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ABSTRACT

In this paper, the problem of modeling the trajectory of the 
amplitudes of speech signals is addressed within the 
context of the sinusoidal model of speech. A long-term 
model of the trajectory of the amplitude of the partials is 
proposed for each entire voiced section of speech, contrary 
to standard models, which are defined on a frame-by-frame 
basis. The complete analysis-modeling-synthesis process is 
presented. We compare a DCT-based long-term model 
with classical (frame-by-frame) interpolation schemes, 
given that the analysis process is identical in both cases. 
Perceptual constraints are taken into account since the 
distortion criterion in this approach is the level of modeling 
noise above the masking threshold. Promising results are 
given and the interest of the presented models for speech 
coding and watermarking applications is discussed. 

1. INTRODUCTION 

Sinusoidal modeling of audio signals has been extensively 
studied since the eighties and successfully applied to a 
wide range of applications, such as coding or time- and 
frequency-stretching [1-5]. The signal is modeled as the 
sum of a small number I of time-evolving sinusoids:  

 with   (1) 

The parameters of the model are the amplitudes Ai(n) and 
phases θi(n) and are slowly evolving with time (the digital 
frequencies i(n), expressed in radians per sample, are the 
derivatives of the phases). An analysis-synthesis system 
based on such model usually requires the measurement of 
these parameters at the centers of consecutive signal 
frames, and then the interpolation of the consecutive 
measured values to reconstruct the entire signal. 
Amplitudes are generally interpolated linearly between 
frames. Phase measures are provided modulo 2π and must 
be unwrapped before interpolation [1]. Different models 
were proposed in the litterature for the frame-to-frame 
interpolation of phase parameters [1, 5, 6]. 

In a recent paper [7], we proposed a different approach to 
reconstruct the phase trajectories from its measures. Instead 
of interpolating these values from one analysis frame 
center to the next, we proposed to model the entire 
trajectory of each partial phase over each voiced section of 
speech with a single model. In other words, speech was 
first segmented into voiced and unvoiced parts, then the 

sinusoidal model was applied on each one of the voiced 
sections1, and a single so-called “long term” (LT) model 
was used to represent the whole phase trajectory of a 
partial over the section. In this previous work, amplitudes 
were linearly interpolated as usual, in order to test 
separately the phase LT modeling. This latter was shown to 
provide a signal quality similar to the standard short term 
interpolation models, while concentrating the phase 
information in significantly fewer coefficients [7]. 

In this new paper, we deal with the dual problem of 
applying long term models to the amplitude trajectories of 
the partials along voiced sections of speech (while here 
classically interpolating the phase, e.g. with frame-by-
frame linear interpolation). The LT model that we propose 
in this paper for amplitudes modeling is similar to one of 
the two models previously used for phase in [7]: it is a base 
of cosine functions. It is important to note that a modeled 
voiced section can contain several phonemes (it can even 
be a complete sentence). That is why, as for phase LT 
modeling, we propose a method to automatically adjust the 
order of the model for each amplitude trajectory. But the 
method is quite different in the case of amplitude 
modeling, since it is based on psychoacoustic constraints.  

The paper is organised as follows. The LT model is 
described in section 2. The complete analysis-modeling-
synthesis process is presented in section 3 and preliminary 
results are given in section 4. The interest of LT models for 
speech coding and watermarking is discussed in section 5.  

