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We propose in this paper a new objective metric for the visual quality assessment of 3D meshes.
The metric can predict the extent of the visual difference between a reference mesh, which is
considered to be of perfect quality, and a distorted version. The proposed metric is based on a mesh
local roughness measure derived from Gaussian curvature. The perceptual distance between two
meshes is computed as the difference between the normalized surface integrals of the local roughness
measure. Experimental results from three subjective databases and comparisons with the state of the
art demonstrate the efficacy of the proposed metric in terms of the execution time and the correlation
with subjective scores. Finally, we show a simple application of the metric in which it is used to
automatically determine the optimum quantization level of mesh vertex coordinates.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Three-dimensional (3D) surface models, representing a char-
acter or animal, a mechanical object or a human organ, are
commonly used in diverse applications such as digital entertain-
ment, computer-aided design and medical imaging. 3D models
are commonly represented by polygonal meshes [1], which
constitute a piecewise linear approximation of the underlying
continuous surface. With the rapid growth of network bandwidth
and the increasing capability of personal computers (PCs), it is
now common to see 3D meshes transmitted on the Internet and
manipulated and visualized on ordinary PCs. The popularity of the
mesh model has made it one of the three main formats for object
representation in 3DTV that are currently being discussed by
international standardization groups [2].

In practical applications, a mesh is usually subject to different
kinds of lossy operations, which introduce distortions and mod-
ifications to the original model. For example, we may simplify
(i.e., reduce the number of vertices) and compress a complex
mesh before transmitting it to a cell phone that has limited
processing and visualization capacities; a mesh model may be
contaminated by random noise during its transmission in a noisy
channel; or a digital watermark may be embedded into a 3D mesh
for the purpose of copyright protection.

In all such scenarios, it is important to evaluate how much visual
distortion has been introduced into the original model by a particular
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operation and whether this distortion deteriorates the quality of
service (QoS). The visual distortion can be measured either subjec-
tively (i.e., by a group of human observers) or objectively (i.e., by an
automatic metric running on a computer). Although the subjective
evaluation appears to be more reliable, under most circumstances, it
is a solution that is too expensive, laborious and time-consuming to
be adopted. It is thus necessary to devise objective and automatic
metrics that would correlate well with the subjective assessment.

In the literature, the difference between two meshes is in most
cases evaluated by simple geometric measures, such as the Hausdorff
distance or the mean squared error (MSE) [3,4]. However, as with the
MSE and the PSNR (peak signal-to-noise ratio) for digital images [5], it
has been demonstrated that these simple geometric measures do not
correlate well with human perception [6,7] (see Fig. 1 for an
example). Therefore, the development of a perceptually based quality
metric for 3D meshes has recently attracted the attention of many
researchers. It is believed that effective perceptually based metrics
that can accurately predict the subjective assessment of the visual
degradation of a 3D mesh will replace the aforementioned geometric
measures in the future in a wide range of geometry processing
applications. In general, an objective mesh visual quality (MVQ)
metric can be used in the following ways:

e [t can be used for the evaluation and benchmarking of mesh
processing algorithms, especially simplification [8,9], water-
marking [10,11] and compression [12,13].

e [t can be used for the parameter optimization of many mesh
processing algorithms, which usually aim to achieve an opti-
mum trade-off between a specific performance indicator (e.g.,
the vertex reduction ratio, watermark robustness or bit rate)
and the induced visual degradation.
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Fig. 1. On the left is the original Venus model, in the middle is the model watermarked using the method of Wang et al. [14], and on the right is the model watermarked
using the method of Cho et al. [15]. Compared to the original mesh, the two watermarked models have exactly the same maximum root mean squared error (MRMS, a
widely used geometric distance [4]) value of 1.52 x 107>, but their visual degradation is obviously very different. The proposed fast mesh perceptual distance (FMPD)
metric yields the correct results: the perceptual distances are 0.01 and 0.70 for the two watermarked models. The execution time is less than 3 s on an ordinary laptop for

this mesh of 100 K vertices.

e The development of such metrics, together with a better
understanding of the behavior of the human visual system
(HVS) while observing 3D mesh models, may stimulate the
development of fundamentally new perception-oriented mesh
processing algorithms.

Because the relevant research is still in its early stage, most
existing MVQ metrics have limitations, such as being computationally
slow, imposing constraints on the input meshes, or not being
invariant to similarity transformations (i.e., scaling, translation and
rotation). Additionally, as noted by Lavoué and Corsini [6], the
distance or similarity values produced by most objective MVQ
metrics do not correlate well enough with subjective scores. In this
paper, we propose a new and conceptually very simple objective
metric for 3D mesh visual quality assessment. The proposed metric,
called the fast mesh perceptual distance (FMPD), has the following
features:

e The FMPD metric can compare two triangle meshes of differ-
ent connectivities (i.e., different adjacency relationships
between the vertices), and the metric is invariant to mesh
similarity transformations.

e The FMPD metric has a very fast execution time (<3s to
compare two meshes of 100 K vertices).

e The FMPD metric achieves performance comparable to (or even
slightly better than) the most recent metric described in [16] in
terms of the correlation between the objective perceptual
distances and the subjective scores on three common databases.

Compared to most existing methods, the proposed FMPD metric is
faster and has fewer constraints on the input meshes mainly
because of two reasons: FMPD is a global-roughness-based
metric, and it is based on geometric quantities that are extremely
simple and fast to compute. FMPD has a high correlation with
subjective scores because two important HVS phenomena, the
visual masking effect and the psychometric saturation effect
(which will be described in detail in Section 3), have been taken
into account during its design. Moreover, we will describe a
simple application of the FMPD in which the metric is used to
automatically determine the perceptually optimum quantization
level of mesh vertex coordinates. The source code for the
proposed metric is shared on the Internet.!

