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The long-term harmonic plus noise model (LT-HNM) for speech shows an interesting data
compression, since it exploits the smooth evolution of the time trajectories of the short-term
harmonic plus noise model parameters, by applying a discrete cosine model (DCM). In this
paper we extend the LT-HNM to a complete low bit-rate speech coder, which is completely
based on a long term approach ca. 200 ms. A Normalized Split Vector Quantization (NSVQ)
is proposed to quantize the variable dimension LT-DCM vectors. The NSVQ is designed
according to the properties of the DCM vectors obtained from a standard speech database.
The obtained LT-HNM coder reaches a bit-rate of 1.5 kbps for 16 kHz sampled speech. The
proposed coder is evaluated in terms of modeling/coding errors, bit-rate, listening quality, and
intelligibility.

0 INTRODUCTION

In speech/music coders and analysis/synthesis systems,
spectral modeling is generally made on a short-term (ST)
frame-by-frame basis: every 20 ms or so. This is the case
for most spectral models, including the linear prediction
(LP) model [1] and the sinusoidal model [2, 3]. The main
justification of the ST processing is that the signal is
only locally (quasi-) stationary and in interactive appli-
cations the segmentation is necessary for quasi-real-time
processing.

For speech signals, the evolution of the vocal tract con-
figuration and glottal source activity is quite smooth and
regular for many speech sequences. Therefore, high cor-
relation between successive ST spectral parameters has
been evidenced and can be exploited, especially in cod-
ing applications. For example, inter-frame LSF correlation
is exploited in the LP coding schemes of [4] and in matrix
quantization [5]. In parallel, some studies have attempted to
explicitly take into account the smoothness of LP spectral
parameters evolution in speech coding techniques [6].

In all those studies, the interframe correlation has been
considered “locally,” that is, between only two (or three
for matrix quantization) consecutive frames. This is mainly
because full-duplex telecommunications require limiting
the coding delay. This constraint can be relaxed in many
other applications in half-duplex communication, stor-
age, or transformation and synthesis. These applications
include archiving, Text-to-Speech modification/synthesis,
telephony surveillance data, digital answering machines,

electronic voice mail, digital voice logging, electronic toys,
and video games [7–9].

In particular, transformation and synthesis of speech in
the decoder is an important application with relaxed delay
constraints. Transformation systems need an efficient and
flexible representation of signals and a flexible access to the
parameters for easy manipulation of the signal in the de-
coder. In MPEG-4 Parametric Audio Coding, audio signals
(speech and music) are represented by object-based models
(harmonic tones, individual tones, and noise). This repre-
sentation of signals by frequency and amplitude parameters
permits simple and independent pitch and playback speed
modifications at the decoding stage [10–12].

In such applications, the analysis-modeling-coding-
synthesis process can be considered on larger signal win-
dows, i.e., on what is referred to as a long-term (LT) section
of signal in the following. In that vein, the Temporal Decom-
position technique [13, 14] consists of decomposing the tra-
jectory of spectral (LP) parameters into “target vectors” that
are sparsely distributed in time and linked by interpolative
functions. This method has been applied to speech coding
[15], and it remains a powerful tool for modeling the tempo-
ral structure of speech signals. Following another idea, the
authors of [16] proposed to compress matrices of LSF pa-
rameters using a two-dimension (2D) transform, e.g., a 2D
Discrete Cosine Transform (DCT), similarly to block-based
image compression. They provided interesting results for
different temporal sizes, up to 20 (10 ms-spaced) LSF vec-
tors. A major point of this kind of method is that it jointly
exploits the time and frequency correlation of LSF values.
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More recently, Dusan et al. have proposed in [17] to
model the trajectories of 10 consecutive LSF parameters
by a fourth-order polynomial model. In addition, they im-
plemented a very low bit rate speech coder exploiting this
idea. At the same time, it was proposed in [18] to model the
LT trajectory of sinusoidal speech parameters (the phase
and the amplitude of each harmonic) with a Discrete Co-
sine Model (DCM). In contrast to [17], where the length
of parameter trajectories and the order of the model were
fixed, in [18] the long-term frames are continuously voiced
sections of speech, which exhibit every variable size and
“shape”: such a section can contain several phonemes or
syllables. Therefore, the LT-DCM is adjusted to the char-
acteristics of the modeled speech section, resulting in a
variable trajectory size and model order, compared to the
ten-to-four conversion of [17]. In [19], this adaptive scheme
was extended to the LT-modeling of spectral envelope pa-
rameters, leading to a so-called 2D-cepstrum. Again, only
voiced speech sections were processed, and they were con-
sidered as purely harmonic. The LT-DCM modeling has
also been extended to LSF parameters in [20], including
quantization aspects and the processing of both voiced and
unvoiced sections.

An important extension of the LT-modeling within the
sinusoidal framework has been proposed in [21, 22] based
on the two-band Harmonic+Noise model (HNM) of [23].
Such HNM is particularly appropriate for modeling mixed
voiced/unvoiced speech signals. In [21, 22], the DCM has
been applied to the trajectories of the two-band HNM model
parameters: the spectral envelope that here encompasses
both harmonic and noise amplitude parameters, the fun-
damental frequency F0, and the voicing cut-off frequency
FV that separates the low-frequency harmonic band and the
high-frequency noise band. The results of [21, 22] have
thus generalized the modeling of the spectral envelope to
any harmonic/noise combination and has introduced the LT
modeling of the FV parameter.

In the present paper we extend the LT-HNM presented
in [21, 22] to a complete low bit-rate LT-HNM speech
coder by addressing quantization issues. Before entering
into technical choices and details, it can be noted that, al-
though the sinusoidal model and its different variants (in-
cluding the HNM) have shown good performance in vari-
ous speech processing applications such as speech transfor-
mation and synthesis [24–26, 23], only a few works have
attempted to implement a speech codec based on the ST si-
nusoidal model. This can be due to the difficulty of coding
variable-size sets of amplitudes, and possibly frequencies
and phases, especially if no harmonicity is assumed.

