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ABSTRACT 

This article investigates the use of statistical mapping techniques for the conversion of 

articulatory movements into audible speech with no restriction on the vocabulary, in the 

context of a silent speech interface driven by ultrasound and video imaging. As a baseline, we 

first evaluated the GMM-based mapping considering dynamic features, proposed by (Toda et 

al., 2007) for voice conversion. Then, we proposed a ‘phonetically-informed’ version of this 

technique, based on full-covariance HMM. This approach aims 1) at modeling explicitly the 

articulatory timing for each phonetic class, and 2) at exploiting linguistic knowledge to 

regularize the problem of silent speech conversion. Both techniques were compared on 

continuous speech, for two French speakers (one male, one female). For modal speech, the 

HMM-based technique showed a lower spectral distortion (objective evaluation). However, 

perceptual tests (transcription and XAB discrimination tests) showed a better intelligibility of 

the GMM-based technique, probably related to its less fluctuant quality. For silent speech, a 

perceptual identification test revealed a better segmental intelligibility for the HMM-based 

technique on consonants.  

 

Keywords: silent speech interface, GMM, HMM, ultrasound, articulatory-acoustic mapping. 
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1. INTRODUCTION 

Silent Speech Interfaces (SSIs) have emerged as a new research field in the last few years 

(Denby et al., 2010). SSI can be defined as devices that enable oral speech communication 

without vocalization. With a SSI, the ‘silent’ speaker articulates normally but does not 

produce any sound. SSI could be used to preserve the privacy of conversations, for discreet 

hand-free communication (as in a military operation), or on the contrary, in very noisy 

environments (where the audio speech signal is too degraded). Since silent speech does not 

involve vocal folds vibration, SSI could potentially be used after a total laryngectomy, as a 

temporary alternative to the esophageal voice, which takes time to master, or to the 

tracheoesophageal voice, which may require an additional surgery. So far, different 

technologies have been proposed to capture the articulatory activity during silent speech, such 

as surface electromyography (sEMG) with sensors placed on the face and neck (Schultz and 

Wand, 2010), or permanent-magnetic articulography (PEMA) with magnets glued on the 

tongue and lips (Fagan et al., 2008). Another approach is to capture and post-process a so-

called Non-Audible-Murmur (NAM) using a stethoscopic microphone (Nakajima et al., 

2003). In our approach (Denby et al., 2006; Hueber et al., 2010b), articulatory movements are 

captured using a medical ultrasound transducer placed beneath the chin, and a video camera in 

front of the lips, as shown in Figure 1. This sensor set provides relatively complete 

information on tongue (via ultrasound), lips and jaw movements1, while remaining totally 

non-invasive.  

Several studies addressed the problem of silent speech recognition, i.e. the 

identification of a sequence of words from silent articulation: (Wand and Schultz, 2011) for 

                                                

1 but no systematic information about the velum position, as discussed in Section 4.1. 
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sEMG, (Nakajima et al., 2006) for NAM, (Gilbert et al., 2010) for PEMA and (Hueber et al., 

2009) for ultrasound. In this study, we addressed the problem of silent speech conversion, i.e. 

the direct reconstruction of the speaker’s voice from his/her silent articulation, without any 

restriction on the vocabulary size.  

 

Figure 1: Silent speech interface driven by ultrasound and video imaging. The present 

study focuses on the direct conversion of silent articulation into audible speech without any 

restriction on the vocabulary size (contrary to silent speech recognition). 

 

In our previous work (Hueber et al., 2010b), this problem was addressed using a 

‘recognition-followed-by-synthesis’ approach. The system was composed of two chained 

modules: 1) a HMM-based decoder that predicts the most likely phonetic sequence from the 

observed articulatory movements, and 2) a unit selection algorithm that generates the spectral 

trajectories from the decoded phonetic sequence. The intermediate phonetic decoding step 

was motivated by the introduction of linguistic knowledge to regularize the problem of silent 

speech conversion. Such information might help recover some of the missing information in 

the silent articulatory data, such as the voicing feature. This approach gave encouraging 

results but presented some drawbacks. First, the quality of the synthesis depended strongly on 

the performance of the phonetic decoding: an error during that step systematically corrupted 

the synthesis. Second, since articulatory and acoustic modalities were processed separately 

during training, the dependencies between articulatory and spectral features were not 

explicitly modeled. As a consequence, the spectral targets depended on the decoded phonetic 
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labels only, and did not take into account the articulatory variability within each phonetic 

class. Therefore the first goal of this new study was to investigate mapping techniques that 

should be able to explicitly model these local acoustic-articulatory relationships.  

Furthermore, in all our previous studies, articulatory-to-acoustic mapping was not 

performed on actual silent speech: the converted articulatory data were acquired while the 

speaker was still vocalizing. However, recent studies such as (Hueber et al., 2010a) and  

(Janke et al., 2010) suggested that silent speech articulation differs from that of modal speech, 

probably due to the lack of acoustic feedback. Therefore, the second goal of this new study 

was to evaluate our system on actual silent speech.  

The problem of speech synthesis from articulatory movements, commonly called 

“articulatory synthesis” has been originally addressed by the use of a two or three-

dimensional articulatory model of the vocal tract (Birkholz et al., 2006; Maeda, 1990), 

coupled with an acoustic simulation method (Sondhi and Schroeter, 1987). In the past few 

years, supervised machine learning techniques have brought significant improvements in 

articulatory-to-acoustic mapping. These techniques seem to be well adapted to tackle the non-

uniqueness and the non-linear aspects of the acoustic-articulatory relationships. Most studies 

exploit articulatory data recorded using electromagnetic articulography (EMA) (Hiroya and 

Honda, 2004; Richmond, 2006; Toda et al., 2008; Zhang and Renals, 2008; Zen et al., 2011; 

Youssef et al., 2011; Hueber et al., 2012). This motion-capture device enables the very 

accurate tracking of a set of sensors glued on the main speech articulators (tongue, lips, jaw, 

velum). Several approaches have been proposed in the literature to model the relationship 

between articulatory positions captured by EMA and the corresponding speech spectrum. 

They aim at addressing either the direct mapping problem (articulatory synthesis) or the 

inverse mapping problem (acoustic-to-articulatory inversion). Some of them are based on 

discriminative models, such as artificial neural networks (ANN) as in (Kello and Plaut, 2004) 
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(direct mapping) or (Richmond, 2006) (inversion). Others are based on generative models, 

such as Gaussian Mixture Model (GMM) (Toda et al., 2008) (both direct mapping and 

inversion), Hidden Markov Models (HMM) (Hiroya and Honda, 2004; Youssef et al., 2011; 

Hueber et al., 2012) (inversion), and trajectory HMM (Zhang and Renals, 2008) (Zen et al., 

2011) (inversion). 

In this study, we investigated the use of statistical mapping techniques to convert the 

silent articulation captured by ultrasound and video imaging into audible speech, without any 

restriction on vocabulary size. First, we investigate the GMM-based mapping considering 

dynamic features proposed by (Toda et al., 2007) for voice conversion. This technique, to 

which we refer in this paper as GMM+dyn, is able to generate smoother and more accurate 

parameter trajectories than the conventional GMM-based regression. However, this approach 

does not use any linguistic knowledge on the articulatory-acoustic data, such as the 

underlying phonetic structure. In order to take such information into account, and in line with 

our previous work, we investigated another regression technique based on the joint modeling 

of acoustic and articulatory trajectories by full-covariance HMMs. This technique, which also 

guarantees smooth trajectories, is referred to as the HMM+dyn technique in this paper. 

Contrary to GMM+dyn, HMM+dyn aims 1) at explicitly modeling the phoneme-specific 

dynamics of articulation, and 2) at exploiting linguistic knowledge in order to regularize the 

ill-posed problem of silent speech conversion.  

Both techniques were evaluated in the context of open-vocabulary and continuous 

speech, for two French speakers (one male and one female). They were first evaluated on 

modal speech (i.e. from non silent articulation) using both objective measurements and 

perceptual tests (transcription test and XAB preference test). The segmental intelligibility of 

the two techniques was then compared on actual silent speech using transcription and 

identification tests.  
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The article is organized as follows. Section 2 details the theoretical basis of 

GMM+dyn and HMM+dyn techniques. Section 3 describes the data acquisition and the 

extraction of articulatory and acoustic features. The experimental protocol and results are 

detailed in section 4. Conclusions and perspectives are presented in the last section. 