1 http://www.gipsa-lab.inpg.fr/ ~ kai.wang/publications_en.html.

The remainder of this paper is organized as follows. Section 2
briefly reviews the related work. Section 3 describes the pipeline
of the proposed metric in detail. Section 4 presents the experi-
mental results, including comparisons with existing metrics and a
simple application. We conclude in Section 5.

2. Related work and motivation

Visual quality assessment: With the increasing popularity of
various forms of digital multimedia content in our daily life, such
as images, audio and video clips, and 3D models, it is important to
develop objective visual quality metrics for them. As an example,
such metrics would be essential in the QoS control of network-
based multimedia services, such as VoD (video-on-demand)
systems, online video games, and virtual visits. Many metrics
have been proposed during the last two decades, especially for
images [17] and video [18]. As presented by Wang and Bovik [17],
we can usually classify visual quality metrics using two criteria.
First, metrics can be classified according to the amount of
information available about a reference source that is assumed
to be of perfect quality as full reference (i.e., the reference content
is completely available), no reference (i.e., no information is
available about the reference content) or reduced reference (i.e.,
part of the information is available). Second, metrics can be
classified according to their design philosophy as either bottom-
up or top-down. Bottom-up approaches attempt to simulate the
functionality of different components of the human visual system
and then develop a metric based on this component-level simula-
tion. Top-down approaches treat the HVS as a black box and make
general system-level assumptions about it, and the objective is to
devise a metric that mimics the input-output characteristics of
the HVS. However, the distinction between these two types of
approaches is not strict, and researchers often combine the
methodologies from both bottom-up and top-down approaches
to develop hybrid metrics.

Image-based MVQ assessment: In contrast to the fruitful
advances in the fields of image and video quality assessment,
there exist relatively few perceptually based metrics designed
specifically for 3D meshes. Indeed, in many graphics-related
applications, 2D image quality metrics are used to evaluate the
distortions introduced in 3D meshes. The evaluation is performed
on one or several rendered 2D images of the mesh model. The
obtained 2D perceptual distortion, and the related HVS features,
has been successfully used to guide the procedures of mesh
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simplification [19,20], rendering [21] and level-of-detail control
[22,23], and to evaluate the distortion introduced by mesh water-
marking algorithms [24]. However, using 2D image quality
metrics to assess mesh visual quality in a general context would
be difficult and problematic because of two facts: (1) the auto-
matic selection of the optimum viewpoints from which to
produce the rendered images is a very difficult problem, and
(2) as shown by Rogowitz and Rushmeier [25] through a series of
experiments, it appears that 2D image metrics are not completely
adequate for assessing the visual quality of 3D models.

Model-based MVQ assessment: Aware of the limitations of the
above image-based approaches, researchers have attempted to
develop quality metrics directly from the 3D shape of meshes.
Such methods are often called model-based methods [6], and their
most significant advantage is that they do not depend on view-
point selection. Because the metric proposed in this paper follows
the model-based principle, we will briefly review existing model-
based metrics.

To our knowledge, the first model-based metric was proposed
by Karni and Gotsman [26] in 2000 for the evaluation of their
spectral mesh compression method. They measured the distance
between two meshes as a weighted sum of the vertex root mean
squared error and the vertex Laplacian coordinate error. It is
argued by the geometry processing community that the Laplacian
coordinates are related to the surface normal that is used by most
mesh rendering algorithms, and therefore the Laplacian coordi-
nates are relevant to mesh visual quality. Karni and Gotsman'’s
metric was later enhanced by Sorkine et al. [27] by giving a
greater weight to the Laplacian coordinate error. Pan et al. [28]
experimentally studied the relationship between mesh visual
quality and a number of factors including the geometric resolu-
tion (i.e., the number of vertices) of the model. Drelie Gelasca,
Corsini and colleagues [29,30] made the assumption that the
perceived quality is related to the roughness of the mesh surface.
They proposed two perceptual metrics using two definitions of
the mesh roughness, one definition based on the dihedral angle
between neighboring facets and the other definition based on the
difference between the input mesh and a carefully smoothed
version. Lavoué et al. proposed a metric called the mesh structural
distortion measure (MSDM) [31]. Their basic idea was to extend a
well-known image quality metric, the SSIM (structural similarity)
index [32], to 3D meshes by replacing the pixel intensities in the
SSIM index with the mesh mean curvature. Bian et al. [33]
proposed a metric based on the theory of surface strain energy.
They considered a mesh as an elastic object and related the visual
degradation to the amount of strain energy required to produce
the corresponding mesh deformation.

Most of the above metrics were evaluated and compared in a
recent study [6] using two subjective databases, which showed
that the existing metrics do not correlate well with subjective
scores. The Pearson correlations of the objective scores produced
by the best metric,c MSDM, and the mean opinion scores (MOS)
provided by human observers were approximately 60%, which is
not a satisfactory value. The authors of [6] also noted that some

metrics have constraints on the type of input meshes. For
example, Karni and Gotsman'’s [26] and Bian et al.’s [33] metrics,
as well as the MSDM [31], assume that the meshes before and
after distortion share the same connectivity, and the roughness-
based metrics in [29,30] assume a uniform sampling over the
mesh surface.

