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Abstract
The harmonic plus noise model (HNM) is widely used for
spectral modeling of mixed harmonic/noise speech sounds.
In this paper, we present an analysis/synthesis system based
on a long-term two-band HNM. “Long-term” means that the
time-trajectories of the HNM parameters are modeled using
“smooth” (discrete cosine) functions depending on a small set
of parameters. The goal is to capture and exploit the long-
term correlation of spectral components on time segments of
up to several hundreds of ms. The proposed long-term HNM
enables joint compact representation of signals (thus a poten-
tial for low bit-rate coding) and easy signal transformation (e.g.
time stretching) directly from the long-term parameters. Exper-
iments show that it can be compared favourably with the short-
term version in terms of parameter rates and signal quality.
Index Terms: speech analysis/synthesis, harmonic + noise
model, long-term processing.

1. Introduction
In speech/music coders and analysis/synthesis systems, spec-
tral parameters are usually extracted and processed on a short-
term (ST) basis, i.e. every 20ms or so. This is mainly due to
the non stationarity of audio signals and/or real-time process-
ing constraints. For speech signals, the evolution of the vo-
cal tract shape and glottal source activity is often quite smooth
and regular, and it can be captured in terms of slow AM/FM
modulations. High correlation between successive ST spec-
tral parameters is actually exploited for two or three consec-
utive ST frames in, e.g., differential coding, matrix quantiza-
tion, or recursive coding [1]. But for non-real-time applications
(e.g., half-duplex communication, storage, or transformation),
the analysis-synthesis process can be applied on a long-term
(LT) basis, i.e. much larger signal windows. This is the founda-
tion of the Temporal Decomposition (TD) technique [2], which
consists of decomposing the trajectory of spectral parameters
into “target vectors” which are sparsely distributed in time and
linked by interpolative functions. TD has been recently revisited
in [3], where the trajectories of ten consecutive spectral vectors
are modeled by fourth-order polynomials.

All those mentioned studies concern Linear Prediction Cod-
ing (LPC) parameters, widely used for speech coding. The LT
approach can be extended to other spectral models, like sinu-
soidal models [4][5]. Thus, it was proposed in [6] to model the
LT trajectory of harmonic phases and amplitudes with a Dis-
crete Cosine Model (DCM). In [6], LT frames are continuously
harmonic sections with very variable size and shape. A fitting
algorithm was proposed to automatically adjust the LT model.

The present paper presents a new extension of [6][7] to the
framework of the Harmonic + Noise Model (HNM), which is
particularly appropriate for modeling mixed voiced/unvoiced

speech signals. We focus on a two-band HNM, inspired by [8],
and we present the application of the LT modeling approach to
the parameters of this two-band HNM. Those parameters are the
spectral envelope (of both harmonic and noise amplitudes), the
fundamental frequency F0, and the voicing cut-off frequency
FV . Note that in [6][7], only purely voiced sections were con-
sidered. In the present study, we generalize the modeling of the
spectral envelope to any harmonic/noise combination, we intro-
duce the LT modeling of FV , and we simplify the modeling of
F0 (w.r.t. [6]). We also describe and assess a complete original
analysis-synthesis system based on the proposed LT-HNM.
This paper is organized as follows. The HNM model is pre-
sented in Section 2. The LT modeling of HNM parameters
trajectories is described in Section 3, resulting in a complete
LTHNM analysis-synthesis system. Experiments and results are
given in Section 4.

2. The Two-Band Harmonic + Noise Model
In its general non-stationary form, we can express the HNM as:

s(n) =

H∑
h=1

ah(n)cos[φh(n)] + ν(n), (1)

where h is the harmonic rank, H is the number of harmonics,
ah(n) is the harmonic instantaneous amplitude, φh(n) is the
instantaneous phase, and ν(n) is the noise part of the signal.
φh(n) is (the sampled version of) the summation of instanta-
neous frequency over time (each frequency being the h-multiple
of F0). For speech signals, those parameters are assumed to
(slowly) vary in time, with possible “birth” and “death” of sinu-
soids, as in the more general sinusoidal model [4].

In the present work, we use a simplified two-band version of
the HNM in the spirit of [8]. This version splits the frequency
band into a harmonic band in the low frequency (LF) region,
and a noise band in the high frequency (HF) region. The noise
band is assumed to model HF random components with spectral
coloration but no clear temporal structure. Those two bands are
separated by a “boundary frequency” called the voicing cut-off
(VCO) frequency FV . This two-band HNM model is very flex-
ible in the sense that it can be used to represent purely harmonic
frames (FV equal to the Nyquist frequency FNyq), purely un-
voiced frames (FV = 0), or mixed voiced-unvoiced frames.