2. THE LONG TERM AMPLITUDE MODEL 

As mentioned before, we suppose that the signal is 
previously segmented into voiced and unvoiced parts by 
usual voiced/unvoiced classifiers (not described here). We 
consider here the problem of modeling the amplitude 
trajectory of each partial over an entire voiced section of 
speech s(n), running arbitrary from n = 0 to N. We propose 
to use a discrete cosine model of the form: 
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The factors N/2  and w(p)=1/ 2  if p=0 else w(p)=1 and 
the factor 1/2 inside the cosine are added to ensure perfect 
matching of the model with the standard discrete cosine 
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The unvoiced sections are not considered in this paper. Other 
adequate models can be used for these sections, e.g. [8].
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transform (DCT). Such model (or transform) is known to 
be efficient to capture the slowly time-varying 
characteristics of a signal (e.g. on the speech signal 
samples themselves) and should be well suited to capture 
the global shape of sinusoidal parameter trajectories. In [7], 
a linear term was added to the DCT model to capture the 
linear background shape of phase trajectories. This is no 
more necessary for amplitudes. Thus, Pi denotes here the 
order of this model. Note that in [7] a polynomial model 
was also proposed for phase modeling, but was shown to 
be slightly less efficient than the linear+DCT model. Pilot 
tests have confirmed this result for amplitudes modeling, so 
that we concentrate this new study on the DCT model. 

3. ANALYSIS, MODELING AND SYNTHESIS 

3.1. Analysis 

The experiments described in this paper were conducted 
with a pitch-synchronous analysis. The signals were first 
pitch-marked by using the software Praat [9]. This means 
that the signals were considered quasi-harmonic and each 
period of signal was automatically time-labeled and used as 
an analysis frame. Thus, exploiting the pitch-marks, the 
fundamental frequency k

0ω  was directly given by the 
inverse of the period. Then, given the fundamental 
frequency, the amplitudes k

iA  and phases k
iθ  of the 

harmonics at the center of each period were estimated by 
using the procedure used by George and Smith in [4]. The 
estimation is based on a classical minimum mean square 
error (MMSE) fitting of the harmonic model with the 
signal and it has been shown to provide very accurate 
parameter estimation with very low computational cost. 
Phase measures are provided modulo 2π and must be 
unwrapped by cumulate addition of M times 2π, M being 
the “unwrapping factor” of [1]. At the end of the analysis 
process, each section of K consecutive periods of voiced 
speech is represented by I sets of K amplitude and 
unwrapped phase parameters (one set for each partial 
trajectory, t denotes the transposed vector/matrix): 
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3.2. Estimation of the LT amplitude model parameters 

Now, amplitudes LT modeling consists in replacing each 
set Ai by a reduced set of DCT coefficients. The fitting of 
the model with the measured amplitudes is made by a 
standard MMSE minimization. Let us denote by 
N = [n1 n2 … nK]t the vector of the sample indexes of the 
signal period centers, and Mi the matrix that concatenates 
the DCT terms evaluated at the components of N:
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The MMSE estimation of the coefficients vector 
Ci = [ci0 ci1…ciPi]

t is found by minimizing the mean square 
error between MiC and Αi over all possible vectors C.
Hence, it is given by: 
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3.3. Synthesis

The synthesis is achieved by simply applying eq. 2 from 
n=0 to N, linearly interpolating the phases measures θi and 
applying eq. 1. Note that since the partials frequency is 
varying with time, the higher rank partials can locally 
overcome the Nyquist frequency. In that case, amplitude 
values corresponding to this “no signal’s land” can be set 
to zero during the analysis, modeling and synthesis steps. 
In this paper, we experimented only the modeling of the 4 
first partials, all lying under the Nyquist frequency, thus 
actually we do not deal with this problem. Finally, remind 
that the whole analysis-synthesis process only concerns the 
voiced part of speech. In the following experiments, the 
unvoiced parts where kept as they are and concatenated 
with the modeled voiced parts with weighted overlap-add 
windowing to avoid audible artifacts [4]. 

3.4. Model order tuning

Since the shape of the amplitude trajectories can vary 
widely, e.g. depending on the length of the voiced section, 
the phoneme sequence, or the rank of the partial, it is 
crucial to find a method to automatically adjust the order of 
the model for each section of modeled speech and for each 
partial. In this study, we considered perceptual constraints: 
the order is tuned so that the signal-to-noise ratio (SNR) is 
always over the signal-to-mask ratio (SMR). The SNR is 
defined as the ratio of the original partial power to the 
power of the difference between LT modeled and original 
partial. The SMR is defined as the ratio of the original 
partial power to the power of the perceptual frequency 
masking threshold [10]. In other word, the modeling error 
must always be under the masking threshold in order to be 
inaudible. This is a quite standard issue in speech coding 
[10, 11] but the major point in this new study is that the 
term “always” evokes here a constraint over time, and not 
only over frequency: we model separately the trajectory of 
each partial, and the associated modeling error trajectory 
must lie under the trajectory of the masking threshold over 
time. To achieve this goal, we propose to apply on each 
voiced section of K speech frames the following algorithm: 