Recently, Lavoué proposed an improved version of the MSDM,
called the MSDM2 [16]. There were two main improvements
compared to the original version: (1) the MSDM2 can compare
triangle meshes with different connectivities using a vertex
correspondence preprocessing step, and (2) the visual difference
is now evaluated in a multiscale manner so that the MSDM2
correlates better with subjective scores. The MSDM2 produces
Pearson correlations of 66.2%, 76.2% and 79.6% with three sub-
jective databases, which is a significant improvement from
the MSDM.

Motivation: The MSDM2 measure nevertheless has some dis-
advantages. First, the execution time is relatively high; for
example, it takes approximately 100 s to compare two meshes
of 100K vertices. Second, the correlation values still must be
improved so that a perceptually based metric can be reliably used
in practical applications. These observations and the relevant
state of the art motivated our work. Our objective was to propose
an open-source metric with low time complexity, high correlation
with subjective scores and no or very few constraints on the input
meshes (including the capability to compare triangle meshes with
different connectivities and invariance to similarity transforma-
tions). Our metric follows a design philosophy that is similar to
the metrics of [29,30] in the sense that they are all global-
roughness-based metrics. However, we use a quite different
definition of the surface roughness that appears to be more
relevant to human visual perception, in particular by explicitly
taking into account the visual masking effect. Our metric outper-
forms the metrics in [29,30] by producing much higher correla-
tion values with subjective scores, as will be shown in Section 4.

3. The proposed metric
3.1. Overview of the pipeline

Fig. 2 depicts the block diagram of the proposed metric. First,
the local roughness is defined at each vertex of the reference
mesh and the deformed mesh based on Gaussian curvature. We
then apply a careful modulation of the local roughness to account
for the visual masking effect and the psychometric saturation
effect, which are both important HVS features. Next, we compute
the global roughness using the normalized surface integrals of the
local roughness on both meshes. Finally, the perceptual distance
between the two meshes is evaluated as the difference of the two
surface integrals. In the following, we present the technical
details and the motivation for each step of the proposed pipeline.

Reference mesh —{ -0CaI roughness | ] Roughness ,| Global roughness
analysis modulation computation
Perceptual
distance
Deformed mesh —»| -0¢al roughness || Roughness ,| Global roughness
analysis modulation computation

Fig. 2. Block diagram illustrating the pipeline of the proposed metric.
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3.2. Local roughness

As in [29,30], we make the assumption that the perceived
quality of 3D polygonal meshes is related to the modification of
the local and global roughness of the mesh surface. To construct
the pipeline shown in Fig. 2, we need to first derive an adequate
definition of the mesh local roughness that is consistent with
human visual perception. To keep the proposed MVQ metric
simple and fast, in this section we identify simple differential
geometric quantities that are relevant to the mesh visual quality
and use the quantities to define the local roughness.

As mentioned in Section 2, it is believed that there is a link
between mesh curvature and the perceived mesh quality. There-
fore, curvature has played an important role in many mesh
processing and analysis algorithms, such as saliency analysis
[34], visual quality assessment [31,16], smoothing and fairing
[35], and deformation [36]. Consequently, it is reasonable to
define the mesh local roughness based on Gaussian curvature.
First, for each vertex v; in the reference mesh M;, the discrete
Gaussian curvature is defined as follows [37]:

GCi= 21— ) o), (1)
jEN-:_F)

where A" is the set of all the neighboring facets of v;, and o is
the angle in facet j that is incident to v; (see Fig. 3 left). Intuitively,

U;
A

Fig. 3. Geometric quantities used for computing the discrete Gaussian curvature
(left) and the discrete Laplacian operator (right).

discrete Gaussian curvature describes how much the local patch
deviates from a planar surface.

The local roughness at v; is measured as the Laplacian of the
discrete Gaussian curvature. To this end, we first compute the
mesh Laplacian matrix as

_ Cot(Biy)+cot(hyy) for j e A",

LJ 2
2
D;;=->_Di;, @
j

where Nl(.v) is the set of all the neighboring vertices of v;, and f;;
and f j are the two angles opposite to the edge that connects v;
and v; (see Fig. 3 right). The above sparse matrix, representing the
discrete Laplacian operator on 2-manifold triangle meshes, can be
derived using either finite element modeling theory [38] or
discrete exterior calculus [39]. This matrix yields better perfor-
mance than other mesh Laplacians [40] in applications such as
smoothing [39] and watermarking [41,42]. Next, the local rough-
ness LR; at v; is defined as

5% e wDig - GG

2 e x D36
ZJ e N;V'Di,j '

LR; = |GC;— -
1,1

3)

=|GCi+

The roughness is evaluated as a weighted difference between GG;
and the Gaussian curvatures of the neighbors, where the weights
are determined according to the entries in the Laplacian matrix of
Eq. (2). The same computation is performed at each vertex v} on
the deformed mesh M. Fig. 4 illustrates the roughness maps of
several meshes that we will use in our experiments in Section 4.
In general, this simple roughness measure is quite consistent with
human perception.

The first motivation for using the Laplacian of the Gaussian
curvature, instead of the Gaussian curvature itself, is that computing
the Laplacian allows the roughness evaluation to be performed in a
more contextual manner; i.e., more vertices and facets are involved in
the evaluation. Moreover, the variation of the curvature is conjectured
to be related to surface fairness [43], i.e., the aesthetic measure of
“well-shapedness,” so it is reasonable to assume that the Laplacian of

Fig. 4. Roughness maps of sample meshes. In the top row are flat-shaded renderings; in the bottom row are roughness maps in which warmer colors represent larger

values.
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the Gaussian curvature has a strong link to the surface visual quality.
Finally, in general using the variation of the curvature instead of the
curvature itself we can avoid mistakenly classifying a high-curvature
smooth surface as a rough region. We choose Gaussian curvature,
rather than mean curvature, in our algorithm mainly for two reasons.
First, compared to the mesh mean curvature, the discrete Gaussian
curvature is extremely simple to compute, and the Gaussian curva-
ture is intrinsically invariant to scaling. Second, in our experiments,
we have used Gaussian curvature, the Laplacian of the Gaussian
curvature, the mean curvature and the Laplacian of the mean
curvature as local roughness descriptors, while keeping the rest of
the pipeline of the MVQ metric unchanged. We have found that the
Laplacian of the Gaussian curvature yields the best results (cf. Section
44). In the future, we plan to design and conduct psychovisual
experiments to study the relationship between these differential
geometric quantities and human visual perception.