In [27], spectral amplitudes and corresponding frequency
positions are gathered in pair-vectors and coded using a
vector quantization, while phases are scalar quantized. The
obtained speech codec provides bit-rates in the range of
3.75–7.75 kbps for narrowband speech. A low bit-rate nar-
rowband 2.4/4.8 kbps speech codec based on the ST sinu-
soidal model is presented in [28]. To reduce the parameter
set, the sinusoidal components are forced to fit a harmonic
model for voiced speech as well as for unvoiced speech
(a low fundamental frequency is chosen for noise repre-

sentation). Harmonic amplitudes are then transformed to a
fixed length cepstral parameters set and transformed back
to frequency domain for DPCM (Differential Pulse Code
Modulation) quantization.

The objective of this paper is to present a methodol-
ogy for the design of a (very) low-bitrate long-term speech
coder based on the Harmonic + Noise Model, and using
existing ST-HNM analysis-synthesis methods and our pre-
vious work on long-term spectral modeling. In the present
paper we thus focus on quantization aspects.

More specifically, the novelty lies in the vector quan-
tization of the LT-DCM vectors that model the time tra-
jectories of the ST-HNM parameters. A main challenge
is to cope with the dimension variability of the LT-DCM
vectors across LT-sections (in addition to the dynamic vari-
ability). Therefore, the proposed LT-HNM coder focuses
on the design of a vector quantization stage directly fitted
to the properties of the LT-DCM coefficients, especially
their dimension variability and their dynamics. In the liter-
ature, different quantization methods are proposed, taking
into consideration these two properties: (i) a mean-gain-
shape approach [29] is used when the coefficient values
have a large dynamic, and (ii) a split vector quantization
technique is proposed to face the variable vector dimension
[30]. We follow this general line, and we propose to apply
a normalized split vector quantization (NSVQ) technique
to quantize the LT-DCM vectors corresponding to the LT
time-trajectories of spectral amplitudes, fundamental fre-
quency, and voicing cut-off frequency. In the core of the
paper we motivate the choice for this technique, w.r.t. other
possible solutions.

Importantly, it must be made clear that the objective of
this paper is not to design and thoroughly evaluate the best
possible long-term coder, nor it is even to show that the
HNM is the best short-term model candidate to be inte-
grated in the LT framework for such a task. Rather, it is to
show the feasibility and potential efficiency of the long-term
approach to speech coding in the HNM framework, i.e., we
want to show that the long-term approach can lead to a LT-
HNM coder that is more efficient than the ST-HNM (with
similar ST parameterization) in terms of quality/bitrate ra-
tio (postulating that the delay is not an issue in the targeted
applications).

The paper is organized as follows. In Sec. 1 a summary
of the ST-HNM is given to introduce the parameters to
be LT-modeled. An overview of the LT-HNM, relying on
previous work, is presented in Sec. 2. In Sec. 3 we present
the proposed NSVQ approach for the LT-DCM vectors.
Statistics of LT-DCM vectors properties and the design of
the quantization stage are presented and discussed in Sec.
4. Experimental results related to coding errors, listening
quality, intelligibility measure, and obtained bit-rates are
presented and discussed in Sec. 5.

1 SHORT TERM HARMONIC PLUS NOISE
MODEL (ST-HNM)

The HNM concept has been first proposed in [31] as the
multi-band excitation model: it splits the frequency band
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Fig. 1. Two-band HNM: harmonic lower sub-band containing
harmonics of F0 and noise upper sub-band.

into voiced and unvoiced sub-bands, where voiced sub-
bands are modeled by harmonic components, whereas un-
voiced bands are modeled by (colored) noise. This model is
dedicated to represent sounds with a mixed harmonic/noise
structure, such as mixed voiced/unvoiced sounds of speech.
This model inspired the two-band HNM and the resid-
ual error HNM, both proposed by Stylianou et al. in
[23, 32].

In this study we used the two-band ST-HNM presented in
[21, 22], based on the generic two-band HNM of [23]. The
frequency band is split into two sub-bands, as illustrated by
Fig. 1: a harmonic sub-band containing harmonics of the
speech signal (low frequencies) and a noise sub-band con-
taining high frequency noise components. These two bands
are separated by a time-varying voicing cut-off frequency
FV , which is the last harmonic frequency in the harmonic
band. In this model, the speech signal is segmented into
short-term frames with a duration of 30 ms and a fixed
hop-size of 20 ms, as in [22]. The ST-HNM parameters are
extracted from each ST-frame, as detailed in [22]. For each
ST-frame, these parameters are:

� Fundamental frequency F0: F0 is obtained for each ST-
frame using the autocorrelation-based method of [33].

� Voicing cut-off (VCO) frequency FV : FV is computed
only for voiced ST-frames using the technique given in
[34]. For unvoiced frames, FV is set to zero. Since FV

is the frequency of the last harmonic in a ST-frame, we
have: FV (k) = IkF0(k), where Ik and F0(k) are respectively
the number of harmonics and the fundamental frequency
in the kth ST-frame.

� Harmonic parameters: For each kth ST-frame, a har-
monic amplitude vector with size Ik is obtained by the
iterative analysis-by-synthesis method described in [3].
The corresponding harmonic frequencies are obtained by
multiplying F0(k) by the harmonic order.

� Noise parameters: The noise band is modeled by the
sum of sinusoids at different noise frequencies. For each
ST-frame, noise amplitudes and frequencies are obtained
by a peak-picking technique, similar to that used in [2].

Fig. 2. Example of temporal segmentation of speech into voiced
(V) and unvoiced (UV) LT-sections.