1) For each time index k and each set k
iA , i∈[1,I]

representing the speech spectrum magnitude at time k,

calculate the associated global masking threshold )(ωkT
by using the model of [11] (also in [10] section II.F). 

Then, for each partial i:

2) Form the threshold trajectory [ ]{ }KkT k
i

k
i ,1),( ∈= ωT .

Initiate the order Pi to round(K/4) and the order update dPi

to round(K/8), where round denotes the entire part. 

3) Initiate a weight vector W of length K with all entries set 

to one. Then iterate the following process from step 4 to 

step 7:
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4) Multiply element-by-element W with each column of Mi

on the one hand and with Ai on the other hand, to obtain a 

weighted matrix W
iM and a weighted vector W

iA .

5) Calculate the model by applying eq. 5 on the weighted 

data.

6) Increase the weights where the modeling error power Ei

overcomes the masking threshold, according to (square
and max respectively denotes the element-by-element 

square and maximum function): 
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7) Calculate R the percentage of zero elements of dW. If R is 

not over a given ratio Rmin and the maximum number of 

iterations is not reached, then go to step 4.  

Else if R Rmin, decrease the model order Pi=Pi–dPi,

set dPi=round(dPi/2) and go to step 3.

Else if R<Rmin and the maximum number of iteration is 

reached, increase the model order Pi=Pi+dPi,

set dPi= round(dPi/2) and go to step 3. 

In the above algorithm, the maximum number of iteration 
and Rmin are fixed arbitrary. Typically we can have 
respectively 20 and 90%. The algorithm stops either when 
dPi=0 or Pi=K/2 which is the limit of overtraining the 
models. Generally, the last value of Pi for which R Rmin is 
retained. This ensures that the perceptual criterion is 
globally assumed. The dichotomic process for updating the 
model order allows to dramatically increase the speed of 
the algorithm. Finally, note that when the number of data is 
not sufficient to assume numeric stability (on short 
segments of voiced speech), both data and masking 
threshold can be linearly interpolated before modeling. 

4. RESULTS 

A set of experiments was conducted on speech signals 
consisting in 10kHz sentences produced by 6 different 
speakers (3 males and 3 females). A total amount of 610 
voiced segments of different sizes were used; representing 
nearly 2.5 minutes of voiced speech. 

4.1. Original and modeled amplitudes trajectories 

Fig.1 illustrates the ability of the DCT model to globally fit 
the signal amplitude trajectories. We plotted the trajectory 
of the first harmonic of a long sequence (1.5 second) of 
female voiced speech. We can see that the model exhibits 
smooth trajectories around the amplitude measures. For 
this example, the order of the model is 26, to be compared 
with the number of amplitude measures K = 408 (see 
section 4.3.) As we can see from subplot a) and c), it is not 
necessary to force the modeling error to stay completely 
under the masking ratio (by fixing Rmin = 100%), since “very 

local strong modeling efforts” might result into a lower global 

fitting. In practice, as we will see in further sections, lower 

ratios can guarantee high quality synthesis (e.g. Rmin = 98% to 
75% according to the harmonic rank). 

Figure 1 – Measured (dashed dotted) and DCT modeled (line 
– order 26) amplitude trajectory for the first harmonic of an all 
voiced female speech long sequence (15000 samples at 
10kHz, K = 408) after a few iterations of the modeling 
algorithm; a)c) log scale; b)d) linear scale; The two lower 
curves on a) and c) are the masking threshold model (dotted) 
and the modeling error (line); a)b) Rmin = 98% (errors 
overcoming the masking threshold are marked by a star); c)d) 
Rmin is changed to 100% and a few more iterations are added; 
the inserted rectangle is a zoom on samples 4100 to 4400. 