3.3. Local roughness modulation

In this step, the local roughness obtained in the previous step
is modulated to account for the visual masking effect and the
so-called psychometric saturation effect. The visual masking effect
[44] means that the existence of one visual signal may hide or
reduce the visibility of another signals. In the case of MVQ
assessment, the visual masking effect mainly implies that a local
surface modification, e.g., due to the addition of noise or to vertex
coordinate quantization, is more visible in a smooth region than
in a rough region. This effect is illustrated in Fig. 5. For example,
the Bimba model in Fig. 5(b) is contaminated by a uniform
random noise whose amplitude is the same throughout the
surface; however, the noise is much more visible in smooth
regions, such as the chest, than in rough regions, such as the
hair. The psychometric saturation effect means that when asked
to assess the intensity of a stimulus, humans tend to provide a
constant response at extreme quantities that are beyond or below
a certain threshold. Typically, human observers do not distinguish
between very small (or large) stimuli of slightly different inten-
sities, and observers will assign the same subjective score for
slightly different but very bad (or good) qualities (e.g., as men-
tioned in [45,46] in the context of image quality assessment).

To incorporate and model these two effects in our metric, our
solution is to carefully modulate the local roughness. First, the
range of the roughness is limited both above and below so that
the roughness lies in the interval [Th;,Thy]. The main objective of
this thresholding is to account for the psychometric saturation
effect. The thresholding also makes the results more robust by
avoiding instability near zero. We then modulate the thresholded
roughness using a power function as follows:

LRM; = f(LR;) = (LR;)*—(Thy)*, “4)
a ) b c
45 \ y / -
4((-\_’7_-\ L T d e L
ot bo B \\ £ ’{\( —— 4
£ 45

e 28
2T N

Fig. 5. This figure illustrates the visual masking effect on 3D meshes: (a) the
original Bimba model; (b) the modified model after the addition of uniform
random noise; (c) the model after uniform vertex coordinate quantization. The
visual degradation is much more visible in smooth regions than in rough regions.

05 Plot of the roughness modulation function
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Fig. 6. Modulation of the local roughness by a power function.

where 0 < a < 1 is a parameter that controls the shape of the power
function and is fixed as a constant for all meshes. This power
modulation function is illustrated in Fig. 6. It can be observed that
f(LR;) is a monotonically increasing function with a monotonically
decreasing first derivative. We adopt this function to capture the
visual masking effect. The basic idea is to induce a large visual
difference result where a smooth region becomes a rough region (or
vice versa) after modification but to induce a small difference
in situations where an originally rough region still remains rough
after modification. For example, suppose that in the reference mesh
M, there are two vertices v; and v, with local roughness values LR,
and LR,, respectively, where LRy < LR,. Assume that after a deforma-
tion, the two vertices have undergone the same roughness increase
AIR; ie, the roughnesses become LR;=LR;+ALR and
LR, = LR, + ALR for vy and v, respectively. Using the power function
in Eq. (4), it can be ensured that after applying the modulation we
have f(LR))—f(LRq) > f(LR,)—f(LR;) (see Fig. 6). Therefore, we can
guarantee that the same roughness modification ALR will induce a
greater change in the modulated roughness (and thus a greater visual
difference) in a smooth region than in a rough region. Experimentally,
other functions (e.g., the logarithmic function and the right part of the
cumulative Gaussian function) could also be used for the roughness
modulation, and similar overall performance could be attained. We
choose the power function because of its simplicity and its common
use in visual perception research [47,48].

The above modulation accounts for the visual masking effect
in a general fashion that is common for all meshes. However, in
practice this modulation alone is not sufficient to capture the
masking effect well, and it is necessary to carry out a second
modulation that is adapted to the characteristics of the two
meshes under comparison. Experimentally, we have to further
reduce the influence of the values that are greater than the mesh’s
average roughness. For this purpose, first, the average roughness
(before any modulation) IR of the reference mesh M, is defined as
R — SilRi- Si 5)

DS
where s; is one third of the total area of the incident facets of v; and
>;si is the total area of the triangular manifold mesh M;. The
average roughness LR is actually a surface-weighted average of the
mesh’s local roughness. The same computation is performed on the
deformed mesh M, to obtain its average roughness IR. IR and IR’
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are then modulated by the function f(-) defined in Eq. (4), and the
modulated values are denoted by IRM = f(IR) and LRM = f(IR).
We then set a threshold Thygy = min{LRM,LRM } and further reduce
any modulated roughness that is greater than this threshold
according to the following equation:

LRF; = Thigy +b(LRM;—Thgy)  for LRM; > Thygy, (6)

where LRF; is the final local roughness at v; and O<b<1 is a
parameter that controls the magnitude of the reduction. After this
second modulation, the local modifications in rough regions of the
model (i.e., where LRM; > Thygy,) will induce an even smaller visual
difference, reflecting the masking effect.