2 LONG TERM HARMONIC PLUS NOISE MODEL
(LT-HNM)

The aim of the LT-modeling of ST-parameter time-
trajectories is to capture the temporal correlation between
successive ST-parameters. This has the advantage to reduce
significantly the size of the model data. The implementa-
tion of the LT-HNM is detailed in [21, 22]. We summarize
in the following the LT modeling steps.

2.1 Segmentation of the Speech Signal into
LT-Sections

The speech signal is first segmented, according to F0

values into LT-sections, i.e., blocks of ST-frames of vari-
able duration, based on voiced/unvoiced decision. Each LT-
section is either entirely voiced (F0 �= 0 for all successive
frames) or entirely unvoiced (F0 = 0 for all successive
frames). Typically, the duration of a long-term section can
be several hundreds of milliseconds and may contain up to
ca. 60 ST-frames. This temporal segmentation is illustrated
in Fig. 2. The LT-model is then applied to the trajectories
of ST-parameters along each LT-section.

2.2 Discrete Cosine Model (DCM) for the
LT-Modeling of the ST-HNM Parameters
Trajectories

This study is based on the DCM to model the time-
trajectories of the ST-HNM parameters within a LT section.
The DCM approaches the data by a discrete sum of cosine
functions. This model was first used for cepstral modeling
in [28, 35]. Then it was applied to the LT modeling of
harmonic parameters in [18, 19] and LP parameters in [20].
The DCM is defined as follows:

X̃ (n) =
P∑

p=0

C(p) cos(pπ
n

N
), n = 1, · · · , N , (1)

where the vector X̃ = [X̃ (1), · · · , X̃ (N )]T is the DCM
model of the data vector X, both of length N and indexed
by n. C = [C(0), · · · , C(P)]T is the DCM vector of P + 1
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coefficients, where P is the DCM order. In cepstral mod-
eling, X represents the log-spectrum amplitudes and n is
a frequency index [35]. In LT-modeling, X contains the
time-trajectory of a parameter and n is a time index. In a
general manner, the DCM exhibits a good numerical sta-
bility compared to other models, especially the polynomial
model when P becomes large.

In [21, 22], a detailed description of the application of
this model to the trajectories of the ST-HNM parameters is
given. The LT-DCM coefficients C are computed by mini-
mizing a Weighted Mean Square Error between model and
data. Two iterative algorithms are proposed in [22] to deter-
mine the optimal model order. A first “1D” iterative algo-
rithm is applied to the trajectory of F0 on each LT (voiced)
section, to provide the optimal LT-DCM coefficient vector
CF0 . This algorithm is also applied to the trajectory of the
voicing cut-off (VCO) frequency FV to provide CFV . For
the LT modeling of the spectral amplitudes, harmonic, and
noise amplitudes in a ST-frame are first gathered in a unique
vector. Then a two-dimension DCM is applied. The first
DCM is applied within each ST-frame along the frequency
axis (the same model order is used for all ST-frames in a
LT-section). The second DCM is a time-dimension DCM
along a LT-section, applied to the time-trajectory of each
coefficient obtained from the first frequency-domain DCM.
For each LT section, we obtain a LT-DCM coefficient ma-
trix denoted CA. The first dimension of the matrix is the
frequency DCM order plus 1, and the second dimension is
the temporal DCM order plus 1. Both orders are determined
by the iterative algorithm presented in [22]. This 2D-DCM
can be seen as an extension of the 2D-cepstrum of [19] to
the HNM model.

2.3 LT-HNM Speech Synthesis
The time-trajectories of the LT-modeled ST-HNM pa-

rameters are obtained from the LT-DCM coefficients CF0 ,
CFV and CA by applying Eq. (1).1 The mathematical details
are given in [21]. The HNM synthesized speech signal is
the summation of a purely harmonic signal and a noise-
like signal as detailed in [21]. Harmonic amplitudes are
obtained by sampling the modeled spectrum at harmonic
frequencies (multiples of the modeled F0), while a regular
sampling of the noise sub-band is used to obtain the noise
amplitudes and noise frequencies. Harmonic amplitudes are
linearly interpolated across frames, and cumulative instan-
taneous phases are approached by a continuous summation
of harmonic frequencies (multiplied by 2π) with null initial
phases for each harmonic trajectory. The noise-like signal
is synthesized using an overlap-add technique, with random
phases, similar to [3].

3 LT-DCM COEFFICIENTS CODING

In this section we present the core contribution of the
present paper, i.e., the coding techniques that we applied

1For spectral amplitudes Eq. (1) is first applied on the time axis
and then on the frequency axis for each ST-frame.
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Fig. 3. Normalized Histograms of C(0) and of the remaining
coefficients of C, for F0, FV and rows of A. C(0) values are higher
than the remaining coefficients of C for F0 and FV .

to our LT-HNM in order to derive a complete LT-speech
coder. The parameters to be coded and sent to the receiver
for each LT-section are: (i) the LT-DCM coefficients of the
HNM parameters trajectories (CF0 , CFV and CA), and (ii)
the LT-section length K (the numer of ST-frames in a LT-
section), which is required for synthesis. For simplicity, and
when appropriate, we use in the following a common and
simplified notation C for all DCM vectors, i.e., CF0 , CFV

and the rows of CA. We propose to apply a mean-gain-
shape vector quantization (VQ) to the LT-DCM coefficient
vectors C, while a binary representation is used for the LT-
section length K. Note that the Discrete Cosine Transform
(DCT), which is close to DCM, has been widely used in
image and video coding [36] and a modified DCT (MDCT)
is used in some high quality audio coders as the MPEG-2
AAC standard [37].

However, to our knowledge, no previous studies dealt
with the quantization of DCM coefficients for speech ap-
plications.

