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Abstract—This paper addresses the problem of separating au-
dio sources from time-varying convolutive mixtures. We propose
a probabilistic framework based on the local complex-Gaussian
model combined with non-negative matrix factorization. The
time-varying mixing filters are modeled by a continuous tem-
poral stochastic process. We present a variational expectation—
maximization (VEM) algorithm that employs a Kalman smoother
to estimate the time-varying mixing matrix, and that jointly esti-
mate the source parameters. The sound sources are then separated
by Wiener filters constructed with the estimators provided by the
VEM algorithm. Extensive experiments on simulated data show
that the proposed method outperforms a blockwise version of a
state-of-the-art baseline method.

Index Terms—Audio source separation, Kalman smoother, mov-
ing sources, time-varying mixing filters, variational EM.

I. INTRODUCTION

OURCE separation aims at recovering unobserved source
S signals from observed mixtures [1]. Audio source separa-
tion (ASS) is mainly concerned with mixtures of speech, music,
ambient noise, etc. For acoustic signals in natural environments,
the mixing process is generally considered as convolutive, i.e.,
the acoustic channel between each source and each microphone
is modeled by a linear filter that represents the multiple source-
to-microphone paths due to reverberations. Source separation
is a major component of machine audition systems, since it is
used as a preprocessing step for many higher-level processes
such as speech recognition, human-computer or human-robot
interaction.
The vast majority of works on ASS from convolutive mixtures
deals with time-invariant mixing filters, which means that the
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position of sources and microphones is assumed to be fixed.
In other words, the source-to-microphone acoustic paths are
assumed to remain the same over the duration of the recordings.
In this work we consider the more realistic case of time-varying
convolutive mixtures corresponding to source-to-microphone
channels that can change over time. This should be able to
take into account possible source or microphone motions. For
example, in many Human-robot interaction scenarios, there is a
strong need to consider mixed speech signals emitted by moving
speakers, and/or recorded by a moving robot, and perturbed
by reverberations. More generally, changes in the environment
such as door/window opening/closing or curtain pulling must
also be accounted for. Note that in this paper, the mixtures under
consideration can be underdetermined, i.e., there may be less
microphones than sources, which is a difficult ASS problem in
its own right [1].

A. Related Work

The ASS literature that deals with time-invariant mixing fil-
ters is much larger than the literature dealing with time-varying
filters. Therefore, we briefly discuss the former before reviewing
the latter. State-of-the-art time-invariant ASS methods generally
start with a time-frequency (TF) decomposition of the tempo-
ral signals, e.g., by applying the short-time Fourier transform
(STFT). In the TF domain, the time-invariant convolutive filters
are converted to multiplicative coefficients independent at each
frequency bin [2]. These methods can then be classified into
three (non-exclusive) categories [3]. Firstly, separation methods
based on independent component analysis (ICA) consist in es-
timating the demixing filters that maximize the independency
of separated sources [1], [4]. Unfortunately, ICA-based meth-
ods are subject to the well-known scale ambiguity and source
permutation problems across frequency bins. In addition, these
methods cannot be applied to underdetermined mixtures. Sec-
ondly, methods based on sparse component analysis and binary
masking rely on the assumption that only one source is active at
each TF point [5], [6]. Thirdly, more recent methods are based on
complex-valued local Gaussian models (LGMs) for the sources
[7], and the model proposed here is a member of this family of
methods.

The LGM was initially proposed for single-microphone
speech enhancement [8], then extended to single-channel ASS
[9], [10] and multi-channel ASS [11]-[14]. The method pro-
posed in [12] provides a rigorous framework for ASS from
underdetermined convolutive mixtures: An LGM source model
is combined with a nonnegative matrix factorization (NMF)
model [15], [16] applied to the source PSD matrix [17], which
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is reminiscent of pioneering works such as [9]. This allows
one to drastically reduce the number of model parameters and
to alleviate the source permutation problem. However, in [12]
the mixing filters do not vary over time: they are considered
as model parameters and, together with the NMF coefficients,
they are estimated via an expectation—-maximization (EM) algo-
rithm. Then, the sound sources are separated with Wiener filters
constructed from the learned parameters. A similar LGM-based
approach is adopted in [18], though the speech signal PSD is
here modeled as a time-varying auto-regressive (AR) model.
Here also, all model parameters are estimated by maximiz-
ing the likelihood of the observed signals and solved by EM
iterations.

In comparison to the time-invariant methods that we just men-
tioned, the literature dealing with time-varying acoustic mix-
tures is scarce. Early attempts addressing the separation of time-
varying mixtures basically consisted in block-wise adaptations
of time-invariant methods: An STFT frame sequence is split into
blocks, and a time-invariant ASS algorithm is applied to each
block. Hence, block-wise adaptations assume time-invariant fil-
ters within blocks. The separation parameters are updated from
one block to the next and the separation result over a block can
be used to initialize the separation of the next block. Frame-wise
algorithms can be considered as particular cases of block-wise
algorithms, with single-frame blocks, and hybrid methods may
combine block-wise and frame-wise processing. Notice that,
depending on the implementation, some of these methods may
run online.

Interestingly, most of the block-wise approaches use ICA,
either in the temporal domain [19] (limited to anechoic setups),
[20]-[23] or in the Fourier domain [24], [25] (limited to instan-
taneous mixtures), [26]. In addition to being limited to overde-
termined mixtures, block-wise ICA methods need to account
for the source permutation problem, not only across frequency
bins, as usual, but across successive blocks as well. Examples of
block-wise adaptation of binary-masking or LGM-based meth-
ods are more scarce. As for binary masking, a block-wise adap-
tation of [27] is proposed in [28]. This method performs source
separation by clustering the observation vectors in the source
image space. As for LGM, [29] describes an online block- and
frame-wise adaptation of the general LGM framework proposed
in [14]. One important problem, common to all block-wise ap-
proaches, is the difficulty to choose the block size. Indeed, the
block size must assume a good trade-off between local channel
stationarity (short blocks) and sufficient data to infer relevant
statistics (long blocks). The latter constraint can drastically limit
the dynamics of either the sources or the sensors [28]. Other pa-
rameters such as the step-size of the iterative update equations
may also be difficult to set [29]. In general, systematic conver-
gence towards a good separation solution using a limited amount
of signal statistics remains an open issue.

Dynamic scenarios were also addressed differently in [30],
where a beamforming method for extracting multiple moving
sources is proposed. This method is applicable only to over-
determined mixture. Also, iterative and sequential approaches
for speech enhancement in reverberant environment were pro-
posed in [31]. The proposed methods utilize the EM framework
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to jointly estimate the desired speech signal and the required
(deterministic) parameters, namely the speech AR coefficients,
and the speech and noise mixing filters taps. For on-line imple-
mentation, a recursive version of the M-step was developed and
the Kalman smoother, used in the batch mode, is substituted by
the Kalman filter. However, only the case of a 2 X 2 mixture
was addressed.

Separating underdetermined time-varying convolutive mix-
tures using binary masking within a probabilistic LGM frame-
work was proposed in [32]. The mixing filters are considered as
latent variables that follow a Gaussian distribution with mean
vector depending on the direction of arrival (DOA) of the cor-
responding source. The DOA is modeled as a discrete latent
variable taking values from a finite set of angles and follow-
ing a discrete hidden Markov model (HMM). A variational
expectation—maximization (VEM) algorithm is derived to per-
form the inference, including forward-backward equations to
estimate the DOA sequence. This approach provides interesting
results but it suffers from several limitations. First, the separation
quality is poor, proper to binary masking approaches. Second,
the accuracy is limited, which is inherent to the use of a dis-
crete temporal model to represent a continuous variable, namely
the source DOAs. Moreover, constraining the mixing filter to a
DOA-dependent model can be problematic in highly reverberant
environments. Finally, it must be noted that no specific source
variance model is exploited, and that the filter and DOA models
are assumed to solve the source permutation problem (both in
frequency and time).

B. Contributions

In this paper we adopt the source LGM framework with an
NMF PSD model. We consider the very general case of an un-
derlying convolutive mixing process that is allowed to vary over
time, and we model this process as a set of, temporally-linked
continuous latent variables, using a prior model. We propose
to parameterize the transfer function of the mixing filters with
an unconstrained continuous linear dynamical system (LDS)
[33]. We believe that this model can be more effective than the
DOA-dependent HMM model of [32] in adverse and reverberant
conditions, since the relationship between the transfer function
and the source DOA can be quite complex. In addition, [32]
relies on binary masking for separating the sources, which is
known to introduce speech distortion, whereas we use the more
general and more efficient Wiener filtering tied to LGM-based
methods.