The same modulation is performed on the deformed mesh My,
and the final local roughness of vertex v; is denoted by LRF;. In our
experiments, the parameter values are chosen as follows:
Th;=5.0 x 1074, Th;, = max{0.20,5Th;zy}, a=0.15 and b=0.50.
These settings were used for all the models that we tested, and
they yielded consistently good results, as will be shown in Section 4.

3.4. Global roughness and perceptual distance

The global roughness GR of the reference mesh M, is evalu-
ated as a normalized surface integral of the local roughness

EiLRF,‘ - Si
>iSi

where s; is the same as in Eq. (5). This surface-based weighting of
the local roughness ensures that the metric is to some extent
robust to the variation of the vertex sampling density over the
mesh surface.

Finally, the perceptual distance FMPD 4, ¢, between the refer-
ence and the deformed meshes is defined as follows:

FMPD v, v, = ¢|GR—GR'|, (8)

where GR and GR' are the global roughness of M, and My,
respectively, and c¢=8.0 is a scaling factor that brings the
perceptual distance into the [0, 1] interval (values greater than
1 are simply thresholded to be 1).

The proposed FMPD metric is symmetric (i.e., the distance
from M, to M, is the same as the distance from M, to M;),
invariant to similarity transformations and capable of comparing
triangle meshes of different connectivities. The time complexity
of the metric is a linear function of the total number of vertices in
M; and Mg.

GR= , Q)

4. Experimental results

The proposed metric has been implemented in Matlab, and the
source code is freely available on the Internet. In the following,
we present the experimental results from the application of our
metric to three subjective databases, a comparison of the metric
with state-of-the-art methods, and a simple practical application
of the metric to vertex coordinate quantization.

4.1. Tests and comparisons on subjective databases

The standard index for evaluating the performance of an
objective MVQ metric is the correlation between the perceptual
distances or similarities produced by the metric and subjective
mean opinion scores. There are two commonly used types of
correlation: the Pearson linear correlation coefficient (PLCC) and
the Spearman rank-order correlation coefficient (SROCC). The
PLCC measures the linear dependence between the objective
and subjective scores and is generally considered a more effective

and more important index than the SROCC. The SROCC measures
how well the relationship between the objective and subjective
scores can be described by a monotonic function. Only the ranks
of the scores are used in the computation of the SROCC, not the
actual score values.

As noted in [16], there exist only three publicly available
subject-rated databases for the evaluation of MVQ metrics:

o The LIRIS/EPFL general-purpose database? [31].
e The LIRIS masking database® [49].
e The IEETA simplification database® [50].

All three databases contain several reference and deformed
meshes with a series of subjective mean opinion scores (MOSs),
each of which reflects the extent of the visual difference between
a pair of reference and deformed models. The MOS values were
obtained in three steps, according to the relevant ITU recommen-
dations [51,52]: (1) the collection of raw data from multiple
human observers, (2) the screening of observers to remove out-
liers, and (3) the normalization of the scores to reduce the
deviation among observers.

The LIRIS/EPFL general-purpose database comprises 88 models:
four reference meshes and 21 deformed models for each reference
mesh. The deformations in the database include the addition of
noise and smoothing of different intensities in different spatial
regions (i.e., smooth, rough and intermediate regions and the
whole surface). It is believed that the included deformations
simulate a wide range of common processing techniques on
polygonal meshes [31]. Fig. 7 shows several models from this
repository with the output of our FMPD metric and the corre-
sponding MOS values (where MOS € [0, 1] reflects the extent of the
visual difference: the higher the MOS, the greater the visual
difference).

Before computing the PLCC between the FMPD and the MOS, it
is recommended that a psychometric curve fitting between the
two measures [30] be conducted to partially remove the non-
linearity between the two groups of values. In our experiments,
we choose to use the cumulative Gaussian psychometric function
[53] to perform this fitting

g(mn,R) = e /2 dr, Q)

1 » + 00
«/E /m+nR
where m and n are the two parameters that we need to estimate,
and R is the objective distance. We derive the values of m and n
using the FMPD and MOS values of one group of mesh models
from the general-purpose database, the reference Dinosaur model
and its 21 deformed versions. After a non-linear least squares
fitting based on the Levenberg—Marquardt algorithm, we obtain
m=0.4123 and n = —1.981. Note that the values of m and n for the
fitting between the FMPD and MOS data are fixed as constant in
all our experiments, even for models from the other two data-
bases. The consistently good results obtained, as presented in the
following, demonstrate the efficacy of this curve fitting as well as
the stability of the proposed metric. Fig. 8(a) illustrates this curve
fitting technique using the Dinosaur models, with each circle
symbol representing a pair of FMPD and MOS values.
Fig. 8(b) shows the same curve plotted with all the pairs of FMPD
and MOS values from the general-purpose database.

Table 1 presents the PLCC and SROCC values of the FMPD from
the general-purpose database as well as the values from five other
metrics: the Hausdorff distance (HD) [3,4], the root mean squared

2 http://liris.cnrs.fr/guillaume.lavoue/data/datasets.html.
3 http://liris.cnrs.fr/guillaume.lavoue/data/datasets.html.
4 http://[www.ieeta.pt/ ~ sss/repository/.
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Fig. 7. Some models from the LIRIS/EPFL general-purpose database. In the top row are the four reference models. In the bottom row are four deformed models, from left to
right are respectively: Dinosaur with global noise (FMPD=0.82, MOS=0.89), Armadillo with noise in rough regions (FMPD=0.23, MOS=0.34), Rockerarm with noise in
smooth regions (FMPD=0.71, MOS=0.74), and Venus after global smoothing (FMPD=0.25, MOS=0.40).

a Psychometric curve fitting b Psychometric curve with FMPD-MOS pairs
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Fig. 8. Psychometric curve fitting between the FMPD and MOS values: (a) the fitting performed using the FMPD and MOS values from the Dinosaur models; (b) the
psychometric curve plotted with the FMPD-MOS pairs from all the models in the LIRIS/EPFL general-purpose database.