3.1 Scalar Quantization of Mean LT-DCM
Coefficient

To guide our choices for the design of the LT-DCM quan-
tizers, we first observed the distribution of the LT-DCM
vector coefficients. For this aim, we applied the LT-HNM
on the training speech material described in Sec. 4.1. This
resulted in a database of LT-DCM coefficients composed,
for each training LT-section, of two LT-DCM vectors, CF0

and CFV , and one LT-DCM matrix CA. Fig. 3 shows the
histograms of the first LT-DCM coefficient of CF0 (a), of
CFV (c), and of the rows of CA (e), compared with the
histograms of the remaining coefficients of the LT-DCM
vectors (Fig. 3(b), (d), and (f)). The first coefficient of each
LT-DCM vector CF0 and CFV , denoted C(0), is significantly
higher than the other values of the vector, since it represents
the mean value of the modeled data trajectory. We note that
this property is not noticeable in the case of CA coeffi-
cients. We can see for example that the first coefficient
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Fig. 4. Length variability of the LT-DCM vectors CF0 , CFV and
rows of CA. The vector lengths lie in [1, 20] with some few vectors
reaching 30 coefficients.

CF0 (0) of CF0 exhibits a bimodal distribution with modes
at typical average F0 values for male and female speech.
Consequently, the first coefficients C(0) are discarded from
the vector quantization in order to increase its efficiency.
Let us denote the new coefficient vectors and matrix rows
(without the first coefficient C(0)) by ĊF0 , ĊFV and ĊA

(Ċ in generic form). Applying the mean-shape principle of
vector quantization, the first coefficient C(0) of each LT-
DCM vector is coded separately using scalar quantization
(the “shape” coding of Ċ is presented in the next subsec-
tion). Optimal scalar quantizers adapted to the statistical
properties of the C(0) database are designed by applying
the Lloyd-Max algorithm [30].

3.2 Dimension Variability of the Remaining
LT-DCM Vectors

The LT-DCM vectors Ċ (be it ĊF0 , ĊFV or a row of ĊA)
have variable dimension, due to the variable duration of
LT-sections and to the dynamics of the time trajectories of
the HNM parameters. Therefore, variable LT-DCM orders
are obtained to reach the target LT-modeling errors. Fig. 4
shows the length variability of the LT-DCM vectors: The
LT-model order is very scattered within the range [1, 30].
We thus deal with a variable dimension vector quantization
problem, with possibly long vectors.

In the literature, some studies address the quantization
of variable dimension vectors and propose some solutions
adapted to each case of study. A non square transform vec-
tor quantization (NSTVQ) is proposed in [38, 39] to code
harmonic amplitudes of the excitation in a LP codec: a non
square linear transform is applied to the variable dimen-
sion vectors in order to obtain fixed length vectors that are
then submitted to VQ. Another solution used for coding
variable dimension harmonic amplitude vectors, and called
Variable Dimension Vector Quantization (VDVQ), consists
in designing a single universal fixed length codebook and
using a binary selector vector that points on the non zero
components of the harmonic amplitude vectors [40, 41]. In

Fig. 5. Diagram of the proposed NSVQ.

[42], the frequency scale is transformed from Hertz to Mel
scale to obtain fixed-length harmonic amplitude vectors.
The latter solution cannot be used in the case of the LT-
HNM as it solves the dimension variability problem only
on the frequency scale. The limit of the VDVQ is that the
maximum vector length must be fixed, while in our case
the maximum discrete cosine model order is controlled by
the analysis-synthesis fitting of the model to the data. Con-
cerning the NSTVQ, the proposed LT-HNM incorporates
already one (two in case of spectral amplitudes) non square
transform (the DCM) applied to each parameter leading
to “decorrelated” and “energy-concentrated” coefficients:
adding an additional non square transform prior to quan-
tization may dangerously increase the information loss. In
the following section we develop a variable dimension vec-
tor quantization fitted to the particular constraints of the
LT-HNM and to the particular characteristics of the DCM
coefficients, referred to by the Normalized Split Vector
Quantization (NSVQ).

3.3 Proposed Normalized Split Vector
Quantization

The proposed NSVQ quantizer for the remaining DCM
vectors Ċ is summarized in Fig. 5. As the LT-DCM vectors
corresponding to F0, FV , and spectral amplitudes A have
similar characteristics, the same type of quantizer is applied
to all of them, although a code-book is designed for each of
them. Due to the shape and length variability of the DCM
vectors, the proposed quantization technique is based on
mean-gain-shape quantization and split vector quantization.
The mean-gain-shape technique implies that we work with
normalized coefficients, and the splitting technique consists
in splitting a long vector into several sub-vectors [43], as
shown on Fig. 5.

3.3.1 Normalization of the LT-DCM Coefficients
The amplitude envelope of the coefficients within a given

LT-DCM vector Ċ typically decreases with the coefficient
rank. This results in an important variation of the DCM
coefficient values across successive sub-vectors when split-
ting a DCM vector for quantization. In order to optimize
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Fig. 6. Example of the mean values calculation used for vector
normalization.

the efficiency of the quantization codebook, we propose to
normalize the LT-DCM vectors, such that all DCM coeffi-
cients vary in the same range, here in [ −1, 1]. The purpose
of the shape normalization is to facilitate the coding of all
sub-vectors with the same codebook. In other words, the
normalization enables to reduce the size of the codebook
for a similar coding efficiency. We propose to apply the
following vector normalization:

C̄i ( j) = Ċi ( j) − μ j

β j
, j = 1, . . . , max

i
{Pi }, (2)

where Ċi and Pi refer respectively to the LT-DCM vector
indexed by i and the corresponding model order. μj and βj

are respectively the mean value and the maximum (absolute
centered) value of all DCM coefficients of rank j in the
training database, given for j = 1 to max

i
{Pi } by:

μ j = 1

card{M j }
∑

i∈M j

Ci ( j), (3)

β j = max
i∈M j

{|Ci ( j) − μ j |}, (4)

where M j is the set of LT-DCM vectors indices i with Ci(j)
�= 0 and card {M j } is the cardinality of M j . Fig. 6 gives
an example to explain the calculation of μj (and βj): for a
given rank j, μj is the mean of all coefficients of rank j in
the LT-DCM vectors indexed in M j .