The proposed method may be viewed as a generalization of
[12] to moving sources, moving microphones, or both. However,
exact inference of the posterior distribution, as proposed in [12],
turns out to be intractable in the more general model that we
consider here. Therefore, we propose an approximate solution
for the joint estimation of the model parameters and inference
of the latent variables. We derive a VEM algorithm in which a
Kalman smoother is used for the inference of the time-varying
mixing filters. In comparison to the methodology described in
[29], the proposed model goes beyond block- or frame-wise
adaptation because it exploits the information available with
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the whole sequence of input mixture frames. To summarize,
the proposed method exploits all the available data to estimate
the source parameters and mixing process parameters at each
frame. As a consequence, it cannot be applied online. Note that
an earlier reference to the incorporation of a latent Bayesian
continuous model into the underlying filtering, with applica-
tion to speech processing, can be found in [34]. Two schemes
were proposed, namely a dual scheme with two Kalman filters
applied sequentially in parallel, and a joint scheme using the ap-
proximated unscented Kalman filter. Only very simple filtering
schemes were addressed. In the present paper, we provide a more
rigorous treatment of the joint signal and parameter estimation
problem, using the variational approach.

This paper is an extended version of [35]. A detailed descrip-
tion of the proposed model and of the associated VEM algorithm
is now provided. Several mathematical derivations, that were
omitted in [35], are now included in order to make the paper
self-consistent, easy to understand, and to allow method re-
producibility. Moreover, several computational simplifications
are proposed, leading to a more efficient implementation. The
method is tested over a larger set of signals and configurations,
including experiments with blind initialization and real record-
ings, thus extending the very preliminary results presented in
[35]. These results are compared with a block-wise implemen-
tation of the baseline method [12]. This may well be viewed
as an adaptation of the general framework [29] to convolutive
mixtures. Matlab code of the proposed algorithm together with
speech test data are provided as supplementary material.'-?

The remaining of the paper is organized as follows. Section II
describes the source, mixture and channel models. The associ-
ated VEM algorithm is described in Section III. Implementation
details are discussed in Section I'V. The experimental validation
is reported in Section V. Conclusions and future works are dis-
cussed in Section VI.

II. AUDIO MIXTURES WITH TIME-VARYING FILTERS
A. The Source Model

We work in a TF representation, after applying the STFT
to the time-domain mixture signal. Let f € [1,F] denote
the frequency bin index, and ¢ € [1, L] denote the frame in-
dex. Consider a mixture of J source signals, with s;y =
[s1,7¢- .57, f(;‘]T € C’ denoting the latent vector of source co-
efficients at TF bin (f,#) (x' and x respectively denote x
transpose and conjugate-transpose). Let {K; }(']-]:1 denote a non-
trivial partition of {1... K}, K > J (in practice we may have
K > J), thatis known in advance. Following [12], a coefficient
sj, ¢ is modeled as the sum of latent components c;. ¢, k € C;:

Sj 0= ch,fé & sy = Geyy, (H
]CE]CJ‘

where G € N7/*& s a binary selection matrix with entries
Gjr=1if ke IC'j and Gj;, = 0 otherwise, and cy¢ = [c1 ¢,
...sci ) € CE s the vector of component coefficients at

Uhttp://ieeexplore.icee.org
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(f,4€). Each component ¢, 7/ is assumed to follow a zero-mean
proper complex Gaussian distribution with variance wyyhy,
where wyy, hie € R™. The components are assumed to be
mutually independent and individually independent across fre-
quency and time. Thus the component vector probability density
function (pdf) writes:?

p(cpe) = Ne (Cfé; 0,diag; (wfk:hké))7 ()

where 0 denotes the zero-vector, diag . (d. ) denotes the K x K
diagonal matrix with entries [d; ...dy ...dx]", and the source
vector pdf writes:

p(sye) = Ne <Sfe;0,diag,]< > wfkhkg)). 3)

](IE/C]‘

Eq. (3) corresponds to the modeling of the F' x L source PSD
matrix with the NMF model, which is widely used in audio
analysis, ASS, and speech enhancement [9], [17], [37], [38].
NMF is empirically verified to adequately model a large range
of sounds by providing harmonic as well as non-harmonic pat-
terns activated over time. Note that both source and component
vectors are treated as latent variables linked by (1).

B. The Mixture Model

In many source separation methods, including [12], the mix-
ture signal is modeled as a time-invariant convolutive noisy
mixture of the source signals. Let us denote the I-channel mix-
ture signal in the TF domain by x7¢ = [z1 f¢... 27 4¢]" € CT.
Relying on the so-called narrow-band assumption (i.e. the im-
pulse responses of the channel are shorter than the TF analy-
sis window), x, writes [39], [40]: x;, = Afss¢ + by, where
by = [b1.s¢...br )" € Clisazero-mean complex-Gaussian
residual noise, and A; = [a; ;...ay ;] € CT*/ is the mixing
matrix (a column a; ; € C/ is the mixing vector for source j).
This way, the mixing matrix depends only on the frequency f
but not on the time frame ¢, meaning that the filters are as-
sumed to be time-invariant. Since we are expressly interested
in modeling time-varying filters, the mixing equation naturally
becomes:

Xpo = Ajpspe+byy, 4

with A s, being both frequency- and time-dependent. This equa-
tion allows us to cope with possible source/sensor movements
and other environmental changes. Note that (4) accounts for
temporal variations of the channel across frames, though it as-
sumes that the channel is not varying within an individual frame,
which is a reasonable assumption for a wide variety of applica-
tions. For simplicity b, is assumed here to be stationary and
isotropic, i.e. p(bs¢) = N.(by;0,vI;), with vy € R being
a parameter to be estimated, and I; denoting the identity ma-
trix of size I. The conditional data distribution is thus given by
P(xpelAge,spe) = Ne(Xpes Agesye, vilr).

3The proper complex Gaussian distribution is defined as N (x; u, X) =
|72 exp ( —x -zt x - ;1.]) withx, u € Cl and = € CT*1 be-
ing the argument, mean vector, and covariance matrix respectively [36].
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Fig. 1. Graphical model for time-varying convolutive mixtures with NMF
source model. Latent variables are represented with circles, observations with
double circles, deterministic parameters with rectangles, and temporal depen-
dencies with self loops.

C. The Channel Model

A straightforward extension of [12] to time-varying linear fil-
ters is unfeasible. Indeed, instead of estimating the I x J x F'
complex parameters of all Ay, one would have to estimate
the I x J x F' x L complex parameters of all A, (with only
I x F' x L observations). In order to circumvent this issue, we
model the mixing matrix Ay, as a latent variable and parame-
terize its temporal evolution, with much less parameters.

For this purpose, we first vectorize A, by vertically con-
catenating its .J columns {a; ;¢ }/_, into a single vector a. ;¢ €
C',ie a ;= vec(Ass) =[a] ;4 ...a; ;] . In the follow-
ing a. y, is referred to as the mixing vector. Then we assume
that for every frequency f the sequence of the L unobserved
mixing vectors {a. s¢}%_, is ruled by a first-order LDS, where
both the prior distribution and the process noise are assumed
complex Gaussian. Formally, this writes:

pla.pela. re1) = Ne(a posa o1, 5%), )
pla. 1) = Ne(a p1; u§, B%), (6)

where the mean vector u§ € C'” and the evolution covari-

ance matrix % € C!7*!/ are parameters to be estimated. X}
is expected to reflect the amplitude of variations in the chan-
nel. Importantly, the time-invariant mixing model of [12] cor-
responds to the particular case in the proposed model when
E;ﬁ — Orsx77. Indeed, in that case the latent state a. s, col-
lapses to a. ri and hence the mixing matrix Ay, reduces to
its time-invariant version A ;. The complete graphical model
of the proposed probabilistic model for ASS of time-varying
convolutive mixtures is given in Fig. 1.

The standard way to perform inference in LDS is the Kalman
smoother (or the Kalman filter if only causal observations are
used). Eq. (4) defines the observation model of the Kalman
smoother.* However, since part of the observation model, for
instance sy, is a latent variable, the direct application of the
classical Kalman technique is infeasible in our case. In other
words, we need to infer both latent variables: the mixing filters
and the sources/components. For this purpose, in the next section
we introduce a VEM procedure that alternates between (i) the
complex Kalman smoother to infer the mixing filters sequence,

4The vectorized form of the latent mixing filters can be made explicit in the
observation model by rewriting it as x 7, = (s;[ ® I;)a:,f[ + by, with ®
denoting the Kronecker matrix product.
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(i) the Wiener filter to estimate the sources and (iii) update rules
for the parameters. Importantly, this result is a consequence
of the joint effect of the proposed model and the variational
approximation.