2. Theoretical basis of considered mapping techniques 

In this article, input (i.e. articulatory) and output (i.e. acoustic) feature vectors observed at 

time t  are noted respectively xt  and yt  (the dimension of these column vectors is noted 

respectively Dx  and Dy ) and are considered as realizations of the random variables X  and Y

. In the two mapping techniques considered in this study (GMM+dyn and HMM+dyn), output 

feature vectors are augmented by their N-first derivatives, which are referred to as ‘dynamic 

features’. The resulting feature vector is noted  !yt  with  !yt = [y t

†,Δy
t

†]†  (we considered here 

only the first derivative) where †  denotes the transpose operator (the associated random 

variable is noted  !Y ). For a given sequence of T observations, the linear relation between 

static and dynamic feature vectors can be expressed by introducing the [2DyT -by-DyT ]  

matrix W defined as:  

 

(1) 
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with IDy
 the Dy -dimensional identity matrix, so that Δyt = 0.5yt+1 − 0.5yt−1  (in this study, the 

first derivatives of output features for the first and last frames were defined as: Δy1 = Δy2  and 

ΔyT = ΔyT −1 ).   

2.1. GMM-based mapping considering dynamic features (GMM+dyn) 

The following section recalls the theoretical aspects of the mapping technique based on 

Gaussian Mixture Model (GMM) with a continuity constraint on dynamic features. This 

technique was initially proposed in the context of voice conversion (Toda et al., 2007), and 

was then applied to articulatory-acoustic mapping (Toda et al., 2008). In the training stage, 

the joint probability density function (pdf) of input and output features is modeled by a GMM 

such as: 

 

p(z |Θ) = p(x, !y |Θ) = αmN(z,µm
Z ,Σm

Z )
m=1

M

∑

with z =
x
!y

⎡

⎣
⎢

⎤

⎦
⎥,  µm

Z =
µm
X

µm
!Y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,  Σm

Z =
Σm
XXΣm

X !Y

Σm
!YXΣm

!Y !Y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

   (2) 

where Θ  is the parameter set of the GMM2, N(.,µ,Σ)  is a Normal distribution with mean µ  

and covariance matrix Σ , M  is the number of mixture components, and αm  is the weight 

associated with the mth mixture component (prior probability). Given a training dataset of 

input and output observations, the Maximum Likelihood estimation (ML-estimation) of the 

GMM parameters ΘML  is determined using the expectation-maximization algorithm (EM), 

such as: 
 
ΘML = argmax

Θ
p(x, !y |Θ) . A graphical representation of the GMM considered during 

training is represented in Figure 2 (left). 

                                                

2
 p(z |Θ) = p(x, !y |Θ)  is an abuse of notation meaning  p(Z = z |Θ) = p(X = x, !Y = !y |Θ) .    
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In the mapping stage, a conditional pdf  p( !yt | xt ,Θ)  is calculated for each xt  vector, 

from the joint pdf  p(x, !y |Θ)  estimated during training, such as: 

 
p( !yt | xt ,Θ) = P(m | xt )p( !yt | xt ,m,Θ

m=1

M

∑ )   (3) 

where P(m | xt )  is a posterior probability which can be seen as the responsibility that the mth 

mixture component takes for ‘explaining’ the input feature vector xt , defined such as: 

P(m | xt ) =
αmN(xt ,µm

X ,Σm
XX )

α lN(xt ,µl
X ,Σl

XX )
l=1

M∑
   (4) 

and  p( !yt | xt ,m,Θ)  is the conditional probability of  !yt  given both xt  and the mth mixture 

component, which is also a Gaussian and is defined as:  

 

p( !yt | xt ,m,Θ) = N( !yt ,Em
!Y (xt ),Dm

!Y )

with 
Em
!Y (xt ) = µm

!Y + Σm
!YXΣm

XX−1

(xt − µm
X )

Dm
!Y = Σm

!Y !Y − Σm
!YXΣm

XX−1

Σm
X !Y

⎧
⎨
⎪

⎩⎪

   (5)  

In conventional GMM-based mapping, the sequence of output vector is estimated frame-by-

frame, such as: 

ŷt = E[yt | xt ]= P(m | xt )Em
Y (xt )m=1

M∑    (6) 

As mentioned in (Toda et al., 2007), the main drawback of this approach is that the estimated 

trajectory can present some abnormal discontinuities. These discontinuities can be due to 

instable posterior probabilities P(m | xt )  (responsibilities) when xt  becomes equidistant to 

the centroid of several mixture components. The GMM+dyn approach aims at addressing this 

issue.  
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In the GMM+dyn framework, the sequence of output feature vectors is not estimated 

frame-by-frame, but rather in one single operation from the entire sequence of input feature 

vectors [x1,...,xt ,...,xT ] . This sequence is written as a DyT -dimensional column vector xseq  

such as xseq = [x1
†,...,xT

† ]† . Similarly, the sequences of output feature vectors  [ !y1,..., !yT ]  (static 

and dynamic features) and estimated feature vectors [ŷ1,..., ŷT ]  (static features only) are also 

written as column vectors such as  !yseq = [ !y1
†,..., !yT

† ]†  (2DyT -dimensional vector) and 

ŷseq = [ŷ1
†,..., ŷT

† ]† (DyT -dimensional vector). In this framework, ŷseq  is estimated by 

maximizing the conditional pdf  p( !yseq | xseq ,Θ)  with respect to static features 

yseq = [y1
†,...,yT

† ]†  such as 
 
ŷseq = argmaxyseq p( !yseq | xseq ,Θ) . By searching for a consistent 

relationship between static and dynamic features, this approach guarantees the smoothness of 

the estimated trajectory. This approach can be seen as an adaptation of the ‘maximum 

likelihood parameter generation’ algorithm (MLPG) proposed in (Tokuda et al., 2000) for 

HMM-based synthesis, to the GMM-based mapping. Similarly to the MLPG algorithm, ŷseq  

can be estimated by solving a closed-form equation (Toda et al., 2007), given by:  

ŷseq = (W
TD−1W )−1WTD−1E    (7) 

where  E = [Ex1
!Y†,...,Ext

!Y†,...,ExT
!Y †]†  is a 2DyT -dimensional column vector and 

 D = diag[Dx1
!Y ,...,Dxt

!Y ,...,DxT
!Y ]  a 2DyT × 2DyT  matrix with:  

 
Ext
!Y = P(m | xt )Em

!Y (xt )
m=1

M

∑  and Dxt
!Y = P(m | xt )Dm

!Y

m=1

M

∑   (8)  

In our implementation, and similarly to (Toda et al., 2008), the calculation of E  and D  was 

simplified by keeping only, for each input feature vector, the mixture component with the 
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highest responsibility. The column vector E  and the matrix D  of Equation 7 become 

respectively  Ê = [Em̂1

!Y (x1)
†,...,Em̂t

!Y (xt )
†,...,Em̂T

!Y (xT )
†]†  and  D̂ = diag[Dm̂1

!Y ,...,Dm̂t

!Y ,...,Dm̂T

!Y ]  with 

m̂  a suboptimal sequence of mixture components defined as m̂ = [m̂1,..., m̂t ,..., m̂T ]  with 

m̂t = argmaxm{P(m | xt )} . Contrary to the conventional GMM-based mapping (Equation 6), 

the GMM+dyn technique uses both the expectation  Ext
!Y  and the variance  Dxt

!Y  of the 

conditional probability  p( !yt | xt ) , for all input frames. Since D  is a block-diagonal matrix, 

D−1  is also block-diagonal and generally full-rank. Thus, via the product D−1E  of Equation 

7, all input vectors of sequence [x1,...,xt ,...,xT ]  contribute to the estimation of each output 

vector ŷt . As a consequence, contextual information is naturally taken into account in the 

mapping. In our application, such information can potentially be helpful to disambiguate 

partially observed articulatory gestures. A graphical representation of this conversion method 

is represented in Figure 2 (right). 

 

Figure 2 left: Directed graphical model associated with the GMM considered during 

training (x  and  !y  are observed variables, m  is a latent variable) / right: Graphical 

representation of the GMM-based mapping process considering dynamic features 

(GMM+dyn). 

As shown in Figure 2, the graphical model used for training (left) is different from the one 

used for the mapping (right). (Zen et al., 2011) addressed this inconsistency issue and 
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proposed a training algorithm that explicitly takes into account the relationships between 

static and dynamic features. This approach, called trajectory GMM, was not used in this study 

but remains an interesting perspective.  

