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ABSTRACT
In this paper we present two novel methods for visual

voice activity detection (V-VAD) which exploit the bimodality
of speech (i.e. the coherence between speaker’s lips and the
resulting speech). The first method uses appearance param-
eters of a speaker’s lips, obtained from an active appearance
model (AAM). An HMM then dynamically models the change
in appearance over time. The second method uses a retinal
filter on the region of the lips to extract the required param-
eter. A corpus of a single speaker is applied to each method
in turn, where each method is used to classify voice activ-
ity as speech or non speech. The efficiency of each method
is evaluated individually using receiver operating character-
istics and their respective performances are then compared
and discussed. Both methods achieve a high correct silence
detection rate for a small false detection rate.

1. INTRODUCTION

Voice activity detectors (VADs) are used to detect the pres-
ence or absence of speech in an acoustic environment. As
VAD methods traditionally rely on acoustic information,
their accuracy is highly dependent on the acoustic environ-
ment (e.g. the presence of competitive sources or highly non
stationary noise). However, speech is a bi-modal signal with
both audio and visual aspects. The most visible aspect of
speech production is the movements of lips; in the past it has
been shown that there is a coherence between the speaker’s
lips and the resulting acoustic signal [1]. This characteristic
has already been used to improve speech recognition [2] and
speech enhancement [3]; and more recently in blind speech
separation [4, 5]. Recently, VAD based on visual data as
opposed to audio data has been developed [6, 7, 8]. Visual
voice activity detection (V-VAD) has an advantage over au-
dio based VAD in that it is not susceptible to the problems
associated with the acoustic environment (e.g. noise, simul-
taneous speakers, reverberations, etc.).

Previously, Iyengar and Neti [6] developed a V-VAD
which was used for deciding a person’s intent to speak. The
V-VAD uses a head pose and lip motion detector to switch a
microphone on and off in a speech recognition system. The
drawback of this method is that it does not distinguish be-
tween speech and non-speech movement of the lips. Liu and
Wang [7] proposed a V-VAD that used statistical models of
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speech and non-speech activities. Visual information relating
to non-speech was modelled using a single Gaussian distribu-
tion and visual speech information modelled using a mixture
of two Gaussian distributions. New data were classified on
the basis of a likelihood calculation. However, their method
does not model the dynamics of lip motion. More recently,
Sodoyer et al. [8] proposed a method for V-VAD that uses
temporal smoothing of dynamical lip motion. Unfortunately,
their method relies on a high computational cost chroma-key
system, which is impractical for a natural environment.

In this paper, we propose two new methods that use vi-
sual information for VAD. The first method, presented in
Section 2, is a dynamical model that classifies appearance
parameters of a speaker’s lips using an HMM. The second
method, introduced in Section 3, exploits a retinal filter on
the region of the lips, is a simple and low computational cost
V-VAD based on dynamical lip motion. Section 4 describes
numerical evaluation, where unlike previous work we con-
sider lip motion during silence phases that could otherwise
be classified as voice activity. Conclusions and perspectives
are given in Section 5.

2. VISUAL DETECTION USING A STATISTICAL
MODEL OF APPEARANCE PARAMETERS

Cootes and Taylor [9] introduced active appearance models
(AAMs) as a way of modelling selected visual features. An
AAM is a joint statistical model of shape and colour val-
ues (texture), where a single appearance parameter defines
a corresponding texture and shape vector. The advantage of
AAMs is that they represent the shape and texture of an ob-
ject to a high degree of accuracy using only a few appearance
parameters, which is why they were chosen. The model is
built in several stages. Firstly, the lip shape is tracked through
the video by placing landmarks (manually or automatically)
on the outer edge of the lips (Fig. 1). Each landmark is rep-
resented with its Cartesian coordinates (xi,yi). For a single
image, the vector z describing the shape of the lips is defined
as:

z = [x1, · · · ,xN ,y1, · · · ,yN ]T . (1)