III. VEM FOR SOURCE SEPARATION

In this section, we present the proposed VEM algorithm that
alternates between the inference of the latent variables and the
update of the parameters. We start with stating the principle
of VEM. Then we present the E-step, farther decomposed in
an E-A step for the mixing vector sequence and an E-S/C step
for source/component coefficients, and then the M-step. The
following notations are introduced: I, is the expectation with
respect to ¢, z = E(,)[z] is the posterior mean vector of a
random vector z, ¥"° = E,,)[(z — 2)(z — 2)"] is its posterior
covariance matrix, and Q"% = E,[zz"] = 7% + 22" is its
second-order posterior moment. In general, superscript 7 de-
notes parameters of posterior distributions, whereas no super-
script denotes parameters of prior distributions. The posterior
mean is the estimate of the corresponding latent variable, pro-
vided by our algorithm. Also, let X4 s, denote the (k, g)th

entry of matrix . Let < denote equality up to an additive
term that is independent of the variable at stake, and let tr{-} de-
note the trace operator. For brevity a. r1.;, = {a:, 1o } szl denotes
the whole sequence of mixing vectors at frequency f.

A. Variational Inference Principle

EM is a standard procedure to find maximum likelihood
(ML) estimates in the presence of hidden variables [33], [41].
By alternating between the evaluation of the posterior dis-
tribution of the hidden variables (E-step) and the maximiza-
tion of the expected complete-data log-likelihood (M-step),
EM provides ML parameter estimates from the set of obser-
vations {xﬂ}?‘f:l. In this work the set of hidden variables

H={a. f,s¢¢, cﬂ}?"f:l consists of the mixing vectors and
the source (or the component) coefficients. The parameter set
0= {,u‘}, G wik, hie, vy }?fklil consists of the channel evo-
lution parameters, the source NMF parameters, and the variance
of the sensor noise.

In our case, the posterior distribution of the latent variables,
q(H) Zp(H|{ng}i’;:l;9) cannot be expressed in closed-
form. Therefore we develop a variational inference procedure
[33], [42], based on the following principle. First, ¢(H) is as-
sumed to factorize into marginal posterior distributions over
a partition of the latent variables. An approximation of the
marginal posterior distribution of a subset of latent variables
‘Ho C H is then computed with

a(Ho) o exp (Eqm) [log (M, {xe}E130)]) )

where ¢(H /H,) is the approximation of the joint posterior dis-
tribution of all hidden variables, except the subset H,. Subse-
quently, ¢(H) can be inferred in an alternating manner for each
‘Ho C 'H. In the present work, we assume that the mixing filters
and the source coefficients are conditionally independent given
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the observations. Therefore, the posterior distribution® naturally
factorizes as:

F,L
1T atsro)- ®)

[=1

F
H) ~ [T ala.sir)
f=1

Note that the factorization over frequency (for both sources and
filters) and over time (for the sources) arises naturally from the
prior distributions and from the observation model (4).

B. E-A Step

Using (7) it is straightforward to show that the joint posterior
distribution of the mixing vector sequence writes:

Aji,s70)] )
©)

L
q(a. s1.0)ocp(a sz H ( a(sze) logp(xf/

We have:

Eq(s,0) [logp(xpelAge,spe)] <

- tr{Eq<sm [(Xﬂ — Agesye)(xpe — Aflsfé)H} Vf_l} =

I; ta\ 15 ta \H
—tr W(Aﬂ - M) QY (Ap —MY) " ¢,
where MY} = ngSf[(an) € C"*, with 87, and Q7} pro-

vided by the E-S step in Section III-C. By defining p'f;, =
vec(MY)

(10)

€ C!7, (10) can be reorganized as:
ct
Eq(ss) [10gp(xfé|Aff,Sfé)] =

I;

L T L

—(a e — pf)" (Q”b f)( N N ()]
Let us define 3} = (QUST ® I[V;1)71 € C17>17 This ma-
trix is Hermitian positive deﬁnite and (11) characterizes a com-
plex Gaussian distribution with mean pf; and covariance 2.
By substituting (11) in (9), we obtain:

q(a:,flzL)O( p(aflL)H-/\/'c(ll'lfaéa a:,féy Elfaé) (12)

=1

Functional N.(p'};a. ¢, X)) can be viewed as an instanta-
neous distribution of a measured vector p'f;, conditioned to the
hidden variable a. ;.. Henceforth one recognizes that (12) repre-
sents an LDS with continuous hidden state variables {a. s/ }%_,,
transition distribution given by (5), initial distribution given
by (6), and emission distribution given by N.(p'fy; a. o, XY)).
Subsequently the marginal posterior distribution of each hidden
state, g(a. r¢), can be calculated recursively using a forward-
backward algorithm [33], aka Kalman smoother.

1) Forward-Backward Algorithm: Given the LDS parame-
ters, a forward-backward algorithm computes an estimate a. y,
for all ¢ by taking into account all causal measurements (from
1 to £) and anti-causal measurements (from ¢ + 1 to L). The

SFrom now on, we abuse the language and refer to g as the posterior distri-
bution, even if technically it is only a variational approximation of it.
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implementation of the forward-backward algorithm thus con-
sists of a recursive forward pass and a recursive backward pass.
Different variants for this algorithm are available. The forward-
backward procedure that we specifically designed to infer (12)
is described below. Because of the form of (5), all covariance
updates of this forward-backward algorithm are computable us-
ing only additions and matrix inversion. Indeed it is desirable
to avoid subtractions and matrix multiplications of covariance
matrices since these operations do not guarantee that (with Her-
mitian operands) the resulting matrix is Hermitian. As a result,
the proposed Kalman smoother was found to be very stable
from a numerical point of view. In addition, since all distribu-
tions under consideration are complex Gaussian, the outcome of
the forward-backward recursions will also be complex Gaussian
[33].

The forward pass recursively provides the joint distribution
of the state variable and the causal observations. The mean
vector /l,f[ € C!7 and covariance matrix E‘M € CIIXT of
this distribution are calculated as:

ha La — a a1 -t
E;’%:(E L (Ejf’efl"'zf) ) ) (13)

ba ba La — a -1 ba
i =] (E W (S ) e 1) (14

The backward pass recursively provides the distribution of the
anti- causal observations given the current state The mean vec-
tor ,u [ € C!’ and covariance matrix Zﬂ € CI7*IJ of this
dlstrlbutlon are calculated as:

a - a -1\ 1
== (Zha ) (15)
) =55 + 325, (16)
Ba a La -1 .1a Ba Ba
Wi =5 (B e 0 ). aD)

where Eff; € C!/*17 is an intermediate matrix that enables to
express the backward recursion without subtractions.

2) Posterior Estimate of the Mixing Vector: Let us now cal-
culate the smoothed estimate a. y¢. By composing the forward
and the backward estimates, the marginal (frame-wise) posterior
distribution of a. y, writes [33]:

q(a. o) = Ne(a peia po, 257), (18)
with 3% € C!17*17 and &, jy € C!7 computed as:
‘ 1
7 0 5}
s = (2;; + =0 ) , (19)
A — e Eq‘)a + 2@@ -1 Ba (20)
5 fe fe fe .“fe e My

3) Joint Posterior Distribution of a Pair of Successive Mix-

ing Vectors: This joint distribution will be needed to update

3% in Section III-F. Leta. f(ry 1,0y = [ajﬂH,afﬂ}T c 2/

denote the joint variable. By marginalizing out all mixing vec-
tors except a. ¢4 1,a; ¢ in (12), the joint posterior distribution
q(a. {¢+1,¢y) can be identified to be also a Gaussian distri-

bution with mean vector u?‘j € C?!7 and covariance matrix
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Efa € C7>217 computed as:
-1

0+ za
) 2n

_E(}

-1
-3

8 = .
fe oa a!
Eff +Ef

-
fa _ yéa 1 ;
=35 | (o) () | e
Note here the role of Eff} that is to describe the uncertainty of
u;? 41 but without incorporating the additional uncertainty of

the transition variance 3%, as the transition from a. ¢ toa. /41
is explicitly defined by the joint variable a. ¢, 1/}

C. E-S Step and E-C Step
From (7), the posterior distribution of the sources writes:

q(sge) o< p(spe) exp (Eqqa, ) [log p(xpe|Age,spe)]) - (23)

Using (4), the expectation in (23) computes:

ct
Eg(a, ;o) [logp(xselAge,spe)] =

1 ) .
fotr{ng (AI}IEXJ%) + (A?ng()SI}Iﬂ — UfgngS?f}, (24)
where Ay =E . ,,)[As] € C*/ is a matrix constructed
from &y, (i.e. the reverse operation of column-wise vec-
torization), and Uy = (s, ,,)[AY,A¢] € C7*7. Of course,
Uy, is closely related to QY. Indeed, if we define Q] ;, =
Eq(a. ) (@ sea) ;] asthe (], r)-th I x I subblock of Q;ﬁ‘g,then
each entry Uj, ¢ of Uy, is simply given by:

na

r.y;.fé}'