2.2. HMM-based mapping considering dynamic features (HMM+dyn) 

The following section describes the theoretical aspects of the proposed HMM-based mapping 

technique. This technique, which is referred to as the HMM+dyn technique, can be seen as a 

straightforward adaptation of the GMM+dyn technique to the framework of Hidden Markov 

Models. In the training stage, parallel sequences of articulatory and acoustic observations are 

modeled by a full-covariance HMM, i.e. a HMM for which state emission probability is 

modeled by a multivariate Gaussian distribution with a full-covariance matrix. The optimal 

parameter set ΘML   is estimated similarly to a standard HMM, by maximizing the likelihood 

of the joint pdf such as 
 
ΘML = argmax

Θ
p(x, !y |Θ)  with: 

 
p(x, !y |Θ) = p(z |Θ) = P(q |Θ)p(z | q,Θ)

q
∑    (9) 

and 

P(q |Θ) = π q1
aqt−1qt

 and  p(z | qt ,Θ) = N(.,µqt
Z ,Σqt

Z )
t=2

T

∏   (10) 

where q = [q1,...,qt ,...,qT ]  is a sequence of  T  states, π q1  are the initial state probabilities, 

aqt−1qt are the state transition probabilities, and µqt
Z / Σqt

Z   are the mean/covariance matrix of 

emission probability associated with the HMM state qt  (with z  defined as in Equation 2). 

These parameters are determined from the training dataset using the Baum-Welch algorithm. 

The directed graphical model associated with the full-covariance HMM considered during 

training is represented in Figure 3 (left). 
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Figure 3: left: Directed graphical model associated with the full-covariance HMM 

considered during training (x  and  !y  are observed variables, qt  is a latent variable) / right: 

Graphical representation of the HMM-based mapping process considering dynamic features 

(HMM+dyn). 

As shown in Figure 3 (left), this model can be seen as a GMM for which only some 

transitions between mixture components are possible and can occur with a certain (transition) 

probability. Therefore, this approach aims at modeling more explicitly the time organization 

of articulatory gestures, compared to a GMM. In this approach, the HMM state duration 

model is ‘implicit’; it is given by a geometric distribution, as shown by Equation 10. 

However, as discussed in (Ostendorf et al., 1996) in the context of automatic speech 

recognition, this duration modeling might not be optimal. The use of an explicit duration 

model, in the framework of Hidden Semi-Markov Models (Russell and Moore, 1985), 

remains an interesting perspective that should be addressed in future work.   

Contrary to our previous work, the local relationships between articulatory and 

acoustic observations are here explicitly modeled, through the full-covariance matrices of 

HMM emission probabilities. For a given state qt , this local relationship is given by the 

conditional expectation  E( !yt | xt ,qt ,Θ)  given by Equation 5, which can be seen as linear 

regression function such as: 
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 E( !yt | xt ,qt ,Θ) = Aqtxt + bqt  with  Aqt = Σqt

!YXΣqt
XX−1

 and  bq = µq
!Y − Aqµq

X     (11) 

In this study, we investigated a conversion technique based on full-covariance HMM 

that explicitly considers the dynamic features, similarly to the MLPG algorithm (Tokuda et 

al., 2000) and the GMM+dyn technique. The sequence of target feature vector ŷ  is estimated 

from the input sequence [x1,...,xt ,...,xT ]  in a single mapping process (and not frame-by-

frame). As for the GMM+dyn case, this sequence is defined as the one that maximizes the 

conditional pdf  p( !y | x,Θ)  with respect to the static features. In the context of HMM, this 

conditional pdf can be expressed as a function of the state sequence q , such as:  

 
p( !y | x,Θ) = p(!y | x,q,Θ)P(q | x,Θ)

∀q
∑    (12) 

Similarly to the GMM+dyn technique, this conditional pdf can be approximated such 

as  p( !y | x,Θ)~ p(!y | x, q̂,Θ) , where q̂  is a suboptimal state sequence defined as 

q̂ = argmaxq{P(q | x,Θ)} . In the HMM framework, this state sequence can be determined 

from the input sequence [x1,...,xt ,...,xT ]  using the Viterbi algorithm. The generation of the 

output sequence ŷseq  is then similar to the GMM+dyn approach. First, a conditional pdf 

 p( !yt | q̂t ,xt ,Θ)  is estimated for each vector xt  and decoded state q̂t  using Equation 5. Output 

sequence ŷseq  is then computed by solving Equation 7 with 

 Ê = [Eq̂1

!Y (x1),...,Eq̂t

!Y (xt ),...,Eq̂1T

!Y (xT )]
†  and  D̂ = diag[Dq̂1

!Y ,...,Dq̂t

!Y ,...,Dq̂T

!Y ]  (i.e. the HMM state 

sequence q̂  stands for the suboptimal sequence of GMM component m̂ ). A graphical 

representation of this conversion process is presented in Figure 3 (right). 

In line with our previous work, we trained a set of phone HMMs, i.e. one HMM for 

each phonetic class. Similarly to HMM-based recognition or synthesis systems, phone HMMs 

can be concatenated together to build models of higher linguistic level (syllable, word, 



 15 

sentence, etc.). The goal of using phone HMMs was twofold. First, the phonetic segmentation 

of the data is used as prior knowledge in the training stage. Second, external linguistic 

knowledge can be introduced in the mapping for regularization purpose, similarly to our 

previous work (Hueber et al., 2010b). This linguistic knowledge P(q,Θ)  can be introduced 

during the intermediate state-decoding step, which can be re-written as: 

P(q | x,Θ) = P(q,Θ)p(x | q,Θ) / p(x,Θ) . It can consist of a set of phonotactic rules, or a 

statistical language model at phonetic or syllabic level. Later, this step is referred to as the 

phonetic decoding step.  

2.3. Relation to previous work on HMM-based mapping 

Similar feature mapping algorithms based on HMM have been proposed in the 

literature. The following section describes the most relevant examples and discusses the 

differences with our approach. In (Chen, 2001), HMM was used to drive a lip model from 

speech acoustics for lip synchronization purpose. In that study, the training stage was identical 

to the one used in the present study. However, the conversion stage was different since it was 

done frame-by-frame (i.e. the estimated feature vector was defined as ŷt = Eqt
Y (xt ) ) without 

considering dynamic features. In (Hiroya and Honda, 2004), an HMM-based mapping 

algorithm considering dynamic features was proposed in the context of acoustic-to-

articulatory inversion. A similar approach was used in (Ling et al., 2009) in the context of 

speech synthesis driven both by text and articulatory inputs, and in (Ling et al., 2010), for the 

estimation of articulatory movement from text (eventually completed with acoustic inputs). 

To our best understanding, our approach differs from the one described in (Hiroya and Honda, 

2004) in two aspects. First, in the training stage of (Hiroya and Honda, 2004), only the input 

stream was considered when estimating HMM state responsibilities P(qt | xt ,Θ) , whereas 

both input and output stream were considered in our approach (as shown in Equation 9). 
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Second, the parameters of the state-dependent linear regression functions Aqt  and bqt  

(Equation 11) were estimated iteratively during the training stage. In our approach, they are 

deduced at conversion time from the conditional expectation associated with the decoded state 

q̂t  as explained previously, and similarly to the GMM-based mapping technique. 

3. Data acquisition and parameterization  

Articulatory-to-acoustic mapping experiments were conducted to evaluate GMM+dyn and 

HMM+dyn techniques, in the context of a silent speech interface driven by ultrasound and 

video imaging. Both techniques were evaluated on a continuous speech database recorded 

specifically for this study, with two French speakers (one male, one female). 

