 24.77 25.53  
20  17.85 18.21 17.14 17.47 24.62 24.15 24.51 23.53  
40 19.48 17.85 18.21 17.14 17.28 24.39 24.41 24.47 24.21 36.31 

(c) F0 
estimation (%). 

50  17.85 18.21 17.14 17.93 24.39 24.37 24.63 24.21  
 