Eq. (24) is an incomplete quadratic form in sy¢. Combining in
(23) this quadratic form with the quadratic form of the source
prior p(ss¢), we obtain a multivariate Gaussian:

Ujr.,fé’ = El](av./z ) [a?,ffa"’fd - tl'{ (29

q(sye) = Ne(spes8re, ), (26)
with mean vector §7, € C” and covariance matrix E"S (ORET
given by:

1 u, ]
¥ = |dia () + =L Q27)
r S\ Sher, wrrhie ) T v
870 = 1A, Xf L (28)

Remarkably, (28) has a form similar to the source estimator
in [12], namely a Wiener filtering estimator, with two notable
differences. First, in [12] the mixing matrix is an estimated pa-
rameter, whereas here it is the posterior expectation A ¢ of the
latent mixing matrix. Second, the source posterior precision ma-
trix (E?f) is built by summation of (i) the sensor precision
1/vy distributed over the sources with the unit-less quantity
Uy, and of (ii) the diagonal prior precision of the source coef-
ficients given by the NMF model (as in [12]). In other words, the
a posteriori uncertainty of the sources encompasses the a priori
uncertainty (the NMF), the channel noise (vy), and the channel
uncertainty (Uyy).
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A similar E-step can be applied to the source components
cy¢. This will be used in Section III-G to optimize the NMF
parameters. For this aim, we simply replace A, with A/ G,
and p(ss¢) with p(cy/,), obtaining again a complex Gaussian for
the posterior distribution of the components:

q(cre) = Neleges €50, B7)), (29)

with parameters ¢y € CX and 7€ CHE>K given by:

-1
¢ = | diag, ! +a" g . (30)
It Wy e \7
& = ZIGTAY, Xf‘ 31

Again, (31) is a Wiener filtering estimator, here at the source
component vector level. Note that left-multiplication of both
sides of (31) by G naturally leads to (28).

D. Outline of the Maximization Step
Once we have the posterior distributions of the vari-
ables in H, the expected complete-data log-likelihood L(0) =
Eq ) logp(H, {ng}?_’;:l ;0) is maximized with respect to the
parameters. The analytic expression of £(6) is
F,L

LO) = > Eya;oqtss0) [ 108 Ne(xpe5 Agesge, vilr)]
fi=1

F,L

+ ) Egey [log N (cre50, diagye (wyrhie)) ]
J=1

L—-1

Z (Z]E (a. f{1+ll} [IOgN’( :,fl+1;a:hfé72?’)}

FEya ) [logA; (a :,fl;u(;,zm). (32)

Notice that (32) can be optimized w.r.t. the microphone noise
parameters, the channel parameters, or the NMF parameters,
independently.

E. M-V Step

Derivating £(6) w.r.t. v 1 and setting the result to zero, leads
to the following update:

L
1 AL
Vi=77 ;ﬂ (X?éxfé — XJApiSpe

— (Agisge)'xp +w{UQY )

which resembles the estimator obtained in [12].

(33)

F. M-A Step

Optimizing £(¢) w.r.t. the prior mean pf results in the fol-
lowing update:

= ag. (34)
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The ML initial vector is thus the posterior mean vector for

¢ = 1. The way the E-A step was designed, (34) becomes rather
important.

As for X%, the terms of £(6) that depend on this parameter

reduce to:

~
—_

£(2.{;") E‘I(a:.f{£+1.[}) [lOng (a%f”l y& e Eaf)}

1

+Ea. ) [log e (21507, 27)]

{2" 2"“}

~
Il

a
=~

—1
Eﬂ. 2(1
—tr S ¢ b — Llog|xe
{ —27&1 Ea Q } g‘ ‘[|
= — Llog|X%]

_tr{z}i [ =0+ an Q12f Quf"‘Qg;f}}'
(35)

c (CQIJXZIJ

In the above equation an is the cumulate second-

order joint posterior moment of &, (/1 ¢}, and the four Q” m.f
matrices are its I.J x IJ non-overlapping principal subblocks,
ie.

¢a — fa Ea Qi(ll o Qi; !
Q' =) (2 A ) = ¢ |- GO
(=1 Q21 f Q22,f

Derivating (35) w.r.t. the entries of X%, and setting the result to
Z€ro, yields [43]:

(Q“f Q12f Q21f Q22f 27}?) (37)

G. M-C Step and M-S Step

The joint optimization of £(6) over wyi and hy, is non-
convex. However alternate maximization is a classical solution
to solve for a locally-optimal set of NMF parameters [17]. Cal-
culating the derivatives of £(#) w.r.t. to wyy, and hy, and setting
the result to zero leads to the following update formulae:

L

w _ 1 Z(/ifl by — ZQMN
fk Lll h ) ke Ff71 Wik .

This formulae can be iteratively applied until convergence, al-
though in an effort to avoid local optima, each of wyy, hye was
updated only once at each VEM iteration.

(3%

H. Estimation of Source Images

As is often the case in source separation, the proposed frame-
work suffers from the well-known scale ambiguity, namely the
source signals and the mixing matrices can only be estimated
up to (frequency-dependent) compensating multiplicative fac-
tors [1]. To alleviate this problem and to be able to assess
the performance of source separation, we consider the sepa-
ration of the source images, i.e. the source signals as recorded
by the microphones [13], [44], instead of the (monophonic)
source signals. For this purpose, the inverse STFT is applied to
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Algorithm 1: Proposed VEM for the separation of sound
sources mixed with time-varying filters

input {x; g}?’le, partition matrix G, initial parameters 6.
initialize posterior statistics a. /, E;Z‘;
repeat
Variational E-step
Calculate Q}; = X + & fa!';, and Uy with (25).
E-S step: Compute E" > with (27) and S with (28).
Then compute Q}, =27 +8p87,.
E-C step: Compute %[} y Wlth (40) ’arlld ¢, po with (41).
Then compute Qf}. ;, = S5 ;o + [ék fel*
E-A step (Instantaneous Quantities):
Compute (2“1 lu}‘}) with (39).

Compute = Q"ST ® Ijvjjl.
E-A step (Forward Pass ):
Initialize 27} = (%' + 24 )"
ce e ha da ra —1 a™!
Initialize N% = E (E pi + 25 )
for{:2t0 L ‘
Compute E}”Z with (13), then u?? with (14).
end
E-A step (Backward Pass):
Initialize E?% = anL and /J,
for/:L—1to1l
Compute X with (15).
Then compute X/ with (16).
Then compute ;L;Z? with (17).
end
E-A step (Posterior Marginal Statistics):
Compute 2” ¢ with (19).
Then compute a. ¢ with (20).
E-A step (Pairwise Joint Posterior):
Compute Efﬁz with (21).
Then compute uff} with (22).
Then compute fo“ with (36).

= ;.

M-step
M-v step: Update v with (33).
M-A step: Update p§ with (34), update 3% with (37).
M-C step: Alternately update wyy, and hy, with (38).
until convergence
return the estimated source images a; 7¢5; r¢,j € [1, J].

{Ega s [@.0085.00) = &, 68,0} i1 where &g s the
j-th column of A t¢. The complete VEM separating .J sound
sources from an /-channel time-varying mixture is outlined in
Algorithm 1 (omitting STFT and inverse STFT for clarity).

IV. IMPLEMENTATION ISSUES

In this section we present some simplifications that our algo-
rithm admits, we give physical interpretations, and we discuss
some numerical stability issues.
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A. Simplifying the LDS Measurement Vector

The forward-backward procedure requires the quantity
(Z}‘[l /J,”f’lé), appearing in (14) and (17). This can be computed
as:

- La 1 pay
E;f’} luﬂ = erc(xﬂslf'-[[), 39)

thus sparing the inversion of 3%.

B. Initializing the Forward and Backward Recursions

The forward-backward algorithm needs to set Eq;? and “?(11

for the first frame, and to set 2}3% and u?% for the last frame. We
observed faster convergence with the following choice. At each
VEM iteration, we set 2?‘11 = ( }“1_1 + 2‘;-71 )~ and u‘?‘f =
E?T(E‘ﬁflujﬁl + 2}71 p$). Then, we run the forward pass
first. After it is completed we set 2;2 = 2?2, “;Z = u}bz, to
initialize the backward pass.