3.1 Experimental setup 

Ultrasound scans were acquired using the portable Terason T3000 system, with a 128 

elements microconvex transducer. For both speakers, ultrasound frequency range was set to 3-

5 MHz, scanning angle to 140°, and penetration depth to 7 cm. Video images of the speaker’s 

face were recorded using the industrial 1/3" CMOS color camera (Imaging Source DFM 

22BUC03-ML). Exposure time was set constant to 1/128 second (automatic gain and white-

balance correction were disabled). Ultrasound and video sensors were attached to the 

speaker’s head using a slightly modified version of the probe stabilization helmet designed by 

(Wrench et al., 2007). The experimental setup used for data acquisition is shown in Figure 4.  
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Figure 4: Experimental setup used for data acquisition (speaker B) 

In our previous studies (Hueber et al., 2011, 2010b), both ultrasound and video data 

were acquired at 29.97 fps (NTSC format), using the video analog output of ultrasound 

system, and a consumer video camera. However, (Wrench and Scobbie, 2006) showed that 

this digital-to-analog conversion of ultrasound scans (also called rasterization) could cause 

inaccurate measurements of tongue location (with an error up to 10mm for tongue tip and 

7mm for tongue body). In order to avoid this conversion, we developed a software named 

Ultraspeech3 able to record high quality ultrasound scans at their maximum spatial and 

temporal resolution (with no distortion) by accessing directly to the internal buffer of the 

ultrasound system (cineloop). More details about this software can be found in (Hueber et al., 

2008). In this study, ultrasound and video images were both recorded at 60 fps, which was 

twice as high as in our previous work. Audio was recorded synchronously at 32 bits, 44.1 

kHz.  Typical examples of the recorded ultrasound and video images are given in Figure 5.  

                                                

3 The software is free to download at http://www.ultraspeech.com 
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Figure 5: Typical examples of recorded ultrasound and video images (320x240 and 

640x480 pixels respectively) for male speaker A (up) and female speaker B (bottom). Red 

bounding boxes delimit the regions of interest considered for feature extraction.   

3.2 Recorded database 

The recorded corpus was divided into five parts:  

• P1: a set of 288 ‘phonetically-dense’ sentences selected from a large text corpus and 

recorded in modal speech. These sentences were selected using the following 

procedure. First, a set of 50,000 sentences was extracted from the text corpus of  "Le 

Monde" (2003 edition) distributed by ELRA4. These sentences have a simple syntactic 

structure (e.g. only one verb), and contains from 5 to 12 syllables. Second, a final set 

of 288 sentences was extracted from this initial set using a greedy algorithm 

(Buchsbaum and van Santen, 1996). The sentences were selected in order to have at 

least one occurrence of each French diphone in the final set.  

                                                

4 http://catalog.elra.info/product_info.php?products_id=438 
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• P2: The first 100 ‘phonetically-balanced’ sentences of (Combescure, 1981), recorded 

in modal speech5.  

• P3: The first 30 sentences of P2, but recorded in silent speech (i.e. articulated normally 

but without vocalization).  

• P4: 100 carrier sentences “Tu t’appelles VCV, c’est ça ?” (“Your name is VCV, that’s 

right ?”), with vowel V selected from the set {a,i,u,y,e,ø,o,ɑ,̃ɛ̃,ɔ}̃ and consonant C 

from {p,t,k,f,s,ʃ,m,n,ʁ,l}. Carrier sentences were preferred to isolated VCV in order to 

evaluate the segmental intelligibility of the system on continuous speech while 

controlling the phonetic context. VCV were placed in the middle of the carrier 

sentence in order to avoid vowel reduction typically observed when it is placed at the 

end of a sentence6.  

• P5: same as P4 but recorded in silent speech7.  

In order to measure how “silent” was the speech recorded in P3 and P5, the absolute sound 

pressure level measurement (SPL) was measured using a calibrated Brüel & Kjær microphone 

placed one meter away from the speaker’s face and a conditioning amplifier (Nexus B&K). 

The mean SPL were of 44.0 and 62.0 dBSPL for respectively silent, and normal speech while 

the mean SPL for the ambient noise of the anechoic room was of 43.9 dBSPL. 

                                                

5 A video example of one recorded sentence is provided as electronic supplementary material 

(SpeakerA_list1_sent302.mov). 

6 A video example of one recorded sentence for VCV [asa] is provided as electronic supplementary material 

(SpeakerA_asa_carrier_modal.mov). 

7 A video example of one of the P5 sentences for VCV [asa] is provided as electronic supplementary material 

(SpeakerA_asa_carrier_silent.mov). 
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All sentences recorded in vocalized speech were phonetically transcribed, using the 

following phone set for French {a,i,u,y,e,ɛ,ə,ø,œ,o,ɔ,ɑ,̃ɛ̃,ɔ̃,p,t,k,b,d,g,f,s,ʃ,v,z,ʒ,m,n,ʁ,l,ɲ,j,w} 

(33 phonetic classes). Phonetic transcriptions were then corrected manually in order to match 

the pronunciation differences of the two speakers. Finally, they were time-aligned with the 

audio signal, using an HMM-based speech recognizer and a forced-alignment procedure.  

3.3 Extraction of articulatory and acoustic features 

To decrease the effect of speckle, ultrasound images were filtered using the anisotropic 

diffusion filter proposed by (Yu and Acton, 2002). This iterative filter introduces intra-region 

smoothing while inhibiting inter-region smoothing, using the local coefficient of variation as 

edge detector. Speckle was thus reduced while important image features (such as tongue 

contour) were preserved. Similarly to our previous studies, the EigenTongues decomposition 

(Hueber et al., 2007) was then used to parameterize each ultrasound  image. The technique is 

a straight-forward adaptation of the Eigenfaces method proposed by (Turk and Pentland, 

1991) in the context of automatic face recognition and can be summarized as follows. In the 

training stage, a subset of ultrasound frames was selected from the recorded dataset. In order 

to maximize the phonetic coverage of the training set, we kept approximately 60 frames for 

each of the 33 phonetic classes used to describe French (~2000 frames). A region of interest 

(ROI) shown in Figure 5 was first determined manually. It was delimited by the highest point 

of the ultrasound probe (bottom), the maximum penetration depth (up), the acoustic shadow 

of the hyoid bone (left), and the acoustic shadow of the mandible (right). Since the helmet 

maintains the ultrasound probe and the camera fixed relatively to the skull, the same ROI was 

used for all the frames of the recorded database.  

The region of interest (ROI) shown in Figure 5 was then resized to 32x32 pixels. A 

decomposition basis that best explains the variation of pixel intensity in the training frames 
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was then extracted using a Principal Component Analysis (PCA). Basis vectors for ultrasound 

are called EigenTongues. In the feature extraction stage, the resized ROI of each new 

ultrasound frame was projected onto the set of EigenTongues. Articulatory features used for 

the mapping experiments were defined as the first N  coordinates in that space. The number 

N  was determined by keeping the eigenvectors that carry 80% of the variance. For both 

speakers, 30 coefficients were used as static features for ultrasound. A similar approach 

(EigenLips decomposition) was adopted to parameterize video images (ROI contains the lips 

and the bottom part of the face); the optimal number of projections was found to be 25.  

The spectral content of the audio speech signal was parameterized by 12 mel-cepstrum 

coefficients (Blackman window, 25ms frame length, 5ms frame shift), using the SPTK 

toolkit8. Articulatory feature trajectories were oversampled from 60Hz to 200Hz, in order to 

be compatible with the speech analysis rate.  

4. Articulatory-to-acoustic mapping experiments  

4.1 Articulatory-to-acoustic mapping experiments on modal speech  

4.1.1 Practical implementation and experimental protocol  

The performance of GMM+dyn and HMM+dyn mapping techniques was first evaluated on 

modal speech, using a 8-fold cross-validation procedure. The partitioning of the recorded 

database was the following. The 488 sentences recorded in modal speech (which correspond 

to the parts P1, P2 and P4, described in Section 3.2) were divided into 8 subsets of 61 

sentences. For each of the 8 repetitions of the cross-validation, one subset was used for test, 

while the 7 other subsets were used for training (427 sentences). Among these training 

sentences, 400 of them were actually used for the estimation of the GMM and HMMs 

                                                

8 SPTK toolkit: http://sp-tk.sourceforge.net/ 
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parameters, and 27 sentences were used to adjust: a) the model insertion penalty of the 

phonetic decoding step for HMM+dyn and b) the optimal number of components of the model 

for GMM+dyn. That number was found equal to 100 for both speakers (16, 32, 64, 100, 128 

components were tested; K-means algorithm was used for initialization). No improvement 

was observed with 128 components. With more components (>128), the covariance matrices 

of the GMM were badly conditioned, probably because of the size of the training set. 

Interestingly, the optimal number of GMM components corresponded roughly to the total 

number of states for HMM+dyn experiments (33 models x 3 states = 99).  