Table 1
PLCC (rp) and SROCC (r;) values (%) of different MVQ metrics on the LIRIS/EPFL general-purpose database.

Metric Armadillo Dinosaur Rockerarm Venus All models

Tp Ts Tp Ts Tp Ts Tp Ts Tp Ts
HD [3,4] 30.2 69.5 22.6 30.9 5.5 18.1 0.8 1.6 13 13.8
RMS [3,4] 322 62.7 0.0 0.3 3.0 7.3 77.3 90.1 7.9 26.8
3DWPM; [30] 35.7 65.8 35.7 62.7 53.2 87.5 46.6 71.6 38.3 69.3
3DWPM, [30] 431 74.1 19.9 524 29.9 37.8 16.4 34.8 24.6 49.0
MSDM2 [16] 72.8 81.6 73.5 85.9 76.1 89.6 76.5 89.3 66.2 80.4

FMPD 83.2 75.4 88.9 89.6 84.7 88.8 83.9 87.5 835 81.9
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error (RMS) [3,4], the two roughness-based metrics 3DWPM; and
3DWPM, of Corsini et al. [30], and MSDM2 [16]. The values of the
state-of-the-art metrics are obtained from [16]. In general, our
FMPD metric produced high correlations, in terms of both the
PLCC and the SROCC, on this database. In particular, FMPD
produces the best PLCC for every model in this repository.
Additionally, the PLCC and the SROCC of the FMPD for the whole
database (shown in the last two columns of Table 1) are the
highest among all the metrics, including MSDM2, the best metric
proposed so far (the PLCC values are 83.5% for FMPD vs. 66.2% for
MSDM2, and the SROCC values are 81.9% for FMPD vs. 80.4% for
MSDM2). The good performance of the FMPD metric can also be
confirmed in Fig. 8(b), where most of the FMPD-MOS points in the
plot are very close to the psychometric curve.

The LIRIS masking database was designed specifically to test the
capacity of an objective MVQ metric to capture the visual masking
effect. The database contains 28 models: four reference meshes
and six deformed models for each reference mesh. The deformed
models were obtained by adding noise of different intensities to
either the rough or the smooth regions of the reference model.
Fig. 9 shows some models from this database, with the corre-
sponding FMPD and MOS values. Normally, noise of the same
magnitude induces much higher visual degradation in smooth
regions than in rough regions, as reflected by the FMPD and MOS
values. Table 2 provides the results of the different metrics on this
database. As on the general-purpose database, the FMPD has the
best individual PLCC values on all four models in the masking
database, as well as the highest PLCC for the whole repository.
However, the overall SROCC for the FMPD is not as good as the
SROCC of the MSDM2 metric (80.2% for FMPD vs. 89.6% for
MSDM2) because the FMPD values of the four models are not
exactly in the same range. The understanding and improvement
of this limitation constitutes one aspect of our future work.

Fig. 9. Some models from the LIRIS masking database. From left to right are,
respectively, the reference Lion-vase model, the deformed model after noise
addition only in rough regions (FMPD=0.35, MOS=0.42), and the deformed
model after noise addition only in smooth regions (FMPD=0.69, MOS=0.84).
The added noise is of the same intensity in both models.

Table 2

Nevertheless, in general our metric captures the visual masking
effect well, as proven by the high individual and overall PLCC and
SROCC values (all > 80%) on the masking database.

The IEETA simplification database comprises 35 models: five
reference meshes and six simplified models for each reference
mesh. The simplified models were obtained using three simplifi-
cation algorithms with two different vertex reduction ratios.
Fig. 10 shows some models from this database, and Table 3
presents the results of the MVQ metrics. The FMPD has quite
good overall performance on this database, and it outperforms the
HD and MSDM2 metrics in terms of both the overall PLCC and the
overall SROCC. In particular, the overall PLCC of the FMPD is much
better than MSDM2 (89.3% for FMPD vs. 79.6% for MSDM2).
However, the FMPD does not always provide very good results
for each individual model, especially the Head model because
sometimes the FMPD metric has difficulty in capturing the slight
and subtle quality differences between simplified models with
the same vertex reduction ratio that have been generated by
different simplification algorithms. However, the MSDM2 metric
has a similar problem; for instance, its relatively low SROCC on
the Lung model is due to the same problem.

From the above experimental results and comparisons, we can
conclude that the FMPD is quite efficient in predicting the results
of the subjective assessment of MVQ. Compared to the existing

Fig. 10. Some models from the IEETA simplification database. In the top row are
three reference models. In the bottom row, from left to right are, respectively, the
Bunny model simplified with a reduction ratio of 80% by the QSlim method [8]
(FMPD=0.45, M0OS=0.59), the Head model simplified with a reduction ratio of
80% by the error-quadratics-based method in OpenMesh [54] (FMPD=0.60,
MOS=0.74), and the Strange model simplified with a reduction ratio of 50% by
the normal-flipping-criterion-based method in OpenMesh [54] (FMPD=0.30,
MOS=0.46).

PLCC (rp) and SROCC (ry) values (%) of different MVQ metrics on the LIRIS masking database.