A collection of vectors {z( j)}1≤ j≤Tmax, j∈N describes the
variation of the lip shape over a set of images. Next, a statisti-
cal model of the shape variation is generated from {z( j)}. To
build the texture model all images within the boundaries de-
scribed by the set {z( j)} are first warped to the mean shape
to create a ‘shape-free’ patch. We then obtain the texture
(colour values) within this patch for each image to form a
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Figure 1: Example landmarks extracted from the lip edges,
shown as the dots on the connected outline.

texture vector for each image: g = [g1,g2, · · · ,gN ]T . Next we
perform PCA on the shape and texture vector sets separately.
The sum of the outer products of the set of shape vectors and
the sum of the outer products of the texture vectors form two
matrices. For each matrix we compute the eigenvectors and
eigenvalues, where the selection of the significant eigenvec-
tors is performed by examining how many of the significant
eigenvalues must be retained to keep a certain percentage of
the energy. The shape and texture of any image in the set
may be represented using the following models:

z( j) = z̄+Psbs( j), (2)

g( j) = ḡ+Pgbg( j), (3)
where z̄ and ḡ are the mean shape and texture vectors. Ps and
Pg are matrices formed from eigenvectors (obtained from
the PCA operation). By varying the shape and texture pa-
rameter vectors bs( j) and bg( j) we are able to approximate
the shape and texture of any of the existing images. Let
b( j) = [Wsb

T
s ( j),bTg ( j)]T denote the concatenated vector

of shape and texture parameters, where Ws is a diagonal
matrix of weights to account for the difference between the
shape and texture values. The required appearance parame-
ters c( j) are then obtained by performing PCA on the set of
vectors {b( j)} and forming a matrix Pc from a certain num-
ber of the resulting eigenvectors and applying this to b( j) as
follows.

c( j) = PTc b( j) (4)
Thus c( j) is a vector of appearance parameters describ-

ing shape and texture of a speaker’s mouth region at time j.
Given a set of appearance parameters c( j)1≤ j≤T, j∈N sampled
over time, we can model their dynamical changes over time
using an HMM. HMMs have been used extensively in the
past to model the dynamics of speech (e.g. [10]) and more
recently to model joint audio-visual features [5]. For train-
ing an HMM, we use the standard Baum-Welch algorithm
[10], which gives us the model λ = (A,B,π), where π is a
vector of the initial state probabilities, A is the state transi-
tion matrix and B is the state probability distribution.

The task is to determine if a person is speaking or silent in
a given period of time, i.e. in a given sequence of appearance
parameters. For this we calculate the likelihood that a se-
quence of appearance parameters is generated by our HMM
λ . We calculate the likelihood P(O|λ ) for a sequence of
consecutive frames O (O = c(tk) . . .c(tl)), where the num-
ber of frames between k and l is unchanged for all sequences.
Each observation O will generate an associated likelihood
value P. The early experiments showed it was necessary to
filter the likelihood values to remove minor false detections.
For this purpose we use a simple median filter (of length 25)

Figure 2: Mono-dimensional electrical scheme to model hu-
man retina [11].

to smooth the output and reduce false detections, where the
filtered likelihood is denoted Pf (see Figure 6). We compare
each value of Pf to a threshold value β (the value of β is
found experimentally). If Pf < β then the current sequence
of frames is classified as speech, if Pf > β then the sequence
of frames is classified as non-speech.

3. VISUAL VOICE ACTIVITY DETECTION BASED
ON A RETINAL FILTERING

In [8], Sodoyer et al. proposed a V-VAD based on the move-
ment of the lips. Indeed, in silence sections, the lip-shape
variations are generally quite small. On the contrary, dur-
ing speech sections, these variations are commonly much
stronger. However, this V-VAD requires the lips to be painted
blue so that the internal height and width of the lips can be ex-
tracted by a chroma-key system. In this section, we propose a
different and possibly simpler but equally efficient approach
for the detection of the movement of the lips. As explained
below, this new method requires no a priori information: it
applies a retinal filter to each image and calculates the change
in energy to classify voice activity.