Note that μj and βj are calculated from a training database
and then saved in the coder and the decoder, i.e., they are
not concerned with quantization. Remember that the first
coefficient C(0) is not concerned by this normalization,
since it is quantized separately (cf., 4.1). Note that Eq. (2)
is inspired from the mean-gain-shape VQ in [29], except
that in our case the normalization is carried out across all
vectors of the training database, while in [29] it is a local
normalization of each vector.

3.3.2 Splitting the Normalized DCM Vectors into
Equal-Length Sub-Vectors

The LT-DCM vectors have a variable and possibly large
dimension, as shown in Fig. 4. To avoid the use of a large
training database and to reduce the size of the codebook,

Fig. 7. Two-stage cascaded vector quantization.

we propose to split the normalized vector C̄ into B smaller
equal-length sub-vectors, denoted C̄b, b = 1, . . . , B. Since
the size of C̄ is not necessarily a multiple of the fixed
sub-vector size, the last sub-vector of each vector is zero
padded. Note that B is variable: it depends on the length of
the corresponding LT-DCM vector.

3.3.3 Two-Stage Vector Quantization
A two-stage vector quantization is applied to the fixed-

length LT-DCM sub-vectors. The two cascaded vector
quantizers, illustrated in Fig. 7, provide a higher quantiza-
tion accuracy when using a training database with limited
size and much lower computational complexity compared
to single-stage VQ [43]. The 1st-stage quantizer is applied
to C̄b while the resulting error vector is quantized by the 2nd-
stage quantizer. The total quantization error corresponding
to sub-vector C̄b is given in the sub-vector Eb.

3.3.4 Coded Stream
For each LT-section, the parameters sent to the receiver

are the LT-section length K and the quantization indices of
C(0) and C̄b for each HNM parameter. The number of sub-
vectors B for each DCM vector must also be sent for each
HNM parameter. The order P of the DCM applied to the
spectral amplitudes on the frequency axis is also needed to
determine the first dimension of the matrix A.

3.4 The LT-DCM Decoding
The decoding of the LT-DCM vectors is carried out by

inverting the quantization and normalization steps given
in Sec. 4.3. The decoded sub-vectors are represented by
the codewords indexed by iCb in the codebook. We first
concatenate the coded sub-vectors of each LT-DCM vec-
tor. Then, we apply the denormalization corresponding to
Eq. (2):

Cq ( j) = β j C̄
q ( j) + μ j , j = 1, · · · , Pi , (5)

where Pi is the order of the LT-DCM vector being decoded.
Remember that the normalization coefficients μj and βj

are stored in the receiver and the exponent q refers to the
coded data. The obtained DCM vector is finally concate-
nated to the decoded first coefficient Cq(0) leading to the
final coded LT-DCM vector Cq.

4 CODEBOOKS DESIGN, BIT ALLOCATIONS,
AND BIT-RATES

In this section we describe the experimental procedure
for the design and the test of the proposed LT-HNM speech
codec. We first describe the speech databases that we used
for training and testing the codec. We then detail the de-
sign of the vector and scalar quantizers codebooks and we
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Fig. 8. Duration (ms) of voiced and unvoiced LT-sections for
TIMIT and HINT test databases. On each box, the central mark
is the median, the edges of the box are the 1st and 3rd quartiles,
the whiskers extend to the most extreme data points (outliers are
plotted individually by the “+” signs).

discuss different bit allocation configurations and the re-
sulting bit-rates.

4.1 Speech Material
In this study we used the American TIMIT database [44],

sampled at 16 kHz. Two-thousand-seven-hundred-twenty
items of this database, each consisting of a complete sen-
tence, were used for the training of the quantizers (38% fe-
male and 62% male speakers, with a total duration of about
122 min.). The segmentation of the training speech sam-
ples into voiced and unvoiced LT-sections yielded 44,122
LT-sections: 49% voiced (ca. 69 min.) and 51% unvoiced
(ca. 53 min.). The mean duration of a voiced LT-section is
about 195 ms and about 145 ms for unvoiced LT-sections.
The test database is composed of 300 items (150 female
and 150 male speakers) with a total duration of about 14
min. It is composed of 4,969 LT-sections, 49% voiced and
51% unvoiced. Statistics about the duration of LT-sections
are given in Fig. 8.

In parallel, a French speech database was used for sub-
jective listening quality and intelligibility assessment with
French speaking subjects. This database was developed for
vocal audiometry for the Hearing in Noise Test (HINT)
[45] and is composed of 20 phonetically balanced sen-
tences (only male speakers) sampled at 16 kHz, with a total
duration of 63 sec. The segmentation in LT-sections yielded
136 voiced LT-sections (66% of the total duration) and 174
unvoiced LT-sections (34% of the total duration). The statis-
tics of the LT-section durations for HINT are displayed in
Fig. 8.

4.2 Design of the VQ Codebooks
A VQ codebook is designed for each type of LT-DCM

parameter vector, i.e., for F0, FV , and the rows of A.
A two-stage VQ is used, as detailed in Sec. 3.3.3. Each

codebook is optimized using the Linde-Buzo-Gray (LBG)
algorithm [43, 30]. Fifty iterations are run to obtain the
codebook for each stage. This iteration number shows a
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Fig. 9. Histograms of the coding rRMSE of C(0) with an 8-bit
optimal scalar quantization.

good convergence of the optimization algorithm for each
codebook.