The dynamic component of articulatory features  (i.e.Δxt ) was not considered when 

training GMM and full-covariance HMM, in order to avoid conditioning problems of 

covariance matrices. We recall also that the dimensionality of the articulatory observations 

Dx  considered in this study is equal to 55, which is much higher than the dimensionality of 

EMA feature vectors considered in (Toda et al., 2008) (which was 14). For the GMM, no 

significant improvements were observed when using Δxt , for a number of components 

inferior to 64. With more components (and a fortiori for 100 components which was found to 

be the optimal number of components), conditioning problems of covariance matrices were 

observed when using Δxt . This can be explained by a too large number of parameter to 

estimate (equals to M (1+ (Dx + 2Dy )+ (Dx + 2Dy )
2 / 2)  with M  the number of mixture 

components) which was equals to 540,850 when considering only xt  and increased up to 

1,264,100 when considering both xt  and Δxt  (while the size of the training material 

remained fixed to ~ 230,000 observations). The same conditioning problems were observed 

also with full-covariance HMM when considering both xt  and Δxt . However, Δxt  was used 

for the intermediate phonetic decoding stage of HMM+dyn experiments. Its impact on the 

final performance is discussed in Section 4.1.2.  
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 For the GMM+dyn experiments, silent frames at beginning and end of each sentence 

were removed from the training set. For the HMM+dyn experiments, they were kept and used 

to train a so-called silence model. 

HMMs were trained as follows. First, sequences of articulatory and acoustic feature 

vectors were modeled for each phonetic class by a single stream HMM. At this stage, the 

covariance matrix of each state emission pdf was forced to be diagonal. HMM topology was 

left-to-right with 3 emitting states and a possible transition between state 1 and state 3. HMMs 

were first trained separately, using the Baum-Welch algorithm and then processed 

simultaneously, using an embedded training strategy. Two other model sets were then 

initialized. The first one consisted of context-dependent models (triphone) 2-stream HMMs, 

trained only on articulatory features (including their dynamic component Δxt ). For this 

model, the emission pdf associated with state q  is expressed as: 

bq (xt ) = N(xtS ,µqS
X ,ΣqS

X )
S∈{US ,VIDEO}∏ γ s where xtS , µqS

X  and ΣqS
X  are extracted from xt , µq

X  and 

Σq
X  by keeping only the feature related to the S  stream (either ultrasound or video), and γ s  

are stream-specific weighting parameters. In this study, these parameters were determined on 

a validation set. For each weighting parameter, we evaluated the following values {0.2, 0.3, 

0.4, 0.5, 0.6, 0.7, 0.8} with the constraint γ US + γ VIDEO = 1 . The optimal values were γ US = 0.7  

and γ VIDEO = 0.3 , which confirm that the tongue carries the most important part of the 

accessible articulatory information. Interestingly, the same optimal weights were found in 

(Hueber et al., 2009) for English language. A tree-based state-tying strategy was used to cope 

with data sparsity. The second set of HMMs consisted in context-independent (monophone) 

HMMs, trained on joint articulatory features (without their dynamic component, i.e. xt  but 

not Δxt ) and acoustic features (with both their static and dynamic components, i.e.  !yt ). 
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Covariance matrix of state emission pdf was here forced to be full in order to explicitly model 

local acoustic-articulatory relationships.  

The first model set (context-dependent HMMs with diagonal covariance matrices) was 

used to determine the target phonetic sequence from the input articulatory observations 

[x1,...,xt ,...,xT ]  (phonetic decoding step). The target state sequence q̂  was then obtained by 

force-aligning the decoded phonetic sequence on the input articulatory observations using the 

second model set (i.e. context-independent full-covariance HMMs). These models were 

further used to effectively generate the output spectral features ŷ  given both q̂  and 

[x1,...,xt ,...,xT ]  (mapping stage). (Ling et al., 2010) proposed an iterative procedure to refine 

the state sequence q̂  by re-decoding the sequence of joint observations [xt
†,  ŷt

†]†  (for 

t = 0,...,T ) (i.e. original input / estimated output observation) using the Viterbi algorithm. 

This refinement was experimented in our context (i.e. articulatory-to-acoustic mapping) but it 

did not bring any improvement. Therefore, we kept the initial state sequence q̂  for the 

generation of ŷ .  

The use of two different model sets for phonetic decoding and parameter generation 

can be explained by the impossibility to train context-dependent full-covariance HMMs on 

this database, due to the lack of training data (even a tree-based state-tying strategy did not 

make the training feasible). The training of HMMs and the phonetic decoding stage were done 

with the HTK toolkit (Young, 2005). GMM training and GMM+dyn/HMM+dyn mapping 

were implemented in MATLAB.  

For the intermediate phonetic decoding step of HMM+dyn, we investigated the use of 

a statistical language model at phonetic level. In this study, we trained a simple phonetic 

bigram on the set of 50,000 sentences extracted from Le Monde French newspaper (detailed in 

Section 3.2), using CMU SLM toolkit (Clarkson and Rosenfeld, 1997). 
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4.1.2 Objective evaluation  

For the experiment based on HMM+dyn, the performance of the intermediate phonetic 

decoding stage was first measured by evaluating the phone accuracy (PAcc ) defined as

PAcc = 100 ⋅(Np − Dp − Sp − I p ) / Np , where Np  was the number of phones in the test set, Sp  

the number of substitution errors, Dp  deletion errors, and I p  insertion errors. The 95% 

confidence half-interval of phone accuracy measurement Δ  was defined as the Wilson Score 

such as Δ = tα PAcc(1− PAcc) / Np( ) + tα
2 / (4Np

2 )( ) (1+ tα2 / Np )  (with 

� 

tα = 1.95  and a 

Normal assumption). Since we focused in this study only on the estimation of the spectral 

content of the reconstructed speech, confusions between consonants that differ only in the 

voicing feature {[p]-[b]}, {[t]-[d]}, {[s]-[z]}, {[f]-[v]} and {[ʃ]-[ʒ]} were not counted as 

errors. Table 1 details the performance of the intermediate phonetic decoding step of 

HMM+dyn mapping technique, for both speakers, with no linguistic priors (a) and when 

using a phonetic bigram for the intermediate decoding step (b).  

Table 1: Performance of the intermediate phonetic decoding step of HMM+dyn. Np  ,

Sp ,Dp  and I p  are respectively the number of phones, substitution errors, deletion errors, and 

insertion errors in the test set (Δ is the 95 % confidence half-interval). 

 
Speaker A Speaker B 

No priors (a) Phonetic bigram (b) No priors (a) Phonetic bigram (b) 

PAcc (%) 77.6 77.9 75.2 75.4 

2Δ 1.8 1.8 1.9 1.8 

Dp 549 499 1172 971 

Sp 976 989 931 990 

Ip 768 770 412 534 

Np 10263 10263 10154 10154 
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With a phone accuracy superior to 75% for both speakers, the performance obtained here for 

French is 8% higher than in our previous work on English (Hueber et al., 2010b, 2009). This 

difference may come from the more accurate acquisition system used in this study. 

Furthermore, with much less deletion errors (but a comparable number of substitution errors), 

the performance is significantly higher on speaker A compared to speaker B. Speaker A 

seemed to speak a bit more clearly than speaker B, which may explain this difference, 

amongst other possible causes. Performances reported in Table 1 were obtained when 

considering both static and dynamic components of articulatory features (i.e. xt  and Δxt ). 

When considering only the static component, the performance was 5.1% lower for speaker A 

and 5.9% for speaker B.  

However, the use of a bigram phone model does not influence significantly the system 

performance. Its only benefit is to result in a more balanced repartition between insertion and 

deletion errors, notably for speaker B. This lack of improvement can be explained by an 

inconsistency between the language model and the phonetic content of the test sentences. As 

explained in section 3.2, test sentences extracted from part P1 have been selected from a 

larger text corpus (‘Le Monde’), in order to have at least one example of each diphone (with a 

speech synthesis application in mind). Therefore, they contains very ‘rare’ phonetic patterns; 

such as the consonantal cluster [z+s] of the sentence ‘Pieranunzi jaz[z s]a vie’. However, the 

phonetic bigram was trained on a much larger set (50,000 for the text corpus ‘Le Monde’). 