In the present study, the parameters of the two-band HNM
are first extracted on a short-term (ST) basis, as in usual ST-
HNM modeling, using analysis frames (indexed by k) of length
w = 30ms and hop size r = 20ms. The fundamental frequency
F0 is first estimated using Praat’s autocorrelation method [9]
(which implicitly provides voiced/unvoiced segmentation). The
VCO frequency FV is estimated using the method of [10] based
on the maximization of the sum of a cumulative periodic energy
for the lower band and a cumulative aperiodic energy for the



upper band. The estimated FV value is rounded to the nearest
harmonic frequency, which becomes the last harmonic of the
frame, indexed by Hk. The estimation of the Hk harmonic am-
plitude parameters ah (and initial phases φh) of the harmonic
band is then made by least-square fitting between the (station-
ary) harmonic model (using the measured F0) and the signal
within the k-th frame [5]. Finally, the frequencies fn and am-
plitudes an of theNk spectral components of the noise band are
estimated by a peak-picking algorithm [4], applied on the upper
band of the FFT magnitude spectrum.

3. LT modeling of HNM parameters
3.1. The LT model and associated estimation process

LT modeling of HNM parameters consists of 1) defining LT
frames: in the present study a LT frame is either a continu-
ously voiced (actually mixed voiced/unvoiced) or continuously
unvoiced section of speech (as a sequence of K successive ST
frames; LT frame boundaries are provided by the F0 analysis),
and 2) Representing the trajectories of the HNM parameters on
each LT frame by a sparse P -order time model. The goal is
to reduce the data dimension from K to P + 1, with P being
significantly lower thanK, while preserving the essential shape
of data trajectory. In the present study, we use a linear com-
bination of cosine functions (called Discrete Cosine Model –
DCM), since this model has provided good fitting and compu-
tational properties in previous studies [6][7]:

S̃m(n) =

P∑
p=0

cm,p cos(pπ
n

N
). (2)

Sm is either F0, FV , or a parameter of the spectral envelope of
ah and an (see next section), N denotes the maximum value of
data index n. The vector of M spectral parameters extracted at
time instant nk = kr is denoted Sk = [S1,kS2,k . . . SM,k]T (T

denotes the transpose operator; M is possibly equal to 1 for F0

or FV ). Thus, we actually have to model M trajectories of K
values Sm,k which are gathered in the M ×K matrix S. Let us
denote by M the (P + 1)×K “model matrix” of general term
mp,k = cos(pπ nk

N
), and let us denote by C the M × (P + 1)

vector/matrix of model coefficients cm,p. When the order P is
known, C is estimated by minimizing the weighted mean square
modeling error (WMSE) at the nk instants, leading to:

C = S ·W ·MT · (M ·W ·MT )−1, (3)

W is a diagonal weight matrix that can be introduced to control
the contribution of the data in the model computation. Also, a
diagonal “regularizing” term can be added to the inverted matrix
in (3) to fix possible ill-conditioning problems [11]. We do not
detail this technical aspect here.

3.2. Model orders optimization

In the previous subsection, P is assumed to be known. In fact,
for each LT speech section and each HNM parameter, the goal
of efficient LT modeling is to automatically set the model order
to a value that ensures a good trade-off between data compres-
sion (ideally P << K) and good modeling accuracy. For this
aim, we propose the following algorithms.

3.2.1. LT modeling of F0

For F0 modeling, we define a target ratio DF0
t for the modeling

error (e.g. 1%) and apply the dichotomic search of Algorithm 1.

Note that the last iteration is validated only if it leads to lower
the error, and since all time frames are here assumed to have the
same importance, all weights ofW are set to 1. Of course, more
refined fitting criteria and strategy can be used, e.g. perceptual
criteria with adaptive time-weights [6].