4.3 Design of the Scalar Quantizers for C(0)
An optimal scalar quantization codebook is designed for

the first coefficient C(0) of each HNM parameter (F0, FV ,
and A). The scalar quantizers are optimized according to the
distribution of these coefficients in Fig. 3. The histograms
of the relative Root Mean Squared Errors (rRMSE) for each
LT-DCM vector, given by Eq. (6), resulting from an 8-bit
optimal scalar quantization, are shown in Fig. 9: The results
show that the coding errors lie around 0.1% for F0 and FV

and around 1% for spectral amplitudes A.

EC(0) =
√

(C(0) − Cq (0))2

C(0)2
, (6)

where Cq(0) is the coded value of C(0).

4.4 Bit Allocation and Bit-Rates
A different bit allocation is assigned to each codebook.

We denote by N0 the bit allocation of the coefficients C(0)
and by N1 and N2 the bit allocations of the first and the sec-
ond stage VQ respectively. A different bit allocation (N0,
N1, N2) is assigned for each HNM parameter (F0, FV , and
A). We discuss in the following the results for two con-
figurations of the bit allocation given in Table 1. The first
configuration corresponds to the largest codebook size we
could generate, when taking into consideration database
size, complexity, and computing time limits, while the sec-
ond configuration is a trade-off between low bit-rate and
listening quality.

For each bit-allocation, the obtained average bit-rate RT is
the summation of four basic average bit-rates for the HNM
parameters: RF0 , RFV and RA and RK for the LT-section
length K:

RT = RF0 + RFV + RA + RK . (7)
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Table 1. Two configurations of bit allocation and corresponding
average bit-rates for the quantization of the LT-DCM

coefficients of each HNM parameter.

First Allocation Second Allocation

N0 N1 N2 Bit-rate N0 N1 N2 Bit-rate
(bps) (bps)

F0 8 9 6 179 6 7 5 143
FV 8 9 6 181 6 7 5 144
A 8 7 7 3284 6 5 5 2721
K – – – 41 – – – 41
Total – – – 3685 – – – 2721

For each LT-section, let B and P be the number of sub-
vectors in a DCM-vector Ċ and the first dimension of A
respectively. The obtained average bit-rates for each LT-
section are given by:

RF[0,V ] = 1

T
[N0 + NB + B(N1 + N2)], (8)

RA = 1

T
[NP + NB + (P + 1)[N0 + B(N1 + N2)]], (9)

RK = 1

T
NK , (10)

where RF[0,V ] can be RF0 or RFV , NB, NK , NP represent the
number of bits used for the binary representation respec-
tively for the number of sub-vectors B for a DCM-vector, the
number of ST-frames K in a LT-section, and the frequency-
dimension DCM order P (first dimension of A) and T is
the duration of the LT-section. Note that the number of
sub-vectors B is the same for all rows of the matrix A in
an LT-section, since the same DCM order is used for the
temporal dimension.

In Table 1, we show the obtained average bit-rates over
all LT-sections of the test database. Here a sub-vector length
was set to five coefficients and the bit allocation was fixed
to: NK = 7, NP = 6, and NB = 2. The first bit allocation
configuration yields an average bit-rate of 3,685 bps, while
the second bit allocation configuration yields an average
bit-rate of 2,721 bps. Note that an important part of the
bit-rate (ca. 88%) is dedicated to the coding of spectral
amplitudes.

The coding errors corresponding to both considered bit
allocations are evaluated in the following section.

5 EVALUATION OF THE COMPLETE LT-HNM
SPECH CODEC

The evaluation of the LT-HNM speech codec is carried
out using the test speech database described in Sec. 4.1.
We first provide illustrative examples of LT-modeled and
quantized parameter trajectories. Then we present quantita-
tive measures of LT-modeling/coding errors for each HNM
parameter. Finally, perceptual listening quality of the coded
speech is evaluated with the objective quality assessment
algorithm PESQ [46, 47] (we used here WB-PESQ for
wide-band speech) and with subjective mean opinion score
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Fig. 10. Example of time trajectory of analyzed, LT modeled and
both LT modeled and coded F0 (top) and FV (bottom) (RT ≈ 3.6
kbps). The LT-modeled trajectories fit better the analyzed values
than the coded ones.

(MOS) tests. Additional subjective tests are processed to
assess the intelligibility of the coded speech.

5.1 Examples of LT-Modeled/Quantized
Parameter Trajectories

Fig. 10 illustrates an example of the reconstruction of the
HNM parameters, after modeling with the LT-DCM and af-
ter LT-coding (LT-DCM + quantization) at RT ≈ 3.6 kbps.
The time trajectories of F0 and FV are displayed in the
left and right figure, respectively. Globally the trajectories
of the LT-modeled parameters and of the LT-modeled and
quantized parameters follow well the original (i.e., ST) tra-
jectories. We note on this example that the reconstruction
of F0 is more accurate than that of FV , i.e., closer to the ST
parameter trajectories.

Fig. 11 displays an example of reconstructed spectral
amplitudes vector in a voiced ST-frame, after LT-modeling
and after LT-modeling + quantization. We see in this figure
that globally, the spectral shape is well modeled and coded
by the proposed technique. In this example, the effect of
the quantization is moderate compared to the effect of the
LT-modeling. In addition, the LT-modeling is less accurate
in the noise-band compared to the harmonic band.
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and coded spectral amplitudes in a voiced ST-frame. (RT ≈ 3.6
kbps)

Fig. 12. The considered errors: LT-modeling error eLT , quantiza-
tion error eq, and total error (or LT+coding error) eLT

q .