Therefore, it models the ‘typical’ frequency of phone sequences in French and may consider 

rare phonetic patterns as very ‘unlikely’. This consistency issue between a language model 

and an applicative domain is well known in automatic speech recognition (ASR). The same 

issue exists also in silent speech. It is likely that a domain-specific language model (such as a 

n-gram at phonetic or lexical level) will lead to a better performance. The evaluation of such 
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models was however out of the scope of this study which focused on the conversion of silent 

articulation with no prior information on the applicative domain.  

In order to analyze in more details the output of the phonetic decoder (without 

phonetic bigram), we computed the confusion matrix for speaker A displayed in Figure 6 

(most of the errors of speaker B were of the same type as those discussed for speaker A).  

 

Figure 6: Confusion matrix for the intermediate phonetic decoding step of  

the HMM+dyn mapping experiment for speaker A. The color space map was chosen to 

emphasize errors (DEL and INS stand for deletion and insertion errors). 

As expected, many confusions are made between phonemes that distinguish by the voicing 

feature (such as  {[k],[g]} or {[f],[v]}), or by the nasality feature (such as {[p],[b]} vs. [m], 

and {[t],[d]} vs. [n]). Similarly, some errors concern nasal vowels (that do not exist in 
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English), such as [ɔ] being confused with [ɔ]̃ and [œ] confused with [ɛ̃], [ɑ̃], or [ɔ̃]. This could 

be explained by the lack of information on the position of the velum, which most of the time 

cannot be observed from ultrasound scans. In addition, many confusions are made on dental 

and alveolar sounds {[t],[d],[n],[s],[z],[ʃ],[ʒ]}. This can be explained by the lack of 

information on the position of the tongue tip (apex), which is sometimes hidden by the 

ultrasonic shadow of the mandible. Finally, some confusions made on vowels - such as [ø] 

being confused with the schwa [ə] - may not necessarily have a strong impact on the 

intelligibility of the synthesized speech. 

For the mapping experiments on modal speech, the quality of the spectrum estimated 

from the articulatory movements using GMM+dyn and HMM+dyn techniques, was evaluated 

by calculating for each estimated vector ŷt  the Mel-Cepstral distortion defined as:

MCDdB(ŷt ,yt ) = (10 / ln10) 2. (ŷt,d − yt,d )
2

d=1
D∑  (with ŷt ,d  and yt ,d  respectively the dth 

estimated and original mel-cepstral coefficient). The statistical significance of all the different 

comparisons between experimental conditions (speaker, technique) was assessed by paired t-

tests. No phonetic bigram was used for the HMM+dyn experiments, in order to compare the 

two techniques only on their ability to model the articulatory-acoustic relationships, without 

the help of external linguistic information. However, in order to still evaluate the benefit of 

such information, we also measured the spectral distortion obtained with the HMM+dyn when 

the target phonetic sequence is known (and forced-aligned on the articulatory movements). 

This experimental condition is referred to as HMM+dyn*. Results are presented in table 2. 

Table 2: Objective evaluation of the quality of the spectrum derived from articulatory 

movements acquired in modal speech using GMM+dyn and HMM+dyn. For HMM+dyn*, the 
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phonetic target was known (PAcc = 100%). MCDdB is the mel-cepstral distortion in dB 

averaged over the test set, and σ MCDdB its standard deviation.  

 
Speaker A Speaker B 

GMM+dyn HMM+dyn HMM+dyn* GMM+dyn HMM+dyn HMM+dyn* 

MCDdB 5.56 5.21 4.57 6.57 5.74 5.69 

σ MCDdB   2.68 3.14 3.74 2.89 3.36 3.01 

 

The distortion range from 4.5 to 6.5dB is compatible with other studies based on EMA 

articulatory data (e.g. see Table 1 of (Toda et al., 2008)). This result is encouraging because 

ultrasound and video articulatory data can be considered as much noisier than EMA data. For 

both speakers, and especially for speaker B, HMM+dyn outperforms GMM+dyn (5.21dB vs. 

5.56dB for speaker A, and 5.74dB vs. 6.57dB for speaker B, p<0.005). The distortion 

obtained for the HMM+dyn* experiments was 0.7dB lower than HMM+dyn for speaker A 

(p<0.005), and 0.05dB for speaker B (p<0.05). As expected, the accuracy of the estimated 

spectrum depends on the amount of linguistic knowledge (which can be adapted to the target 

application). Performances reported in Table 2 for HMM+dyn and HMM+dyn* were obtained 

when considering both static and dynamic components of articulatory features for the 

intermediate phonetic decoding stage (i.e. xt  and Δxt , while only xt  was considered for the 

conversion stage). When considering only xt  for the phonetic decoding stage, the distortion 

increases to 5.37 dB for speaker A and 6dB for speaker B, but remains significantly lower 

than for GMM+dyn (p<0.05). Similarly to our previous experiments on phonetic decoding, 

we observed a much lower performance for the female speaker B compared to male speaker A 

(~1dB, p<0.005). Again, this difference is difficult to interpret since it can have many causes, 

such as a varying speaking rate and style, a varying quality of ultrasound images (Stone, 

2005), or a slight displacement of the sensors during data acquisition. A similar difference 
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between female and male on a articulatory-to-acoustic mapping experiment was also reported 

in (Toda et al., 2008).  

4.1.3 Perceptual evaluation  

In our previous study (Hueber et al., 2010b), perceptual evaluation of the proposed 

silent speech interface was conducted by considering the target phonetic sequence as known 

(similarly to the HMM+dyn* experimental condition detailed in Section 4.1.2). In this study, 

we propose the very first perceptual evaluation of the entire conversion process: from the 

articulatory gestures captured by ultrasound and video imaging, to audible speech, and 

without any limitation on the vocabulary. However, with a mel-Cepstral distortion superior to 

5dB for both speakers, the synthetic speech was unlikely to be systematically intelligible. For 

perceptual evaluations, we considered therefore the ‘best case scenario’ by keeping only the 

speaker who gave the best results during the objective evaluation (i.e. speaker A). Two 

perceptual tests were conducted: a transcription test and a discrimination test.  

4.1.3.1 Participants 

Ten native speakers of French, with no particular expertise in speech synthesis or in 

phonetics, were asked to evaluate synthetic speech stimuli in an anechoic room, using the 

same open headphones. They were allowed to listen several times to each sample.  

4.1.3.2 Transcription test 

For this first transcription test, the stimuli consisted in two distinct sets of 15 sentences 

each, selected from part P2 of the database. In the first set, articulatory movements were 

converted into a target spectrum using GMM+dyn, whereas the HMM+dyn was used for the 

second set. Each sentence was synthesized using a MLSA filter (Imai et al., 1983) derived 

from the estimated spectrum and excited with white noise (the stimuli sounded like whispered 

speech). In this study, we did not use any post-processing technique aiming at alleviating the 
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commonly accepted ‘over-smoothing effect’ of MLPG approach, such as the global variance 

(GV) (Toda and Tokuda, 2007), the LSPA GV (Shannon and Byrne, 2013), the variance 

scaling or the histogram normalization (Silén et al., 2012).  However, the use of such 

techniques in the context of articulatory-to-acoustic mapping remains an interesting 

perspective for increasing both the intelligibility and the naturalness of the synthetic speech. 

Participants were asked to transcribe the resulting 30 sentences, with absolutely no 

prior information on their linguistic content. After the test, all the transcriptions were 

manually checked in order to remove misspellings. The accuracy of the transcription was then 

evaluated similarly as in automatic speech recognition, by calculating the word-accuracy 

WAcc, such as WAcc = 100 ⋅(Nw − Dw − Sw − Iw ) / Nw , where Nw  was the number of words in 

the test set, Dw  the number of deletion errors, Sw  the number of substitution errors, and Iw  

the number of insertion errors. This evaluation methodology is relatively severe since it 

penalizes word insertion and deletion, and treats content words and grammatical words 

equally.  

Results showed that neither GMM+dyn nor HMM+dyn was able to generate 

intelligible speech in a systematic manner. However, some sentences were perfectly 

transcribed by most of the participants, especially the ones with a simple syntactic structure 

and a common vocabulary, such as “la voiture s’est arrêtée au feu rouge” (the car stopped at 

red light) or “mon père m’a donné l’autorisation” (my father gave me permission)9. 