Metric Armadillo Bimba Dinosaur Lion-vase All models
T Ts T Ts T Ts T Ts Ty Ts

HD [3,4] 37.7 48.6 7.5 25.7 311 48.6 251 714 4.1 26.6
RMS [3,4] 44.6 65.7 21.8 71.4 50.3 714 23.8 714 17.0 48.8
3DWPM; [30] 41.8 58.0 8.4 20.0 45.3 66.7 9.7 20.0 10.2 29.4
3DWPM, [30] 37.9 48.6 14.4 371 50.1 714 220 383 18.2 374
MSDM2 [16] 65.8 88.6 93.7 100 91.5 100 87.5 94.3 76.2 89.6
FMPD 94.2 88.6 989 100 96.9 943 935 94.3 80.8 80.2
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Table 3

PLCC (r,) and SROCC (rs) values (%) of different MVQ metrics on the IEETA simplification database.

Metric Bones Bunny Head Lung Strange All models
rp Ts Ty Ts Ty Ts Tp Ts Tp Ts Ty Ts
HD [3.4] 84.8 943 143 395 53.0 88.6 64.9 88.6 274 37.1 255 494
MSDM2 [16] 96.7 77.1 96.3 94.3 79.0 88.6 85.3 65.7 98.1 100 79.6 86.7
FMPD 96.0 88.6 98.0 94.3 70.4 65.7 95.5 88.6 96.0 65.7 89.3 87.2
Table 4 Plot of the FMPD versus quantization level
Comparison of the execution times (in seconds) of the FMPD and MSDM2 [16] T T T T T T I I
metrics and the Metro tool [3], on a laptop equipped with a 2.27 GHz Intel i5 CPU 1L ©— Venus |
and 4 GB memory. The experiments were conducted on Venus models (Fig. 1, left) +— Rockerarm
of different complexities. Bimba
# vertices M, # vertices My FMPD MSDM2 Metro 08¢}
100 K 100K 2.86 104.23 11.14
100 K 50K 2.11 69.49 10.73
100 K 10K 1.59 52.87 8.91 Q06
100 K 1K 1.46 50.04 8.63 S
50K 50K 1.33 35.40 5.09 L
50K 10K 0.79 19.45 4.27 04l
50K 1K 0.69 16.97 3.88 )
10K 10K 0.24 335 0.78
10K 1K 0.13 1.66 0.70
1K 1K 0.03 0.19 0.13 02F Y N NG
O I I

e eg
1 e

i e

Fig. 11. The distance maps between the Bimba models shown in Fig. 5(a) and (b),
produced by (left to right) the (a) FMPD, (b) MSDM2 and (c) RMS metrics. Warmer
colors represent higher values. (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this article.)

metrics, the FMPD has the highest overall PLCC on all three
subjective databases that we tested. The overall PLCC and SROCC
of the FMPD are greater than 80% on the three databases, which
demonstrates the efficacy and stability of the proposed metric.
The FMPD outperforms the global-roughness-based metrics,
3DWPM; and 3DWPM,, with much higher correlation values on
the general-purpose and masking databases. This better perfor-
mance is mainly due to the use of an efficient local roughness
descriptor and the integration of the visual masking effect in the
design of the FMPD.

4.2. Execution time and distance map

Time complexity is an important performance index for MVQ
metrics. A low time complexity is desired in many practical
applications, particularly in network-based QoS control and in
the parameter optimization of mesh processing algorithms. In
QoS control, it is essential to use a very fast MVQ metric to realize
real-time QoS control, so as not to disturb the clients. In
parameter optimization, it is often necessary to iteratively evoke
the MVQ routine to find the optimum parameter value; therefore,

7 8 9 10 11 12 13 14
Quantization level (bpc)

Fig. 12. Plot of FMPD versus quantization level (in bits per coordinate, bpc) of
three meshes of different complexities.

a low-cost metric is required. Table 4 presents the execution time
of the FMPD and MSDM2 [16] metrics and the Metro tool (which
is a highly efficient implementation of the HD and RMS
metrics) [3]. The comparisons were conducted on Venus models
(Fig. 1, left) of different complexities (with the number of vertices
ranging from 1 K to 100 K). All the data in Table 4 were obtained
on a laptop equipped with a 2.27 GHz Intel i5 CPU and 4 GB
memory. Our metric largely outperforms the MSDM2 metric and
is also faster than the widely used Metro tool. For example, the
FMPD metric takes less than 3 s to compare two meshes of 100 K
vertices, whereas the MSDM2 metric takes approximately 100 s
and the Metro tool takes approximately 11s. Therefore, we
believe that due to its high speed and simplicity, the FMPD metric
has the potential to be used in many mesh applications that have
strict requirements on time complexity.

A distance map is not a standard output of the proposed metric
because the FMPD is a global-roughness-based metric. However,
when correspondence information between the reference and
deformed meshes is available, the FMPD can produce a distance
map based on this information. This is the case for all the models in
the general-purpose and masking databases because the models
before and after deformation share the same connectivity. The local
distance on each vertex is simply computed as the difference between
its local roughness and that of its counterpart in the other mesh.
Fig. 11(a) shows the distance map from the FMPD between the Bimba
models shown in Fig. 5(a) and (b). This map is consistent with human
perception; i.e., the perceived degradation is higher in smooth regions
than in rough regions. A similar map produced by the MSDM2 metric
is shown in Fig. 11(b), but the map from the local RMS metric in
Fig. 11(c) is not relevant to human perception.
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4.3. Application to vertex coordinate quantization

Vertex coordinate quantization is an important and almost
mandatory preprocessing step of many mesh processing algo-
rithms, especially compression [12,55]. The intensity of this
quantization is usually measured in bits per coordinate (bpc):
the lower the bpc, the greater the quantization. It is desired to
find a proper and adaptive quantization level for each mesh,
which in general is not an easy task. Here we define the optimum
quantization level as the greatest intensity that does not intro-
duce visible and disturbing distortion to the original mesh. A
weaker quantization (i.e., with a higher bpc) than the optimum
will increase the number of bits necessary for representing each
coordinate; a greater quantization (i.e., with a lower bpc) than the
optimum will introduce visible distortion. Meshes of different
complexities or geometric details may have different optimum
quantization levels, and a universal bpc setting is not appropriate.
Currently, we often rely on human observation to find the
optimum level, which is not fully automatic.