C. Avoiding K x K Matrix Construction

Eq. (30) is computationally demanding as it requires the con-
struction of a K x K matrix (recall that K > J). Yet, it has
been shown in Section III-G that one needs only the diagonal
entries of Q% Therefore we derive an alternative expression for
¥4 so and & g that builds on the already computed X% and
Sf¢ (which use operations only on J x .J arrays). Applying the
Woodbury identity to (30) and some algebraic manipulations,
one obtains:

wfkhk( {UNE;Z} o
JkJk

A Z/JE/CM wyphpe

i e = wprhie | 1— ., (40)

where j;. is the index of the source that the k™ component

belongs to, and [}, j, is the ji" diagonal element of the J x .J

matrix in brackets. Additionally, ¢, ¢ can be expressed in a very
ne.,

simple way, independently of X It
Ch.fe = Wrrhie A?gm - Uﬂ% , (41)
\7i v T
where [];, is the j" element of the J X 1 vector in brackets.
Interestingly, (41) shows that ¢, r, is some kind of inpainting
onto the mixture signal, whose purpose is to equalize the fil-
tered mixture with the sources. Besides, (40) makes clear that
if the value of v is high enough, the posterior variance of ¢; ¢
remains close to its prior value wyy hy¢. This justifies the use of
a high initial value for v in cases where the NMF parameters
are quite correctly initialized.

D. Ordering the Steps

When building a (V)EM algorithm, the question of ordering
the steps execution arises. Like the majority of EMs, our algo-
rithm is sensitive to initialization (discussed in Section V-A4).
We observed in practice that our algorithm is much more sen-
sitive to the initialization of the NMF parameters wyy,, hy¢ than
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to the initialization of (the posterior parameters of) the mix-
ing vectors: X7, &. y¢. Therefore we choose to first infer the
source/component statistics by running E-S/C and then infer the
sequence of mixing vectors by running E-A. As for the M-steps,
they are independent and so they can be executed in any order
after the E-steps.

E. NMF Scaling

When estimating the NMF parameters using (38), an ar-
bitrary scale can circulate between wyy, hy¢ of a component
[12]. Therefore one can consider scaling one of the factors, e.g.
Wy < Wrk/ Y., Wnk, SO to have unit L1-norm vectors, and
reciprocally scaling the other factors, e.g. hyp < hye > F WLk
for compensation.

F. Numerical Stability

We enforce matrices U y¢ and E? to be Hermitian with E‘} —
3(Z% + E‘}H) We also regularized the updates of v; and of
ngj, by adding 10~ and 10~"I,;; respectively.

G. Computational Complexity

Counting only matrix multiplications, inversions and the solu-
tion of linear systems (assuming cubic complexity) the complex-
ity order of the proposed VEM algorithm is O(IGFL(I J)? +
5FLG + F(L —1)(21J)%). The experiments of this paper
were conducted with a HP Z800 desktop 4-core computer (8
threads) Xeon E5620 CPU at 2.4 GHz and 17.6 GB of RAM.
To process a 2s 16KHz stereo mixture, with J = 3, K = 75,
F =512, L = 128 our non-optimized implementation needs
30s per iteration, running in MATLAB R2014a, on Fedora 20.
On the same data, the block-wise adaptation of the baseline
method requires 4s for a complete iteration (an iteration for all
blocks of frames). Hence, with this set-up, the complexity of the
proposed method is about 8 times larger than the complexity of
the baseline method.

V. EXPERIMENTAL STUDY

To assess the performance of the proposed model and associ-
ated VEM algorithm, we conducted a series of experiments with
2-channel time-varying convolutive mixtures of speech signals.
Initialization is known to be a crucial step for the performance
of (V)EM algorithms. In a general manner, EM-like algorithms
have severe difficulties to converge to a relevant solution in to-
tally blind setups (i.e. random initialization). A first series of
experiments was thus conducted with simulated mixtures and
artificially controlled (semi-blind) initialization of the VEM in
order to extensively investigate its performance independently
of initialization problems. Then a second series was conducted
using a state-of-the art blind source separation method based
on binary masking for the initialization. This latter configura-
tion was first applied on simulated mixtures and then real-world
recorded mixtures.
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©)

Fig. 2. Type I (left) and II (right) source trajectories for the experiments with
semi-blind initialization. In Type I, Sources s1 (red) and sy (blue) move from
—1 to ¥ and from 9 to —, respectively, while Source s3 moves from 85° to
45°. In Type 11, sources move: from 0° to —¢ and back (s, red), from 0° to 9
and back (s2, blue), from —1 to ) and back (s3, purple) and from ) to —) and
back (s4, green); note that s3 and s, move twice as fast as s; and s». In this
example, ¥ = 75°.

A. Experiments with Semi-Blind Initialization

1) Simulation Setup: The source signals were monochannel
16 kHz signals randomly taken from the TIMIT database [45].
Each source signal was convolved with a binaural room im-
pulse responses (BRIRs) from [46] to produce the correspond-
ing ground truth source image. The images of the 3 or 4 sources
were added to provide the mix signal. The BRIRs were recorded
with a dummy head equipped with 2 ear microphones, placed
in a large lecture theatre of dimensions 23.5 m x 18.8 m X
4.6 m, and reverberation time RTg, ~ 0.68 s [46]. We used a
subset of (time-invariant) BRIRs with azimuthal source-to-head
angle varying from —90° to 90° with a 5° step. Continuous cir-
cular movements were simulated by interpolating the BRIRs at
the sample level using up-sampling, delay compensation, lin-
ear interpolation, delay restoration, and downsampling. Due to
memory limitations, we truncated the original 16000-tap BRIRs
to either 512 or 4096 taps. Choosing two different lengths en-
ables to evaluate the adequacy of the narrow-band assumption.
Note that the recorded BRIRs almost vanish after 4096 samples,
but not after 512 samples.

To assess the potential of the proposed algorithm to infer the
time-varying frequency responses of the mixing filters, we de-
vised two setups for the movement of the sources around the
dummy head, drawn in Fig. 2. In Type I mixtures, Source s3 al-
ways goes from 85° to 45°. The amplitude of the trajectory of all
other sources is varied with ¥ € {15°,30°,45°,60°, 75°,90°}.
Each trajectory is covered at fixed speed, within the approxi-
mate 2s of signal duration (all signals are truncated to 32768
samples). We used four combinations of mixture type, filter
tap length and number of sources, namely: I-512-3, I-4096-3,
11-512-3.° and 11-512-4.

The STFT was applied to the mixed signal with a 512-
sample, 50%-overlap, sine window, leading to L = 128 obser-
vation frames. The number of components per source was set to
|IC;| = 25. The correct number of sources in the mixture (3 or
4) was provided to the algorithms in all experiments, along with
the component-to-source partition . The number of iterations
for all methods was fixed to 100.

2) Performance Measures: Two standard ASS objective
measures were calculated between the estimated and ground
truth source images, namely: signal-to-distortion ratio (SDR)

©In this case we discarded the fourth source (green plot in Fig. 2).
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and signal-to-interference ratio (SIR) [47].” In practice we used
the bss_eval_image Matlab function dedicated to multi-
channel signals® [48]. Each reported measure is the average
over 10 experiments with different source signals, and different
NMF initializations (see below).

3) Baseline Method: The chosen baseline is a block-wise
adaptation of the state-of-the-art method in [12]. We adapted
the implementation provided by the authors,” following the line
described in the introduction. We first segmented the sequence
of L = 128 frames of the input mix into P blocks of L, = L/P
consecutive frames, and applied the baseline method to each
block independently (i.e. to each I x F' x L, subarray of mix-
ture coefficients). Hence for each block we obtain a subarray
of the source image STFT coefficients estimates. Then by con-
catenating the successive subarrays and applying inverse STFT
with overlap-add we obtain complete time-domain estimates of
the source images. As mentioned in the introduction, the block
size L, must assume a good trade-off between local stationarity
of mixing filters and a sufficient number of data to construct
relevant statistics. The method in [12] was found to be very
sensitive to the above constraint. For the simulations, we used
P =4 (& L, = 32). This value showed better overall perfor-
mance over the entire range of 1.

4) Initialization: The proposed VEM requires initializ-
ing {wyr, hie & po, 2,55, p4, v LK, The baseline
method requires initializing {wfk,hkg,A’;,vf}i‘{L,,’él. Note
that all PP blocks share the same wy},, each block has its own set
of A%, v and also a subset of 1y, (though an additional block
index is omitted for clarity).

NMF parameters: The initial values for the NMF param-
eters {wyy, hye}, k € KC; of a given source j are calculated
by applying the KL-NMF algorithm [17] to the monochan-
nel power spectrogram of source j, with random initialization.
In order to assess the robustness of the proposed method to
“realistic” initialization, KL-NMF is applied to a corrupted
version of the source spectrogram. For this, the time-domain
source signal s;(¢) is first summed with all other interfering
source signals with a controlled signal-to-noise ratio (SNR)
R. We tested three different levels of corruption, namely
R € {20dB, 10dB, 0 dB}, with 0 dB meaning here equal power
of signal s;(t) and of the sum of all interfering source signals.
Note that R = 20 dB is a quite favorable initialization, whereas
R = 0 dB tends towards more realism. This NMF initialization
process is applied independently to all sources j € [1, J]. The
same resulting NMF initial parameters are used for both the
proposed and baseline methods.