5.2 Measure of the Coding and Modeling Errors
Three errors are considered for each HNM parameter, as

depicted on Fig. 12: (i) eLT , the LT-modeling error, (ii) eq,
the quantization error, and (iii) eLT

q , the total coding error
resulting from both LT-modeling and quantization. These
errors are evaluated for each LT-section indexed by m. For
the frequencies F0 and FV , we compute the error rate in %
(rRMSE) as:

r RM SE =
√√√√ 1

K

K∑
k=1

(F(k) − F̃(k))2

F(k)2
, (11)

where F refers to F0 or FV and F̃ is the modeled and/or
coded version of F, and k and K are respectively the in-
dex and the number of ST-frames in the LT-section. For
the spectral amplitudes A, a signal-to-noise ratio (SNR) is
evaluated in dB for each LT section according to:

SNR

= 10 log10

[
1

K

K∑
k=1

∑Nk
f =1 A f (k)2∑Nk

f =1(A f (k) − Ã f (k))2

]
, (12)

where Nk is the number of frequency components in the
kth ST-frame, and Ã f is the modeled and/or coded version
of Af .

Fig. 13 displays the statistics of the errors of the three
parameters F0, FV , and A. Both bit-allocations of Table 1
are considered. Comparing the results of Fig. 13(a) and (b)
to (c) and (d), we may note that the errors on F0 are smaller
than those on FV . This is in part due to the dynamic behav-
ior of the time trajectories of FV compared to the smoother
time trajectory of F0, as illustrated in Fig. 10. Another rea-
son is the rounding of the modeled FV values to a multiple
of the modeled F0, which induces cumulative errors. In a
general manner, modeling error and quantization error cu-
mulate to yield the total error (see the related discussion in
[48]). For F0, the LT-modeling error is significantly lower
than the quantization error, hence the quantization error is
much closer to the total error. In other words the total error
is mostly due to the quantization. This confirms the obser-
vation made in Fig. 10. For FV , the contributions of the
LT-modeling and of the quantization to the total error are
more balanced. In contrast, Fig. 13(e) and (f) show that, at
RT ≈ 3.6 kbps, the distortion due to the LT-modeling of the
amplitudes is higher than that caused by the quantization.
Indeed, the mean SNR due to LT-modeling is around 10.7
dB, while it reaches 15.7 dB for the quantization. The re-
sulting average SNR for the complete LT-coding process
is about 8.3 dB. This confirms the observation made in
Fig. 11.

R T ≈ 2.7 kbps is a configuration with a better balance
between LT-modeling and quantization: the corresponding
average SNRs are closer (about 10.7 dB and 11.7 dB re-
spectively). The total average error is 6.9 dB. As expected,
the overall results of Fig. 13 confirm that eq, and thus eLT

q ,
are higher at the lower bit-rate.

The way the modeling error and the quantization error
contribute to the total error is not easy to characterize and
is not expected to be linear. The optimal control of the
total error by an automatic “weighting” of the LT-modeling
and quantization processes remains out of the scope of the
present study, but it is thus a very interesting perspective to
improve the proposed LT-HNM codec.

5.3 Listening Quality Assessment
We first assess the perceptual listening quality of the syn-

thesized speech using the ITU-T standard Perceptual Eval-
uation of Speech Quality (PESQ) algorithm [47]. PESQ is
an intrusive measure, i.e., it compares the degraded speech
to the original sample and delivers a score in the range from
–0.5 (bad quality–very annoying) to 4.5 (excellent quality–
imperceptible). Fig. 14 shows the PESQ scores obtained
for all the test database and at different steps of the LT-
HNM coder: Fig. 14(a) corresponds to the PESQ scores of
the ST-HNM modeled speech, while Fig. 14(b) shows the
scores of the LT-HNM speech (LT-DCM modeling of HNM
parameters without quantization). From these results, it is
clear that the main quality degradation is due to the first
step, i.e., the ST-HNM, where the mean PESQ score is 2.9,
which indicates a slightly annoying impairment, whereas
the LT-HNM speech displays a score of 2.7, which is in the
same quality range (slightly annoying).
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Fig. 14. Listening quality: PESQ scores of TIMIT test database.

Figs. 14(c) and 14(d) show the mean and standard devi-
ation of the PESQ scores of the coded LT-HNM speech for
both considered bit-rates. The PESQ scores correspond-
ing to RT ≈ 3.6 kbps indicate a mean score degradation
of about 0.3 compared with the LT-HNM results, which
seems reasonable. And, as expected, Fig. 14(d) shows that
the speech quality decreases with the bit-rate: at RT ≈ 2.7
kbps, the mean PESQ score reaches 2.1, which corresponds
to annoying quality.

Note that the overall average PESQ scores degradation
from ST-HNM to coded LT-HNM speech (RT = 2.7 kbps)
is about 0.8 (from 2.9 to 2.1), which emphasizes again that
the overall listening quality loss is to a large extent due to
the initial ST-HNM representation of the speech signal, and
not only to LT-modeling and quantization. We believe that
a series of improvements can be conducted, not only on the
proposed LT-coding techniques but also on the initial ST-
HNM on which these LT-coding techniques were applied.

Table 2. Mean Opinion Score (MOS).

MOS Quality Impairment

5 Excellent Imperceptible
4 Good Perceptible but not annoying
3 Fair Slightly annoying
2 Poor Annoying
1 Bad Very annoying

To confirm the objective ratings, subjective listening tests
were also carried out in-lab with 12 naive male and female
French speaking listeners, aged within 23–30 years, using
the HINT database (in French) [45]. Subjects listened (with
high-quality headphones) to randomly played speech sam-
ples, composed of original, ST- and LT-HNM synthesized
samples without and with coding (at RT ≈ 2.7 kbps). Lis-
teners were asked to rate the listening quality of the heard
sentences according to the ITU-T P.800 recommendation
[49], using Absolute Category Rating (see Table 2). For
comparison, the PESQ scores for the French HINT database
were also computed.