Interestingly, the best results were obtained with the GMM+dyn technique, with a word 

                                                

9 The audio stimuli of these two sentences are provided as electronic supplementary material. The files are 

labeled SpeakerA_list1_sentK_method.wav with K=302/308 and method is gmm_dyn for GMM+dyn, hmm_dyn 

for HMM+dyn or anasyn for the analysis-(re-)synthesis of the original signal using MLSA digital filter (excited 

by white noise).  
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accuracy of 60.4%, compared to 54% for the HMM+dyn approach. However, with a 95% 

confidence interval of 10% (due to the size of the test set which contains 210 words), the 

difference was not statistically significant. On this transcription task, the performance of both 

techniques should be considered as equivalent.  

4.1.3.3 Discrimination test 

In order to compare the two mapping methods on the same sentences, we conducted a 

XAB discrimination test, where X was the reference built by analyzing and (re)-synthesizing 

the original speech signal, while A and B were synthetic versions of the same sentence 

obtained using respectively the GMM+dyn and HMM+dyn techniques. The test stimuli 

consisted of the first 30 sentences of part P2 of the database recorded by speaker A (described 

in Section 3.2). The ten participants were asked to determine which sound of A and B was the 

most similar to X (A and B were presented in a random order). Surprisingly, and despite a 

higher spectral distortion of 0.7dB, stimuli obtained with the GMM+dyn approach were 

preferred 69% of the time to those obtained with the HMM+dyn approach. Most of the 

participants reported that for several stimuli X, it was difficult to decide between A and B 

since one was of lower quality but constant over the sentence, while the other one was judged 

of higher but more fluctuant overall quality. Most participants reported to have privileged 

stability over quality. A fluctuant quality is typically observed with the HMM+dyn approach. 

This perceptual feeling is consistent with objective measurements of the spectral distortion, 

which is lower with HMM+dyn compared to GMM+dyn, but has a higher standard deviation 

(See Table 2). This larger variability is likely to come from the spurious errors that can be 

made during the intermediate phonetic decoding step.  
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4.2 Articulatory-to-acoustic mapping experiments on silent speech 

4.2.1 Accuracy of the phonetic decoding step between modal and silent speech 

Recent studies suggested differences in terms of articulatory strategies between modal and 

silent speech, probably due to the lack of acoustic feedback. These studies were based on 

EMA data (Hueber et al., 2010a) and EMG data (Janke et al., 2010). In order to measure the 

impact of these differences on articulatory-to-acoustic mapping, we compared the accuracy of 

the phonetic decoding step of the HMM+dyn technique, between modal and silent speech. For 

this experiment, the training set was composed of 388 sentences recorded in modal speech 

only (i.e. P1 and P2), and the test set was either 100 VCV in a carrier sentence pronounced in 

modal speech (part P4) or the same sentences but pronounced in silent speech (part P5). The 

decoding graph of the HMM articulatory recognizer was constrained to sequences such as [t u 

t a p ɛ l V1 C V2 s e s a] with V1 potentially different from V2 (ex: “tu t’appelles [olɛ], c’est 

ca ?”) and the performance was evaluated on V1CV2 sequences only. Results are presented in 

Table 3. 

Table 3: Comparison of the performance of the phonetic decoding step of  

HMM+dyn mapping, between modal and silent speech, for VCV sequences embedded in a 

carrier sentence (95% confidence interval was 6% for vowels and 8% for consonants).  

 Vocalized speech Silent speech 

PAcc on VCV ( Np  = 300) 59.3% 44.3% 

PAcc on Vowels (Np  = 200) 60% 45% 

PAcc on Consonants (Np  = 100) 58% 43% 

 

With a phone accuracy of only 59.3% on modal speech, the performance is much lower than 

that presented in Section 4.1.2 (i.e. ~78%, Table 1). This difference can partly be explained by 
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a much smaller training set (388 sentences against 688 sentences in the previous experiment). 

Indeed, we observed a degradation of the performance by 15% in silent speech compared to 

modal speech, for both vowels and consonants. These results are in line with the literature and 

suggest that silent speech may be articulated differently than modal speech.  

4.2.2 Perceptual evaluation  

Two perceptual tests were conducted to measure the intelligibility of the synthetic speech 

converted from silent articulation using the GMM+dyn and HMM+dyn techniques. 

4.2.2.1 Transcription test  

First we replicated on silent speech the transcription test conducted for modal speech, 

described in Section 4.1.3.2. The stimuli consisted of the same sentences that the one used for 

the previous test, but pronounced in silent speech (extracted from dataset P3) and converted 

into audio speech using GMM+dyn for the first set, and HMM+dyn for the second set (and 

MLSA filter excited by white noise). The accuracy of the transcription was evaluated using 

the same protocol as the one described in Section 4.1.3.2. As expected, with a WAcc 

approximately equaled to 30% for both methods (29.5% for GMM+dyn and 31% for 

HMM+dyn), the performance was much lower (almost twice as low) compared to modal 

speech (~60% WAcc). These results confirmed that the conversion of an unspecific ‘full 

sentence’ pronounced silently, into a perfectly intelligible speech audio signal, is not feasible 

yet without prior information or constrains on the linguistic context10.  

                                                

10 The audio stimuli corresponding to the same two sentences mentioned in section 4.1.3.1 but converted from 

silent articulation are provided as electronic supplementary material. These files are labeled 

SpeakerA_list1_sentK_method_silent.wav with K=302/308 and method=gmm_dyn/hmm_dyn. 
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4.2.2.2 Identification test  

In order to understand in more details which phonemes were badly reconstructed from 

silent articulation, we conducted another series of perceptual tests. In these tests, the listener 

was asked to identify a specific phoneme, inserted in a carrier sentence. The test stimuli 

consisted of 80 sentences, selected from part P5 of the corpus recorded by speaker A. It was 

divided in 4 series of 10 sentences, converted into audible speech using GMM+dyn and 

HMM+dyn techniques11. In the first two series, the ten participants were asked to identify the 

central consonant of a VCV sequence among the following set {p,t,k,f,s,ʃ,m,n,ʁ,l}, in the 

vocalic context [a] (i.e. [apa], [ata], [aka]) or [u] (i.e. [upu], [utu], [uku]). In the two other 

series, they were asked to identify the vowel among the following set {a,i,u,y,e,ø,o,ɑ̃,ɛ̃,ɔ}̃, in 

consonantal context  [p]  (i.e. [apa], [ipi], etc.) or [ʃ] (i.e. [aʃa], [iʃi], etc.). Consonantal 

contexts were chosen for their different places and manners of articulation (bilabial vs. post-

alveolar and plosive vs. fricative) and thus, for their different coarticulation patterns.  

The segmental intelligibility of the synthetic speech was measured by calculating the 

mean percentage of correct identification, for each phonetic class. In order to assess the 

statistical significance of these results, we conducted a binary logistic regression test (also 

called logit regression). The test was conducted from a generalized linear mixed-effects model 

(using the package glmer in R software), considering: 

                                                

11 Two stimuli examples are provided as electronic supplementary material. The files are labeled 

SpeakerA_VCV_carrier_method.wav: VCV is asa or ishi (iʃi) and method is gmm_dyn for GMM+dyn or 

hmm_dyn for HMM+dyn. 
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- one binary variable to explain which was the success of phoneme 

identification (2-level: 0 the phoneme was not correctly identified and 1 

otherwise)  

- two explicative variables: one categorical factor called SegmentType (with 2-

levels: Vowel/Consonant), a second categorical factor called MappingMethod 

(with 2-levels: GMM+dyn/HMM+dyn) 

- a random Listener effect on the intercept.  

Results are presented in Figure 7 and the corresponding statistical analyses are summarized in 

Table 4.  

Since the interaction between SegmentType and MappingMethod was statistically 

significant (assessed using a likelihood ratio test), we conducted post-hoc analyses to test 

more specifically the contrast between the two mapping methods (GMM+dyn and 

HMM+dyn) for vowels, then for consonants. GMM+dyn mapping tends to slightly 

outperformed HMM+dyn on vowels (66.5% vs. 59.5%), but without statistical significance. 

However, HMM+dyn outperformed significantly GMM+dyn on consonants (61.5% vs. 

44.5%). This latter result supports the benefit of an explicit modeling of the timing 

organization of articulatory gestures. The confusion matrices obtained for the stimuli 

synthesized with the HMM+dyn are detailed in Table 5 for both vowels and consonants. 