Mixing vectors: As for the initialization of a. r,, we used
two different strategies. In the first one, for each source and
each block of the baseline method, the time-interpolated BRIR
corresponding to the center of the block was selected for the
initialization of the corresponding column of A’]’e (after applying
a 512-point FFT). For the proposed method, this initial A’; was

7We do not report and discuss signal-to-artefact ratio (SAR) measures in this
subsection, due to space limitation.

8http://bass-db.gforge.inria.fr/bss_eval/.

“http://www.unice.fr/cfevotte/publications.html.
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Fig. 3. Overall-sources average SDR vs iterations. For different initializa-
tion schemes: (top): I-512-3, (bottom): I-4096-3, (left) column is with Ones-A
initialization, (right) is with Central-A. All experiments are at ¥ = 75°.

replicated at each frame of the block, then vectorized, and set
as initial a. y,. Applying this process to each block results in
a complete initial sequence of L mixing vectors a. ¢. In the
following, we refer to this strategy as Central-A. The second
strategy, called Ones-A, consists of setting all the entries of
A?} and a. y¢ to 1, Vf,£. Obviously, this is a truly blind and
challenging setup. Note that in all cases, both proposed and
baseline algorithms were initialized with the same amount of
filter information.

Other parameters: The remaining parameters were initialized
as follows: X = 10311,;7;1,‘; =a, j1,3% =17, Vf, L. As for
the sensor noise variance vy, the baseline method showed the
best performance when initialized with 1% of the (L, I')-average
PSD of the mixture, as suggested in [12]. Our method behaved
best with a much higher initial value for v, namely 1000 times
the (L, I')-average PSD of the mixture.

5) Results: We first discuss detailed results for a particular
(but representative) value of v/, namely ¢ = 75°. Then we re-
port the performance of the proposed ASS algorithm w.r.t. the
variation of ©J and generalize the discussion.

Fig. 3 represents the evolution of average SDR measures with
the (V)EM iterations, for ¢} = 75°, and Mix-I. Let us recall that
SDR is a general indicator that balances separation performance
(i.e. interfering source rejection) and signal distortion (recon-
struction artifacts). Each line is the result of averaging over the
3 sources, and over 10 different runs with different source sig-
nals. The two upper plots correspond to mix /-572-3 and the two
lower plots correspond to mix /-4096-3. The two left plots were
initialized with the Ones-A strategy and the two right plots were
initialized with Central-A.

In a general manner, the curves show that the baseline method
converges faster than the proposed method, which is natural
since the baseline method functions on blocks of STFT frames
and the proposed method uses the complete sequence of STFT
frames. Also, the baseline method has less parameters to es-
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timate. In I-5/2-3 (Central-A), the proposed method has an
average performance of SDR ~ 9.5 dB for R = 20 dB. The
SDR score slightly degrades to about 8 dB for R = 10 dB, and
then more abruptly decreases to about 2 dB for R = 0 dB. SDR
scores of the baseline method at R = 20 dB, 10 dB, and 0 dB go
from 4 to 2.5 dB. Therefore, the proposed VEM largely outper-
forms the baseline method for R = 20 dB and 10 dB, though in
this example, the baseline performs slightly better at R = 0 dB
(= 0.5 dB over the proposed method).

Regarding the influence of the initialization of the mixing
vectors initialization, Ones-A vs. Central-A, the proposed algo-
rithm proves to be remarkably robust to poor mixing filter ini-
tialization, since Ones-A provides similar results to Central-A.
Hence, the proposed algorithm is able to correctly infer the mix-
ing vectors from blind initialization, given that some reasonable
amount of information on source PSD is provided (for instance
by the NMF initialization). As for the baseline, its scores for
R =20 dB and 10 dB are again largely below the scores of the
proposed method. However, and quite surprisingly, the baseline
method behaves better (by about 0.4-0.7 dB) in the Ones-A
(blind) configuration compared to the Central-A configuration,
for R = 20dB and 10 dB. This resultis a bit difficult to interpret,
but a possible explanation is that we measure the performance
using the source images, rather than the monochannel source
signals. Nevertheless for R = 0 dB, the filter information deliv-
ered by Central-A seems more useful, since the performance of
the baseline method in the Ones-A configuration is about 2 dB
lower than for Central-A. As a result, in the Ones-A config-
uration, the SDR scores of the proposed VEM are above the
scores of the baseline method for all tested R values, including
R =0dB.

As for the influence of the length of the BRIRs, we see that,
unsurprisingly, the performance of both proposed and baseline
algorithms decreases when the BRIRs go from 512-tap to 4096-
tap responses. For R = 20 dB and 10 dB, we can observe that
the decrease is of about 1.5-2 dB for the proposed method,
independently of the mixing vectors initialization. The decrease
is lower for the baseline method (= 1 dB), but this is probably
related to the fact that the baseline scores are lower. For R =
0 dB, the influence of the BRIRs length on the performance of
the proposed method is quite moderate, but this is also probably
because the SDR scores are much lower than for R = 20 dB
and 10 dB. All this manifests that (5) becomes a less appropriate
model as the reverberation increases. Note that this is a recurrent
problem in ASS in general. Our VEM is not intended to deal
with this problem, but these experiments show that our VEM can
provide quite remarkable SDR scores in a configuration that is
very difficult in many aspects (underdetermined, time-varying,
reverberant).

Table I provides results (at iteration 100) that are detailed
per source (still averaged over 10 mixtures), and extended to
SIR, for ¥ = 75° and Ones-A filter initialization. Output SIR
scores focus on the ability of an ASS method to reject interfer-
ing sources. We first see from Table I that for R = 20 dB and
R = 10dB, the proposed VEM outperforms the baseline in both
SDR and SIR for all configurations. In other words, the hierarchy
discussed when analyzing Fig. 3 for R = 20 dB and R = 10 dB
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TABLE 1
AVERAGE SDR AND SIR MEASURES FOR 1 = 75°, Ones-A

SDR SIR
Proposed Baseline Proposed Baseline
R Mixture s S9 S3 S4 S S9 S3 Sy4 S S9 S3 Sy S1 S9 S3 Sy
20 dB I-512-3 93 104 79 - 55 65 40 - 149 160 143 - 105 123 84 -
1-4096-3 77 19 62 - 47 46 30 - 130 137 13 - 100 99 66 -
I-512-3 84 82 95 - 44 45 57 - 136 138 161 - 86 91 122 -
15124 70 66 76 92 38 39 49 58 114 118 142 157 74 87 98 113
10 dB 5123 79 91 63 - 48 60 3.1 - 128 136 129 - 94 115 72 -
140963 69 71 52 - 42 44 25 - 114 117 97 - 90 92 57 -
5123 71 69 82 - 38 40 53 - 15 122 139 - 75 85 113 -
5124 61 60 69 82 37 39 46 54 104 106 128 137 68 81 88 107
0 dB 15123 24 27 00 - 123 -12 - 43 44 —04 - 37 59 00 -
140963 20 19 03 - 18 21 -08 - 42 36 —02 - 49 51 -05 -
5123 11 11 27 - 00 04 17 - 25 21 39 - 20 33 42 -
5124 1.8 17 34 38 07 10 17 23 42 36 53 58 27 32 33 46
extends to per-source results, to Mix-II, and to SIR (at least for TABLEII
. INPUT SDR AND SIR FOR THE FOUR DIFFERENT MIXTURES
Ones-A). SDR improvement of the proposed method over the
baseline ranges from 2.1 dB (so in [I-512-4 at R = 10 dB) to
4.0 dB (s, in 1I-512-3 at R = 20 dB). SIR improvement of the SDR SIR
proposed method over the baseline ranges from 2.1 dB (s9 in Mixture 51 so ss 54 51 s S5 54
I-512-3 at R = 10 dB) to an impressive 5.9 dB (s3 in I-512-3
at R = 20 dB). The results are particularly remarkable for the s A R R S
. 3 h 1-4096-3 —2.6 —20 —75 - —20 05 59 -
4-source mixture conﬁguratlon, with a range of output score 11-512-3 53 49 -21 - 41 37  —1.1 _
5124 78 76 —53 —41 —63 —60 —41 —35

similar to the 3-source configuration, and improvement over the
baseline method up to 4.4 dB (s3 and s4 at R = 20 dB). At
R = 0 dB the SIR results are more deteriorated for the 3-source
configurations: they do not seem to indicate which method per-
forms best (in terms of SIR). However, the SDR scores at 0 dB
are all higher for the proposed method than for the baseline
method, except for so in mixture I-4096-3 (only 0.2 dB below
the baseline though). The improvement is however more limited
than for R = 20 dB and R = 10 dB (maximum improvement is
here 1.3 dB). Finally, at R = 0 dB, it can be noted that for the
4-source mixture, the proposed method outperforms the base-
line method for all sources, and for both SDR (improvement
ranges from 0.7 dB to 1.7 dB) and SIR (improvement ranges
from 0.4 dB to 2 dB).