Algorithm 1:
P ← power of 2 closest to K/2, ∆P ← P/2, and S← F0

while ∆P ≥ 1 do
∆P ← ∆P/2
Calculate C with (3)
Calculate the modeling WMSE E and the relative error
D = E/mean(F0)
if D ≤ DF0

t then
P ← P −∆P

else
P ← P + ∆P

end if
end while
PF0 ← P and CF0 ← C

3.2.2. LT modeling of FV

LT modeling of FV is similar to the LT modeling of F0, result-
ing in optimal CFV vector and PFV order. However, the mod-
eled vectors F̃v = C ·M are rounded to the closest harmonic
frequency, and the target error DFV

t is expressed in terms of
maximal deviation in (integer) number of harmonics, i.e. PFV

is found as the minimum order so that the maximum modeling
error remains within ±Q harmonic (Q can be set to 1 or 2).

3.2.3. 2D-DCM modeling of the spectral amplitudes

The amplitudes are LT modeled using a 2D modeling approach
similar to the one presented in [7] for purely harmonic spectra.
This technique is here extended to mixed harmonic/noise sec-
tions of speech. The general principle is a two-step modeling:
For each ST frame k of a given LT frame, a first DCM model
of order M (cf. section 3.1) is applied in the frequency dimen-
sion, covering both harmonic and noise amplitudes. This model
is similar to the discrete cepstrum proposed in [11][12]. Then a
second DCM of order P is applied on the resulting coefficients
along the time dimension. M is variable from one LT section
to the other but it is the same for all ST frames of the LT sec-
tion. This enables (i) to switch from aHk+Nk variable-size set
of ST amplitudes to a fixed-size set of parameters that is suit-
able for LT modeling with (2), and (ii) to reduce the size of the
parameter set to be time-modeled, since M is generally signifi-
cantly lower than Hk +Nk. This is a major point for potential
coding applications. For the same reason, we also want P to be
significantly lower than K, as for F0 and FV modeling.

Therefore we propose the two-step Algorithm 2 to find an
optimal joint setting for both M and P , ensuring both com-
pact representation and modeling quality. In this algorithm, Mk

is the concatenation of the Hk × M matrix of general term
mh,m = cos(mπhF0(k)/Fnyq) and the Nk × M matrix of
general term mn,m = cos(mπfn(n, k)/Fnyq). Et1 and Et2

are user-defined target errors with Et1 < Et2. The search in-
tervals are set to reasonable values, adapted to speech signals
and LT frame length K. The algorithm can be refined with a
dichotomic search similar to the one in Algorithm 1 for faster
convergence. Also, because of the two-step structure, the al-
gorithm may miss a better (M,P ) combination in the area of
(Mopt, Popt). It can thus be completed with additional search
within, e.g., (Mopt + i, Popt − j) or (Mopt − i, Popt + j) with



i, j ∈ [1, 2]. Finally, W is here used in the first part of Al-
gorithm 2 to give more importance to the harmonic amplitudes
(weights set to 10) than to the noise peaks (weights set to 1).
This was shown to ensure higher global quality for synthesized
signals. In future works, a more rigorous criterion will have to
be defined and tested regarding this important point.

Algorithm 2:
First part

for M = Mmin to Mmax do
for k = 1 to K do

Concatenate harmonic and noise amplitudes into Ak =
[ah(1, k), · · · , ah(Hk, k), an(1, k), · · · , an(Nk, k)]T

and calculate the corresponding model matrix Mk.
Calculate the coefficients vector Dk of the frequency-
DCM using a transposed version of (3) applied to Ak

and Mk: Dk = (MT
k ·W ·Mk)−1 ·MT

k ·W · Ak.
Decode the modeled amplitude vectors: Ãk = Mk ·Dk.

end for
Calculate the WMSEE1 between all original and modeled
amplitudes over the whole LT section.
if E1 ≤ Et1 then
Mopt ←M
return (end of Part 1)

end if
end for

Second part
for P = Pmin to Pmax do

Calculate the (Mopt + 1)× (P + 1) coefficients matrix C
of the time-DCM by applying (3) to the spectral envelope
matrix D = [D1,D2, · · · ,DK ].
Decode the modeled spectral envelope matrix D̃ = C ·M.
Let D̃k denotes the k-th column of D̃.
for k = 1 to K do

Decode the new modeled amplitudes Ãk = Mk · D̃k.
end for
Calculate the new WMSE E2 between all original and
modeled amplitude values.
if E2 ≤ Et2 then
Popt ← P and Copt ← C
return

end if
end for

3.3. Synthesis of LT modeled signals

As for the signal synthesis, the harmonic part s̃h(n) is obtained
in a very straightforward manner: the phase of each h-harmonic
is obtained by summation of the h-multiple of the modeled F0

trajectory provided by (2) (plus the initial phase of the first ST
frame of the LT section to preserve natural sounding). The mod-
eled harmonic amplitudes are linearly interpolated between ST
frames and s̃h(n) is obtained by components summation as in
(1). The noise part ν̃(n) is generated with the overlap-add ran-
dom phase sinusoid technique of [13], using amplitudes sam-
pled from the modeled spectral envelope in the noise band every
∆f = 70 Hz. Note that the modeled F0 and FV trajectories are
independent, thus the upper harmonic trajectories may be “in-
terrupted” by noise regions. This is managed using a “birth and
death” process (involving local interpolation of ah to 0) [4].