 



 37 

 

Figure 7: Perceptual identification task of vowel/consonant in carrier sentences, 

recorded in silent speech and converted into audible speech using either GMM+dyn or 

HMM+dyn technique.  Error bars are calculated using a binomial approximation.  
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Table 4: Logistic regression of the effect of SegmentType (Vowel or Consonant) and 

the MappingMethod (GMM+dyn or HMM+dyn) on segment identification (perceptual 

listening test based on VCV sequences embedded in carrier sentences), using a generalized 

linear mixed-effects model (package glmer in R software). 

Fixed effects Estimate Std. Error z-value Pr(>|z|) 

(Intercept) 0.6857 0.1498 4.577 4.72e-06 *** 

SegmentType -0.9066 0.2066 -4.388 1.15e-05 *** 

MappingMethod -0.3133 0.2075 -1.510 0.131075 

SegmentType:MappingMethod 1.0025 0.2905 3.451 0.000559 *** 

Likelihood Ratio Test (LRT) 

 df X2 P(>X2) 

SegmentType*MappingMethod 1 12.005 0.0005305 *** 

Post-hoc analyses 

Contrast Estimate Std. Error z-value Pr(>|z|) 

HMM+dyn - GMM+dyn / Vowel -0.3133 0.2075 -1.510 0.2450 

HMM+dyn - GMM+dyn / Consonant 6893 0.2034 3.389 0.0014 ** 
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Table 5: Confusion matrices of the perceptual identification test for stimuli 

synthesized using HMM+dyn. These values indicate the average percentage of correct 

answers over the two considered vocalic or consonantal contexts. Chance level was 10%.  

 [a] [i] [u] [y] [e] [o] [ø] [ɑ]̃ [ɛ]̃ [ɔ̃]   [p] [t] [k] [f] [s] [ʃ] [m] [n] [r] [l] 

[a] 85 0 0 0 0 5 0 10 0 0  [p] 45 0 10 20 0 0 10 0 10 5 

[i] 0 100 0 0 0 0 0 0 0 0  [t] 5 40 0 0 0 0 5 50 0 0 

[u] 0 0 85 0 0 5 10 0 0 0  [k] 0 0 55 5 0 5 5 5 25 0 

[y] 0 5 0 95 0 0 0 0 0 0  [f] 0 0 30 50 5 0 0 5 10 0 

[e] 25 10 0 5 50 0 5 5 0 0  [s] 0 0 0 0 100 0 0 0 0 0 

[o] 0 0 40 0 0 45 10 0 0 10  [ʃ] 0 0 0 0 0 100 0 0 0 0 

[ø] 0 30 20 5 0 0 35 0 5 5  [m] 5 5 0 5 0 5 50 5 5 20 

[ɑ]̃ 5 0 0 0 10 15 0 65 5 0  [n] 0 0 0 5 5 30 30 10 0 20 

[ɛ]̃ 50 0 10 0 0 0 0 35 5 0  [r] 0 0 0 0 0 0 0 0 100 0 

[ɔ̃] 0 0 45 0 0 10 10 5 0 30  [l] 0 0 0 15 10 0 5 5 0 65 

Consonants [s], [ʃ] and [r] are systematically identified correctly by all participants. As in the 

objective evaluation of HMM+dyn on modal speech, confusions are made between [t] and [n] 

and between [p] and [m] (likely due to the lack of information of the velum position). The 

consonant [n] is sometimes perceived as [ʃ], [l], or [s], whereas this confusion never occurs in 

modal speech (see Figure 6). This result could suggest a more anterior place of articulation for 

[n] in silent speech. A similar tendency was observed in (Hueber et al., 2010a). Substitutions 

of [r] by [k] (25%) might be explained by similar tongue shapes in the mid-sagittal plane, 

especially in a back context [u]. However, substitutions of [k] by [f] (30%), and [f] by [p] 

(20%) remain difficult to interpret. As concerns the vowels, good performances were 

observed for the extreme vowels [a], [i], [u]. Most of the remaining errors came from the 

misperception of nasal vowels, consistent with the results of the objective evaluation. Thus,  

[ɔ]̃ was sometimes perceived as [o] (10%), and [ɑ]̃ was identified as [ɛ̃] (35%).  
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5. Conclusions and Perspectives 

In this article, we compared two statistical mapping techniques for the conversion of silent 

articulation into audible speech, with no restriction on the vocabulary size, for a silent speech 

interface application. First, we investigated the GMM-based mapping technique considering 

dynamic features proposed by (Toda et al., 2007) (which was referred to as GMM+dyn). 

Then, we adapted this technique to the framework of HMM. Similarly to the GMM+dyn 

technique, the proposed method models explicitly the local correlations between articulatory 

and acoustic observations using full-covariance phone HMMs. It also considers explicitly the 

relationship between static and dynamic features to guarantee smooth output feature 

trajectories (therefore the proposed method was referred to as HMM+dyn). Contrary to the 

GMM+dyn technique, it aims at modeling more explicitly the timing organization of 

articulatory gestures, and exploiting linguistic knowledge to regularize the problem of silent 

speech conversion. Both techniques were evaluated in the context of a silent speech interface 

(SSI) driven by ultrasound and video imaging, on continuous speech, for two French speakers 

producing both modal and silent speech. The main results of objective and perceptual 

evaluations are summarized in the next paragraphs.  

For modal speech, the performance of the intermediate phonetic decoding step of 

HMM+dyn was more than 75% for both speakers. Furthermore, HMM+dyn outperformed 

GMM+dyn in terms of average spectral distortion (objective evaluation). However, perceptual 

tests indicated that naive listeners preferred the stimuli generated by GMM+dyn, probably 

because they were of lower, but more stable quality. Nevertheless, with a word accuracy of 

60%, transcription tests showed that none of these techniques was yet able to synthesize 

perfectly intelligible speech, in a systematic manner. 
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 For silent speech, the performance of the intermediate phonetic decoding step of 

HMM+dyn decreased by 15%. This suggested that silent speech might be articulated 

differently than modal speech, likely due to the lack of audio feedback. Finally, perceptual 

identification tests showed an improved segmental intelligibility for HMM+dyn compared to 

GMM+dyn for consonants. This result supports the interest of the HMM+dyn method of 

modeling explicitly the timing of speech articulation.  

The introduction of linguistic knowledge is a way to regularize the ill-posed problem 

of silent speech conversion. In future work, the use of more informative prior information in 

the phonetic decoding step of the HMM+dyn technique should be envisioned. Depending the 

targeted application, such information could consist in a limited vocabulary and/or a domain-

specific language model. Besides, the use of model adaptation techniques could be envisioned 

to tackle the problem of articulatory differences between modal and silent speech. Another 

way to limit these articulatory differences could consist in synthesizing speech in real-time 

and providing the user with this acoustic feedback. To that purpose, a reactive implementation 

of the HMM+dyn technique should be developed. It could be based on the short-term MLPG 

algorithm (Muramatsu et al., 2008).  Such a system would be necessary to study how people 

use a silent speech interface in a realistic communicative situation and how they adapt their 

articulation to maximize the efficiency of their ‘silent’ communication.  
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FIGURE CAPTIONS 

 Figure 1: Silent speech interface driven by ultrasound and video imaging. The present study 

focuses on the direct conversion of silent articulation into audible speech without any 

restriction on the vocabulary size (contrary to silent speech recognition). 

 

Figure 2 left: Directed graphical model associated with the GMM considered during training (

x  and  !y  are observed variables, m  is a latent variable) / right: Graphical representation of 

the GMM-based mapping process considering dynamic features (GMM+dyn). 

 

Figure 3: left: Directed graphical model associated with the full-covariance HMM considered 

during training ( x  and  !y  are observed variables, qt  is a latent variable) / right: Graphical 

representation of the HMM-based mapping process considering dynamic features 

(HMM+dyn). 

 

Figure 4: Experimental setup used for data acquisition (speaker B) 

 

Figure 5: Typical examples of recorded ultrasound and video images (320x240 and 640x480 

pixels respectively) for male speaker A (up) and female speaker B (bottom). Red bounding 

boxes delimit the regions of interest considered for feature extraction.   

 

Figure 6: Confusion matrix for the intermediate phonetic decoding step of  

the HMM+dyn mapping experiment for speaker A. The color space map was chosen to 

emphasize errors (DEL and INS stand for deletion and insertion errors). 
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Figure 7: Perceptual identification task of vowel/consonant in carrier sentences, recorded in 

silent speech and converted into audible speech using either GMM+dyn or HMM+dyn 

technique.  Error bars are calculated using a binomial approximation.  

 

 

 

 