For a given source, the performance of ASS is more ade-
quately described by the separation gain, i.e. the difference be-
tween output score and input score than by the output score only.
Indeed, an input score quantifies how much the target source is
corrupted in the input mixture. A source with low input score
is more difficult to extract than a source with high input score.
We thus display in Table II the input SDR and input SIR scores
of each source.!? Subtracting the scores in Table I and II, we
can obtain SDR gains and SIR gains. We comment the results
for R = 0 dB since it is the most realistic setting (remind that
we also are in the Ones-A blind configuration for filters). For
the 3-source mixtures, the proposed VEM algorithm provides

10We can see in this table that the length of BRIRs does not affect the input
SIR, i.e. the entries [-512-3 and [-4096-3 are the same up to second decimal
figure), when it slightly degrades the corresponding SDR scores.

an SDR gain ranging from 3.9 dB to 7.8 dB, and an SIR gain
ranging from 4.1 dB to 5.8 dB. As for the 4-source mixture, it
is interesting to see that sources s3 and s4 score higher than s;
and ss in Table I, although they move twice as fast as s; and s
and are thus expected to be more difficult to separate. However,
they also have higher input scores, so that the separation gain
turns out to be quite similar across sources.

We now focus on performance behavior w.r.t. the source ve-
locity, i.e. different values of ©J. Fig. 4 plots the gain of the
proposed method over the baseline method, i.e. the (signed)
difference of the proposed method’s SDR and the SDR of the
baseline. The results shown in Fig. 4 are at R = 20 dB, and
Ones-A strategy (as the latter was shown to be most favorable
for the baseline). For II-512-3, we observe that except for the
3 sources at ¥ = 30° and for s, at ¥ = 90°, the gain is mono-
tonically increasing for all three sources, starting from about
3 dB at?) = 15° and going up to 3.5-4.5 dB at ) = 90°. There-
fore, the advantage of the proposed method over the block-wise
approach gets larger as the speed of moving sources increases.
This makes sense since the block-wise baseline method rely
on the assumption that filters are stationary on each block, and
this assumption gets mangled as the source speed increases. In
contrast, the proposed method seems robust to a large range of
source velocity. This trend is also visible on the other plots. For
example, for the I-572-3 mixture, we see that the gain increases
with 1§ for s; and ss, from about 3 dB at ¥} = 15° to about 4 dB
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Fig. 4. Average SDR gain of the proposed method over the baseline
method, for the four-source mixture, as a function of ¥ (R = 20 dB, Ones-A
initialization).

at ¥ = 90°, whereas the gain for s3 (whose trajectory remains
independent of 1J) is almost constant at about 4 dB. The de-
creasing of this latter curve a bit around ¥ = 45° may be due to
the trajectories of s; and s, interfering with the trajectory of s3
for ¢ > 45°. Additionally, the s3 curve in configuration /-572-3
shows that the advantage of the proposed method can be also
large for relatively slow sources.

B. Experiments with Blind Initialization

In this section, we report the second series of experiments, that
were conducted with blind initialization. This series of experi-
ments consists of two parts: the first part deals with simulated
3-speaker mixtures, and the second part deals with a 2-speaker
mixture made of real recordings. We first present the blind ini-
tialization method, that is common to all these new experiments,
and then we detail the set-ups and results in the next subsections.

1) Blind Initialization: In these new experiments, the ini-
tialization of the proposed VEM algorithm (and of the baseline
method) relies on the use of a state-of-the art blind source sepa-
ration method based on source localization and binary masking.
More specifically, we adapted the sound source localization
method of [49], which is a good representative of recently pro-
posed probabilistic methods based on mixture models of acous-
tic feature distribution parameterized by source position, see
e.g. [6], [50]-[52]. The method in [49] relies on a mixture of
complex Gaussian distributions (CGMM) that is used to com-
pare the measured normalized relative transfer function (NRTF)
at a pair of microphones with the expected NRTF as predicted
by a source at a candidate position and a direct-path propaga-
tion model (there is one CGMM component for each candidate
source position on a predefined grid). Combining the measures
obtained at different microphone pairs into an EM algorithm
enables to estimate the priors of the CGMM components. Then
selecting the J first maxima of the priors amounts to localize the
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J sources. It also delivers the associated mixing vectors (corre-
sponding to the direct path between sources and microphones).
We adapted this method to the use of one pair of microphone,
delivering J source direction estimates (in azimuth) and corre-
sponding mixing vectors. We further combined it with a binary
mask for source separation, inspired by [53]. For each TF bin,
the masks are obtained by comparing the measured NRTF with
the NRTF corresponding to the .J candidate source directions;
the source obtaining the largest posterior value in the CGMM
among the J selected components has its mask set to 1 while
the other sources have their mask set to 0. Then for each source,
the mask is classically applied to the mixture STFT to obtain an
estimate of the corresponding source image STFT. Importantly,
to deal with our time-varying mixing set-up, this process is ap-
plied in a block-wise mode, similarly to what is done with the
baseline method (see Section V-A3). Mixing vectors estimated
on each block are replicated and catenated to form the initial
a. r¢ L-sequence. For each source j, the block-wise estimates
of source image STFT vectors obtained by the binary masking
are also concatenated, transformed to absolute squared values,
averaged across channels, and supplied to the KL-NMF algo-
rithm [17] to provide initial NMF parameter estimates for the
complete sequence of L frames. This blind source separation
method has been shown to be robust to short blocks, and there-
fore we can use here more blocks (of course shorter blocks)
than in Section V-A3. This method was thus applied with 16
blocks (to process 2-second signals, with 50% overlap, hence
one block is 250 ms long). Note that the baseline method that
is plugged onto the initialization method is still run with P = 4
blocks. Note also that, as in Section V-A, the same information
is used for the initialization of the proposed VEM and for the
initialization of the baseline method.

2) Simulation Set-Up: The new simulation set-up is an un-
derdetermined stereo setup of J = 3 simulated moving speak-
ers (two male and one female from TIMIT). Since the blind
initialization method relies on a free-field direct-path propaga-
tion model, we replaced the dummy head binaural recordings of
Section V-A with the room impulse response simulator of Audi-
oLabs Erlangen,!! based on the image method [54]. We defined a
2-microphone set-up with omnidirectional microphones, spaced
by d = 50 cm. The simulated room had the same size as the one
in Section V-Al. In Section V-A1l, we had simulated sources
trajectoires that were crossing multiple times, to test the pro-
posed method in a difficult scenario. However, the binary-mask
initialization method is applied on blocks of time-frames, and it
may be subject to source permutation across blocks.!? To avoid
this problem, we simulated a new setup where the trajectories
of the J = 3 sources are not crossing each other: The 3 speech
sources are all moving in circle of ¥ = 60° in 2 s, from —65° to
—5° for s1, from —30° to 30° for sy and from 5° to 65° for s3,
at about 1.5 m of the microphone pair center (see Fig. 5 — left).
We simulated two reverberation times, namely Tjy = 680 ms

11 Available at www.audiolabs-erlangen.de/fau/professor/habets/software/rir-
generator.

12Note however that it is not subject to source permutation across frequency
bins since all frequencies are jointly considered in the CGMM model, see [49]
for details.



1420

Fig. 5. Source trajectories for the experiments with blind initialization: Sim-
ulations (left) and real recordings (right).

(same as in Section V-A) and Ty = 270 ms (the corresponding
mixtures are denoted respectively as Mix-680 and Mix-270). We
also tested the mixtures as is (noiseless case) and corrupted with
additive white Gaussian noise at SNR= 4 dB. This resulted in
4 configurations. All reported measures are average results over
10 mixtures using different speech signals from TIMIT.

3) Real Recordings Set-Up: Real recordings were made in
a 20 m? reverberant room (T ~ 500 ms), using I = 2 omni-
directional microphones in free field, placed in the center of the
room, and spaced by d = 30 cm. For real recordings, the blind
initialization method was shown to be much less efficient to sep-
arate 3 speakers, compared to the simulated experiments, but still
worked very well for 2 speakers. We thus limited the present
experiments with 2 speakers. Two speakers (one female, one
male) were thus asked to pronounce spontaneous speech while
moving on a circle at 1.5 m from the microphones, of about
45°, two-way opposite motions, starting respectively at about
45° and —45° (see Fig. 5 — right). The trajectory was traveled
within 2 s, hence the speaker movement was pretty fast. The two
speakers were recorded separately, and the signals were added,
so that we could calculate separation scores.