Considering the lips region (which can be obtained man-
ually or automatically), the first stage of this V-VAD is
an enhancement of the contours of the lips based on a
spatio-temporal filter which models the human retina be-
havior [11, 12]. This filter can be modelled by a mono-
dimensional electrical scheme (Fig. 2) whose transfer func-
tion is given by

G(zs, ft) =
1

1+βc+αc
(

−z−1
s +2− zs

)

+ ı2π ftτc

×
βh+αh

(

−z−1
s +2− zs

)

+ ı2π ftτh
1+βh+αh

(

−z−1
s +2− zs

)

+ ı2π ftτh
(5)

where αc = rc/Rc, βc = rc/r f c, τc = rcCc, αh = rh/Rh, βh =
rh/r f h and τh = rhCh (the component values relate to those
shown in Figure 2). The resulting enhanced image denoted
B(t) is obtained from the original image of the lips region I(t)
by separately applying filter (5) on each row and column of
I(t). To detect the motion of the lips over time, we compute
the following temporal derivation image

∆R(t) =
∣

∣

∣

∣

∣R(t)
∣

∣

2
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∣
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©2007 EURASIP 2410

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP



Figure 3: Frames from the dataset of the speaker saying the
word ‘much’. Frames read, top to bottom, left to right.

where R(t) is the image obtained by the windowed two di-
mensional Fourier transform of the enhanced contours im-
age B(t). The change in energy is then obtained by the mean
value of ∆R(t):

v(t) =
1
Nr

1
Nc

Nr−1

∑
i=0

Nc−1

∑
j=0

∆Ri j(t), (7)

where ∆Ri j(t) is the (i,j)-th pixel of image ∆R(t), Nr and Nc
are the numbers of rows and columns of ∆R(t) respectively.
The t-th input frame is classified as silence if v(t) is lower
than a threshold Λ and it is classified as speech otherwise.
However, direct thresholding of v(t) does not provide opti-
mal performance: for instance, the speaker’s lips may not
move during several frames, while he is actually speaking.
Thus, we smooth v(t) by combining TF consecutive frames

V (t) =
TF−1

∑
l=0

hl v(t− l) (8)

where h is a number between 0 and 1. Finally, the t-th frame
is classified as silence if V (t) is lower than a threshold Λ
(V (t) < Λ) and speech otherwise (V (t) ≥ Λ).

4. NUMERICAL EXPERIMENTS

In this section, we first describe the database and the visual
features used to conduct the numerical evaluation. The rea-
son for recording our own database is that we are unaware of
any existing audio-visual database where there is significant
lip motion during silence sections of continuous speech.
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Figure 4: Distribution of the first two dimensions of non-
speech (Fig. 4(a)) and speech (Fig. 4(b)) appearance param-
eters.

4.1 Audio Visual Corpus
The corpus used in these experiments consists of a single
speaker reciting a well known poem in English. It con-
sists of approximately 2.5 minutes of audio and video syn-
chronously recorded. The video was recorded at 30fps giv-
ing 4400 useable video frames and the audio was sampled at
44.1KHz. The resolution of each frame of video is 640×480.
To test rigorously the capabilities of both V-VAD methods,
the speaker’s lips during the silence periods were not always
stationary. In fact, during the silence periods the speaker pur-
posefully performed complex movements (e.g. smiling, bit-
ing lips and licking lips). Indeed, in spontaneous speech,
people regularly perform natural movements such as those
listed above during silence phases. Several example images
from the dataset are shown in Fig. 3

4.2 Visual Features
The active appearance model described in Section 2 produces
400 dimensional vectors c(t j), which are too large for numer-
ical calculations. To reduce the dimensionality, Pc is only
composed of the parameters associated with the N most im-
portant eigenvalues. However, there is a large overlap be-
tween the speech and non speech features (Fig. 4). Thus,
N is a trade off between the size of the appearance parame-
ter vector and the ability to separate speech and non-speech
events. In this experiment, we retained the ten first eigenvec-
tors which contained 75% of the original appearance energy.
The HMM was trained solely using non-speech lips move-
ments, where the training data consisted of the appearance
parameters for 600 frames of video.