4. Experimental results
4.1. Data

We report the results of the LT modeling of 24 speech sen-
tences sampled at 16kHz (13 male and female speakers and 4
languages), of total duration 50s. LT segmentation resulted in
291 LT sections with a mean duration of 0.17s and a maximum
duration of 1.24s [136 voiced sections (33s) and 155 unvoiced
sections (17s)]. The ST analysis hop size is r =20ms.

4.2. Compression gain of the LT modeling

We provide here the coefficient rates for the ST-HNM param-
eters set and the LT-HNM model, respectively denoted RST

and RLT . We also compare the LT-HNM with a ST version
with DCM modeling of the spectral envelope only, denoted
1D-HNM. For fair comparison, the envelope model of this 1D-
HNM is calculated with a target error equal to ELT

t2 . The coef-
ficient rate of the 1D-HNM is denoted R1D and we have, for a
given LT section, RST = [

∑K
k=1(2 + 2(Hk + Nk))]/(K.r),

R1D = [K(Mopt + 3) +
∑K

k=1Hk]/(K.r) and RLT =
[(Mopt+1)(Popt+1)+PF0 +PFv +H0+3]/(K.r), whereH0

is the number of initial phases (issued from the first ST frame).
For the used database, the mean rate is RST = 6298 co-

eff/s. For example, when applying the LT-HNM with target
errors (ELT

t1 , ELT
t2 ) = (0.6, 0.7)dB, we obtain RLT = 530

coeff/s, while R1D = 983 coeff/s (with 1D-target error E1D
t1 =

0.7dB). Hence, the LT-modeling achieves a rate gain of 91.5%
compared to the ST-HNM1 and 46% compared to the 1D-HNM.
To evaluate the compression gain due to 2D-DCM amplitude
modeling only, we provide in Table1 the corresponding coeffi-
cients rates RA

1D and RA
LT for different target error settings. It

can be seen that the coefficient rates decrease when the target
errors increase (as expected) and that, for a given ELT

t2 , the best
LT combination is systematically the one with ELT

t1 immedi-
ately higher (i.e. the lower diagonal). This suggests that a more
efficient overall LT modeling is obtained when the modeling of
the spectral envelope is not much constrained. When compar-
ing the optimalRA

LT withRA
1D , we observe important rate gains

that increase with target errors (up to 38%).
To illustrate the efficiency of the proposed LT-HNM, we

plot in Fig. 1 the DCM orders PF0 and PFV as a function of the
voiced LT sections length (number of ST frames K). An av-
erage gain of about 2 is obtained. The 2D-amplitude modeling

1Here the gain is not only due to the LT-modeling of F0, Fv and the
spectral amplitudes, but also because the noise frequencies fn and the
harmonic phases φh do not need to be sent to the decoder.

PPPPPPPELT
t1

ELT
t2 0.6 0.7 0.8 0.9 1.0 1.1

0.4 858 738 648 585 544 496
0.5 648 531 466 418 383 351
0.6 - 433 367 324 296 269
0.7 - - 315 274 246 225
0.8 - - - 246 217 197
0.9 - - - - 202 181
1.0 - - - - - 173

RA
1D 668 512 420 358 315 284

Gain (%) 2 15 25 31 35 38

Table 1: Coefficient rate RA
LT of 2D-DCM amplitude modeling

for different target errors (ELT
t1 , ELT

t2 ), and coefficient rateRA
1D

of the reference 1D-HNM with E1D
t1 =ELT

t2 , RST = 6289.



Figure 1: LT model order of F0 (.) and FV (o) trajectories as a
function of LT section lengthK for all test sections. The dashed
lines are the 1st and 2nd bisectors. DF0

t = 1%, DFV
t = 8%.