4) Results of Simulations: Measures are reported in Table 111
for the input mixed signals, the initial source estimates after the
binary masking, the estimates using the baseline method and the
estimates using the proposed method. In addition to the SDR
and SIR measures, we also report here SAR which measure
the quantity of artefacts introduced on the separated signal by
the separation method. Note that relatively homogeneous input
SDR scores across sources (around —3 dB and —5 dB for the
noiseless and noisy case respectively for both Mix-270 and Mix-
680) indicate that all sources have roughly the same power in
the mix.

Let us start with the most reverberant condition Mix-680.
At SNR = oo, the average SDR (across sources) attained by
the binary masking method is approximatively 3 dB, hence an
SDR gain of about 6 dB over input signals. The correspond-
ing average SIR gain is 7.8 dB, and the output average SAR
is about 7 dB.3 For this setting, the baseline method does not
seem able to efficiently exploit the information provided by the
blind initialization: The overall performance is comparable to
the binary masking (SDR is even very slightly decreased for two
sources). Regarding the proposed method, there is a significant
improvement over both the binary mask initialization and the
baseline method. In detail, the proposed method outperforms the

131t makes little sense to provide SAR gain, since, as source signals are intact
in the mix, the input SAR is = oo and source separation can only lead to SAR
decrease.
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baseline method by 0.5 dB to 1 dB SDR, by 0.5 dB to 1.9 dB
SIR, and by 1.1 dB to 1.4 dB SAR (averaged across sources).
With the addition of noise (SNR = 4 dB), all performance mea-
sures drop significantly, which was expected. For example, the
average SDR for the binary masking is 2.3 dB lower than for
the noiseless condition. Here, the baseline method slightly im-
proves the binary masking scores, by 0.3 dB SDR, 0.1 dB SIR,
and 1.5 dB SAR. More importantly, the proposed method out-
performs the baseline method by 1.1 dB SDR, 0.9 dB SIR, and
3 dB SAR. Note that under noisy conditions, there is more mar-
gin for improvement over the binary masking since the latter
provides worse estimates than in the noiseless case.

For Mix-270, i.e. moderate reverberations, we obtain signif-
icantly higher separation scores for all methods, as expected.
For example, at SNR = oo, the SDR for the binary masking
(averaged across sources) is about 6 dB, hence an SDR gain of
about 9 dB over input signals. Output SIR and SAR are within
9.2dB to 10.8 dB (with an SIR gain going up to 13.8 dB). These
scores (the SIR measures in particular) confirm what is well-
known in the literature: Binary-masking techniques show good
separation performance in low-to-moderate reverberant condi-
tions. They place our block-wise binary masking method at the
level of state-of-the-art methods based on the same principles
(two-microphone source localization and binary masking), e.g.
[6], [SO]-[52], even though it is applied on quite short blocks
(250 ms of mixture signal). Again, the baseline method exhibits
comparable scores with the binary masking, here slightly better
on the average. In addition, the proposed method significantly
outperforms the baseline method, by 1.4 dB SDR, 2.2 dB SIR,
and 1.8 dB SAR. The proposed method obtains SIR gains with
respect to inputs as high as 16.4 dB (source s2), which, we be-
lieve, is remarkable in a blind, underdetermined, dynamic setup,
be it simulated. At SNR = 4 dB, we observe the same trends as
for Mix-680: the baseline method improves more neatly over the
binary masking, and the proposed method, again, significantly
improves over the baseline method (by 1.7 dB SDR, 1.7 dB SIR,
and 3.6 dB SAR).

5) Results of Real Recordings: The last three columns of
Table III report the performance measures obtained on the real
recordings with two sources. We first notice that even if we
mix two sources instead of three, the gain performance of the
binary masking method is less notable that in our simulated
scenarios. This is evidence that separating (two) moving sources
from real recordings remains quite a challenging scenario, even
for state-of-the-art sound processing techniques. The baseline
method shows some SDR improvement (= 0.5 dB) and SAR
improvement (> 2 dB) for both sources over the binary masking.
However, the baseline SIR scores degrade when compared to
the binary-masking initialization. The proposed method exhibits
positive gains when compared both with the binary-masking
initialization and with the baseline method. Indeed, SAR scores
of the proposed method are equivalent to the baseline method
and notably better than the initialization. SDR improves by more
than 1 dB when compared to the initialization, and by 0.7 dB to
0.9 dB when compared to the baseline method. SIR improves
by 0.2 dB to 0.7 dB when compared to the initialization and by
0.7 dB to 1.1 dB when compared to the baseline method. Such
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TABLE III

Simulated Mix-270

Simulated Mix-680

real recordings
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SNR 00 4 00 4 N/A

Method Src SDR SIR SAR  SDR SIR SAR  SDR SIR SAR  SDR SIR SAR  SDR SIR SAR

Input 51 -23 -19 400 —45 -19 4.6 -35 -29 400 =55 =29 4.6 0.0 0.2 + 00
ED) -38 30 +o0 57 =30 4.6 -27 —-19 400 —-48 =20 4.6 0.0 0.2 +00
53 -31 =25 400 =51 =26 4.6 -33 27 400 =53 =27 4.6 - - -

Bin-Mask 51 6.2 10.5 9.5 2.5 75 3.4 2.8 52 6.1 0.5 2.6 1.7 29 7.6 6.3
59 6.2 10.8 9.4 2.0 6.9 3.4 3.8 6.9 8.2 1.2 4.7 3.1 3.1 6.4 6.6
53 59 9.9 9.2 1.9 6.0 3.0 2.6 3.8 6.8 0.7 2.7 2.7 - - -

Baseline 51 6.0 11.1 9.7 32 79 53 2.3 49 6.4 0.7 2.6 3.4 3.5 6.7 8.3
52 6.7 11.1 10.0 29 7.7 5.0 3.8 7.1 8.5 1.6 49 4.4 3.6 6.1 9.1
53 59 9.7 9.5 2.8 6.7 4.8 2.5 4.4 7.1 1.1 2.8 42 - - -

Proposed 51 7.5 134 11.5 5.0 10.0 8.9 33 6.8 7.8 1.9 4.0 6.3 4.2 7.8 8.3
EP) 7.8 134 11.7 44 9.4 8.5 44 8.3 9.6 2.6 5.7 74 4.5 71 9.2
53 74 11.7 11.3 4.6 7.9 8.5 3.0 4.9 8.2 2.3 34 7.3 - - -

results demonstrate the potential of the proposed approach for
real-world applications and encourage us to pursue this line of
research.

VI. CONCLUSION AND FUTURE WORK

In this paper we addressed the challenging task of separat-
ing audio sources from underdetermined time-varying convolu-
tive mixtures. We started with the multichannel time-invariant
convolutive LGM-NMF framework of [12], and we introduced
time-varying filters modeled by a first-order Markov model with
complex Gaussian observation and transition distributions. Be-
cause the mixture observations do not depend only on the filters,
but also on the sources that are latent variables as well, a stan-
dard direct application of a Kalman smoother is not possible. We
addressed this issue with a variational approximation, assuming
that the filters and the sources are conditionally independent
with respect to the mixture. This lead to a closed-form VEM,
including a variational version of the Kalman smoother, and
finally, separating Wiener filters that are constructed from both
time-varying estimated source parameters and time-varying es-
timated mixing filters. Several implementation issues were dis-
cussed to facilitate experimental reproducibility. Finally, an ex-
tensive evaluation campaign demonstrated the experimental ad-
vantage of the proposed approach over a state-of-the-art baseline
method in several speech mixtures under different initialization
strategies.

These results encourage for further research to improve the
proposed model. Firstly, the last series of reported experiments
show that the use of realistic blind separation methods for the
initialization of our algorithm in the case of more sources than
microphones has to be more deeply explored and made more
robust to process real recordings. Secondly, in the present study,
the number of sources present in the mixture was assumed to
be known, although the estimation of this number is a prob-
lem on its own. Therefore, developing algorithms capable of
estimating the number of active (i.e. emitting) sources varying
over time remains an open issue, but is a step closer to realistic
applications. We therefore plan to incorporate into the present

model the estimation of the sources activity, using diarization
latent variables. Finally, an in-depth study exploring the com-
plex relationship between the physical changes of the recording
set-up and the mixing filters can be of great help. In particular,
a better understanding of how the position of the sources and
microphones affect the filters may enable us to incorporate the
rationale of the discrete DOA-dependent model in [32] to the
proposed continuous latent model, thus using localization cues
to help the automatic separation of sound sources.
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