Our metric provides potentially a simple way to automatically
determine the optimum quantization level for each triangle mesh.
After a series of experiments, we have found that the optimum
bpc can be found by simply fixing a threshold on the FMPD
between the original and quantized meshes. More precisely, we
consider the optimum bpc to be the lowest value that produces an
FMPD of less than 0.20. Fig. 12 plots the FMPD versus the bpc for
three meshes of different complexities: the Venus model with
100 K vertices shown in Fig. 1 left, the Rockerarm model with
40 K vertices shown in the third column of Fig. 7 and the Bimba
model with 8.8 K vertices shown in Fig. 5(a). The evolution of the
FMPD versus the bpc is different from mesh to mesh, but the
three curves all exhibit a rapid increase once the FMPD is greater
than 0.20. According to the simple rule that we propose, the
optimum quantization level is 12, 11 and 10 bpc for the Venus,
Rockerarm and Bimba models, respectively. These results are
quite consistent with human observation, as shown in Fig. 13.
Of course, users can adjust the threshold to adapt to the specific
requirements of an application. It is worth mentioning that it
would be nearly impossible to use simple geometric measures,

Fig. 13. Close-ups of quantized meshes with different bpc values. Close-ups in the
middle correspond to the optimum quantization level (respectively, 12, 11 and 10
bpc for Venus, Rockerarm and Bimba, from top to bottom), whereas the close-ups
on the left and right correspond, respectively, to a bpc that is one bit higher and
one bit lower than the optimum level.

such as the HD and RMS metrics, to automatically determine the
optimum bpc because the same quantization level would produce
nearly the same HD and RMS errors (relative to the size of the
object) on all meshes.

4.4. Discussion

One limitation of our method is that it cannot compare the
visual difference between a pair of meshes that have exactly the
same global roughness. This could happen in some extreme cases,
but it has not been encountered in our experiments. Despite this
limitation, an advantage of the FMPD is that it is possible to use
the FMPD as a reduced-reference MVQ metric because only the
global roughness of the reference mesh, along with some addi-
tional parameters, is required to assess the visual quality of a
distorted mesh at the receiver side. Nevertheless, to overcome
this global roughness ambiguity problem, it would be possible to
modify the FMPD so that the modified metric would be based on
the comparison of the local roughness between corresponding
vertices of the two meshes. One side effect of this solution would
be that we would need to perform a mesh correspondence
preprocessing step, which could be difficult and computationally
expensive in the general case.

As mentioned in Section 3.2, we tested the performance of our
MVQ assessment pipeline, shown in Fig. 2, with different local
roughness descriptors and found that the Laplacian of Gaussian
curvature yielded the best results. For example, the overall SROCC
value for the general-purpose database is reduced to 62.1%, 61.8%
and 80.3% when using the mean curvature, the Laplacian of the
mean curvature and the Gaussian curvature, respectively (com-
pared to 81.9% for the Laplacian of Gaussian curvature). These
results also demonstrate that the Gaussian curvature appears to
be experimentally more relevant to human visual perception than
the mean curvature. We also tested the pipeline with higher-
order derivatives of the Gaussian curvature as the local roughness
descriptor; the SROCC values for the general-purpose database
are, respectively, 80.8% and 80.1% for the bi-Laplacian and the tri-
Laplacian of the Gaussian curvature. The increased order of the
Laplacian operator does not result in improvement in the metric
performance. This may be because the higher-order geometric
quantities are more sensitive to noisy data and thus may have
lower numerical stability. At present, the Laplacian of the Gaus-
sian curvature appears to be a good choice to obtain a high
correlation with subjective scores while maintaining sufficient
computational stability.

5. Conclusions and future work

We have proposed in this paper a fast and efficient objective
metric, called FMPD, for the assessment of mesh visual quality.
The perceptual comparison between a pair of reference and
deformed models is based on a local roughness definition of the
mesh surface. Careful modulation of the local roughness is
applied to take into account the visual masking effect and the
psychometric saturation effect. In particular, we show that using
existing differential geometric quantities, combined with simple
mathematical operations, we can derive an effective MVQ metric
that is conceptually simple and easy to implement. Through a
series of experiments and comparisons with existing perceptually
based metrics, it is shown that the FMPD metric has a high
correlation with subjective scores and a very low processing time.
The simple application of the proposed metric to vertex coordi-
nate quantization demonstrates the potential of this metric for its
use in practical mesh processing applications. The source code for
the FMPD implementation is shared on the Internet.
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Our future work will mainly comprise three research direc-
tions: (1) conducting psychovisual experiments to study the
relationship between the different differential geometric quanti-
ties and human visual perception in an attempt to build scientific
and theoretical foundations for future research on MVQ assess-
ment, (2) applying the FMPD metric to other mesh processing
algorithms, especially compression and watermarking, and
(3) extending the proposed metric for the visual quality assessment
of point clouds and dynamic meshes.
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