To apply the retinal filtering method described in Sec-
tion 3, first the lips region B(t) was extracted from I(t) re-
sulting in an image of 325×200 pixels. To obtain R(t) in (6)
the two-dimensional Fourier transform was applied on B(t)
using a Hamming window of 325×200 pixels with no zero-
padding. Finally, the smoothing filter (8) was applied on
TF = 20 consecutive frames.

4.3 Results
Figure 5 shows the Receiver Operating Characteristics
(ROC) curves for the two presented methods. They represent
the ratio of correct silence detection to false silence detec-
tion. The correct silence detection (CSD) is defined as the
ratio between the number of actual silence frames correctly
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Figure 5: ROC curves. Fig. 5(a): AAM based method, the legend indicates the number of consecutive frames. Fig. 5(b):
retinal filtering based method, the legend indicates the integration parameter h (8), with the classical convention 00 = 1.

detected as silence (NSil|Sil) and the number of actual silence
frames (NSil):

CSD =
NSil|Sil

NSil
. (9)

The false silence detection (FSD) is defined as the ratio be-
tween the number of actual speech frames detected as silence
(NSil|Spe) and the number of actual speech frames (NSpe):

FSD =
NSil|Spe

NSpe
. (10)

The ROC curve was produced by varying the thresholds
β or Λ between the maximum and the minimum values of
Pf and V (t) (8) for the respective methods. One can see that
the performance of the V-VAD is dependent upon the inte-
gration (8) (Fig. 5(b)) or the window size (Fig. 5(a)). A large
window size (e.g. 15 frames) provides poor results since it
is less likely that the model generates such a large sequence
of frames. Similarly, a short window (e.g. 6 frames) is not
satisfactory since there is not enough data to accurately clas-
sify. On the other hand, choosing a correct window size (e.g.
10 frames) or a correct integration parameter h (e.g. 0.97)
provides reasonable performance: the two methods are able
to achieve a CSD of 90% for a FSD of 5%.

Finally, Fig. 6 shows the temporal results of both meth-
ods (i.e. silence probability obtained from the AAM based
method (Section 2) and video parameter (7) (Section 3)).
One can see that both proposed methods are able to eas-
ily identify the silence phases with no movements or short
movements (e.g. between 30s and 40s or between 130s and
150s). The silence probability obtained from the AAM based
method and the video parameter (8) are also able to detect si-
lence phases with complex lip motion, even though this task
is more difficult, thus providing good silence detection per-
formances as shown in Fig.5.

5. CONCLUSION

Both of the novel methods presented herein obtain similar
performances for V-VAD. They both obtain low false detec-
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Figure 6: Temporal results. From top to bottom : energy
of the acoustic signal, silence probability obtained from the
AAM based method, and finally logarithm of video parame-
ters (7) and (8) with h= .97.
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tion rates for high true detection rates. One of the observa-
tions made during the experiments was that due to the use
of a-priori information the AAM approach was more consis-
tent with the detection of the non-speech sections containing
complex lip movements. Similarly, the retinal filter was more
consistent in the detection of non-speech where the lips show
less motion. However it should be noted that the reliance
on prior information restricts the AAM method to be person
specific (a generic method is currently being investigated).
Finally, the retinal filtering has a much lower computational
cost compared to the AAM method. The results indicate that
each method has its strengths and weaknesses in different ar-
eas, and this leads us to the conclusion that combining the
two methods will result in an increase in performance, which
is the subject of future research.
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