Figure 2: 2D amplitude modeling: Mopt as a function of ST am-
plitude vectors length (left) and Popt as a function of LT frame
length K (right). (ELT

t1 , ELT
t2 ) = (0.6, 0.7)dB.

gain is illustrated on Fig. 2 which depicts the LT model orders
Mopt and Popt as a function of the mean value of (Hk + Nk)
over the LT section and K, respectively. The average coeffi-
cients gain is also around 2 for time-modeling, while it is more
important (around 4) for frequency modeling, although with a
significantly scattering. Fig. 3 provides an example of original
and modeled trajectories of F0 and of the first harmonic ampli-
tude. Both plots show that the modeled trajectories follow the
original ones quite fairly given the low number of coefficients.

4.3. Quality of synthesis signals

The perceptual quality of the speech test signals mod-
eled with the LT-HNM [for (ELT

t1 , ELT
t2 , DF0

t , DFv
t ) =

(0.6, 0.7, 1%, 8%)] and the reference 1D-HNM [for E1D
t1 =

0.7dB] was assessed with PESQ2 . The obtained mean scores
are 2.4 and 2.3 respectively, while the ST-HNM score is 2.9.
These results indicate that the LT-HNM model provides nearly
the same signal quality than the 1D-HNM, while significantly
reducing the coefficients rate.

5. Conclusion-Perspectives
A “flexible” LT-HNM model was presented, using DCM mod-
els for F0, FV and spectral amplitudes. Compared to the ST
and 1D versions, a significant gain in coefficients rate was ob-
tained. The proposed algorithms for setting the DCM orders
enable a trade-off between coefficients rate gain and modeling
quality. Future works will concern i) the use of perceptual cri-
teria for LT model fitting, ii) a better LT modeling of the phase
trajectories, iii) the use of the proposed model for speech trans-
formation (e.g. time-stretching) and iv) the design of a low-
bitrate LT speech coder based on the proposed LT-HNM, with
“LT-quantization” of HNM parameters in the line of the one
proposed in [14] for LPC parameters.

2Perceptual Evaluation of Speech Quality, ITU-T Recom. P.862.

Figure 3: Trajectories of LT-modeled F0 (left) and of the
1st 2D-modeled harmonic amplitude (right) (ELT

t1 , ELT
t2 ) =

(0.6, 0.7)dB.

6. References
[1] R. M. Gray and A. Gersho, Vector Quantization and Signal

Compression, Kluwer Acad. Pub., Boston, Mass, 1992.

[2] B. S. Atal, “Efficient coding of LPC parameters by tempo-
ral decomposition,” Proc. IEEE ICASSP, Boston, 1983.

[3] S. Dusan, J. Flanagan, A. Karve and M. Balaraman,
“Speech compression by polynomial approximation,” IEEE
Trans. Audio, Speech, Lang. Proc., 15(2):387-395, 2007.

[4] R. J. McAulay and T. F. Quatieri, “Speech analysis syn-
thesis based on a sinusoidal representation,” IEEE Trans.
Acoust., Speech, Signal Proc., 34(4), 1986.

[5] E. B. George and M. J. Smith, “Speech Analysis synthe-
sis and modification using an analysis by synthesis overlap
add sinusoidal model,” IEEE Trans. Acoust., Speech, Sig-
nal Proc., 5(5), 1997.

[6] L. Girin, M. Firouzmand and S. Marchand, “Perceptual
long term variable rate sinusoidal modeling of speech,”
IEEE Trans. Speech and Audio Proc., 15(3):851-861, 2007.

[7] M. Firouzmand and L. Girin, “Long-term flexible 2D cep-
stral modeling of speech spectral amplitude,” Proc. IEEE
ICASSP, Las Vegas, Nevada, 2008.

[8] Y. Stylianou, “Applying the harmonic plus noise model
in concatenative speech synthesis,” IEEE Trans. Acoust.,
Speech, Signal Proc., 9(1), 2001.

[9] P. Boersma, “Accurate short-term analysis of the funda-
mental frequency and the harmonics-to-noise ratio of a
sampled sound,” Proc. of the Institute of Phonetic Sciences
17: 97-110. Univ. of Amsterdam, 1993.

[10] K. Hermus, L. Girin, H. Van Hame and S. Irhimeh, “Esti-
mation of the voicing cut-off frequency contour of natural
speech based on harmonic and aperiodic energies,” Proc.
IEEE ICASSP, Las Vegas, Nevada, 2008.
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