The obtained MOS and PESQ scores for the French test
database are shown on Fig. 15. We first note that, in the
case of the LT-HNM (with and without coding), the average
PESQ and MOS scores are similar (about 2.5 for the LT-
modeled speech and 1.9 for the coded speech at RT = 2.7
kbps), which proves a high correlation between objective
(PESQ) and subjective (MOS) quality scores when applying
the LT-model. However, this is not true for the ST-HNM
synthesized samples, where the mean PESQ score is equal
to 3.1, while the mean MOS score reaches 3.6. We also note
that the average PESQ and MOS scores of the LT-modeled
and the coded HINT samples (2.5 and 1.9 respectively), are
lower than the average scores of TIMIT samples (2.7 and 2.1
respectively) (cf., Fig. 14). This may be due to the presence
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ST-HNM, (b) LT-HNM only, (c) Coded speech at RT ≈ 2.7 kbps.

of longer LT-sections in French, as observed on Fig. 8,
where the average duration of TIMIT voiced LT-section is
195 ms, while it reaches 306 ms for the French database.
In addition, the quantizers were designed using training
samples from TIMIT and not from HINT (since this latter
database is not large enough). Also, note that some studies
have reported a language dependency of PESQ assessment
tool [50] [51] [52].

5.4 Intelligibility Measure
Subjective intelligibility tests have also been conducted

to assess the intelligibility of the LT-HNM modeled/coded
speech. The Hearing in Noise Test measures a person’s abil-
ity to hear speech in quiet and in noise, it has been developed
for medical use to measure the sentence Speech Reception
Threshold (sSRT2) [53], but this test is nowadays widely
used to evaluate the speech intelligibility of enhanced and
coded speech [54]. We carried out the HINT test with 12
French speaking subjects who listened (with high-quality
headphones) to 12 different French speech samples from
the French database: 6 LT-HNM and 6 coded LT-HNM at
2.7 kbps. They were asked to repeat each sample after lis-
tening to it. The intelligibility is measured by the rate of
correct words from all listened words over all test sam-
ples [54]. We obtained an intelligibility rate of 99.7% for
the LT-HNM synthesized speech and 94.5% for the coded
LT-HNM speech, which indicates that the coded LT-HNM
speech provides a good intelligibility even if the listening
quality was rated as annoying.

5.5 Discussion
Although the results presented above show that the pro-

posed coder provides a good intelligibility at low bit-rates,
the enhancement of the global listening quality remains an
important issue for the comfort of the user.

It seems too early to compare the performance of the pro-
posed coder with thoroughly optimized commercial coders,

2sSRT: in speech audiometry, it is the decibel level at which
50% of heard words can be repeated correctly by the subject.

as the NB-HVXC or the WB-EVS (wide-band enhanced
voice services codec) for example, which provides a good
quality (MOS≈3.5) at 5.9 kbps [55]. We emphasize that
the results of Sec. 5 are related to the coding of wide-
band speech at such low bit-rates as 2.7 kbps. However, it
is worth noting that the MPEG-4 parametric audio coders
HVXC (Harmonic Vector Excitation Coder) [56] and HILN
(Harmonic and Individual Lines plus Noise) [57] provide
listening quality of the coded narrow-band signals at 2 and
6 kbps, respectively, which lies in the same range (MOS<3)
as the results of Fig. 14(c).

According to the quality ratings of Figs. 14 and 15, it is
clear that the listening quality degradation is mainly due to
the modeling part of the coder (i.e., ST-HNM and LT-HNM)
rather than to the quantization part. To reduce the speech
distortion, it would be interesting to strengthen the model-
ing constraints on the ST- and LT-HNM (higher modeling
order, lower modeling errors, etc.) to reach higher quality
ratings prior to quantization. In addition, the impact of each
parameter (frequencies F0, FV and amplitudes A) on the lis-
tening quality needs to be analyzed separately in order to
recognize which of them has to be modeled more accurately.
The quantization stage can then be evaluated at lower (and
different) bit allocations (N0, N1, N2) to achieve a trade-off
between the target bit-rate and the listening quality.

6 CONCLUSION

The objective of this paper is to evaluate the feasi-
bility and efficiency of the LT approach to speech cod-
ing in the HNM framework. We thus presented the de-
sign of a complete low bit-rate speech coder based on the
long-term harmonic plus noise model (LT-HNM) [22] by
adding a variable-dimension vector quantization stage. To
our knowledge, no previous studies addressed the quanti-
zation of DCM coefficients obtained from the LT-modeling
of speech signals. Hence we carried out a statistical study
of these coefficients to design an appropriate quantization
technique. The proposed Normalized Split Vector Quanti-
zation (NSVQ) is adjusted to the properties of these DCM
coefficients. We presented first experiments to evaluate the
proposed LT-HNM speech coder with two bit allocations,
achieving the average bit-rates 3.6 kbps and 2.7 kbps for
wide-band speech. Although the proposed coder achieved
good intelligibility at both tested bit-rates, the global signal
quality can still be improved. The results of Sec. 5 indi-
cate that the modest listening quality is mainly due to the
ST- and LT-modeling part of the coder, with mean PESQ
scores of 2.9 and 2.7 respectively. Indeed, the quantization
stage reduces the mean listening quality score by 0.3 and
0.6 respectively at 3.6 kbps and 2.7 kbps.

The proposed LT-HNM coder can still be improved to
make it a good candidate for commercial applications.
These improvements will be addressed in future work. Par-
ticularly, the ST and LT target modeling errors can be ad-
justed to achieve a given quality score prior to quantization.
Then, a compromise between target bit-rate and global qual-
ity has to be achieved, for example by optimizing the bit
allocation to the different HNM parameters according to
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their impact on the achieved quality. Besides, in order to
decrease the bit-rate, we think about introducing perceptual
criteria to reduce the short-term data-rate prior to quanti-
zation, as proposed in [58], where the auditory masking is
exploited to discard inaudible frequency components from
coding.
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