4.2. Informal listening tests 

Two subjects with normal hearing listened to the 
synthesized signals. First, the perceptual difference 
between original and synthesis signals is quite low, thought 
synthesized signals exhibits classical sinusoidal speech 
characteristics (e.g. the well-known “buzziness”). Second,
the main result of these tests is that the long term model 
provides a synthesis quality identical to the one obtained 
with standard short-term linear or cubic interpolation of 
the measured amplitudes. In other words, the signals 
synthesized with both short or long term amplitude models 
cannot be distinguished. Moreover, this result was 
observed even for quite low model orders compared to the 
number of measures (see e.g. in section 4.3.): it seems to be 
guaranteed as long as the modeling error (globally) lies 
below the masking threshold, despite the fact that the 
signal waveform shape may be significantly modified by 
the modeling process (see Fig. 2). This confirms the 
efficiency of the perceptual model and suggests that this 
perceptual robustness of the LT amplitude model should be 
exploited in very low bit-rate high-delay speech coders. 

Figure 2 – Signal synthesized with amplitudes (short-term) 
linear interpolation and with the DCT model of Fig. 1 (only 
harmonic 1 is modeled, others are linearly interpolated). 
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4.3. Model order estimation and “compression gain”

To confirm this, we give in Table. 1 mean model order
values obtained by summing the order values for the 610 
voiced segments of our test corpus and dividing by the total 
length of the segments, and this for the 4 first harmonics.
Perceptual informal tests led to chose Rmin=98% for 
harmonics 1 and 2, and Rmin=75% for harmonics 3 and 4, 
allowing to equilibrate the mean order between harmonics
despite the fact that the amplitude trajectory generally
becomes more complex as the harmonic rank increases. By
averaging across the four harmonics, we obtain a mean
value of 24.5 coefficients per second per harmonic, while
the mean number of measured parameters is 201. Thus, the 
LT model allows to divide the number of  parameters by 
more than 8 (at least for the 4 first harmonics), compared 
to the short-term synthesizer using the measured 
amplitudes, while providing the same overall subjective
quality. Quantization of the model parameters is a future 
trend of our work to apply the method to very low bit-rate
speech coding. It is crucial to note that for such application, 
the model order can be significantly decreased while
preserving good subjective synthesis quality.

Table 1 – Results in terms of coefficient rates 

5. DISCUSSION 

We proposed and tested a long-term model for speech
amplitude trajectories within the sinusoidal model
framework: a DCT perceptually weighted model. This 
model was shown to be able to fit the local amplitude
variations of the lower rank harmonics of sinusoidal speech
(from 1 to 4 in this study). Higher harmonics remains to be 
tested and part of our current work deals with this aim.

The presented approach, eventually associated with the 
phase LT modeling presented in [7], can be applied to very
low bit-rate speech coding, an application where the 
efficiency of the sinusoidal model has extensively been 
shown [3]. The proposed models could lead to further
decrease the sinusoidal coders bit-rate, though it would be
at the cost of significantly increasing the encoding-
decoding delay. Quantization of the model parameters and 
elaboration of a complete coder is a major part of our
future work. Note that the quantization process may benefit
from the well-known robustness of DCT coefficients 
already assessed in standard coding routines. 

Besides, we recently proposed an original speech 
watermarking process based on the sinusoidal model [12].
Watermarking consists in embedding additional data in a 
signal in an imperceptible way [13]. It is a technology of
growing interest for copyrights and protection of data. In 
[12], we proposed to hide data within the dynamics of the
frequency trajectories of the sinusoidal model of speech, by
adequately modulating these trajectories. The water-
marking process was shown to be efficient if the 

trajectories that support the modulation were smooth
enough, a property that may not be assured by usual frame-
by-frame interpolation schemes [5][10]. The LT model
presented in this paper is characterized by an intrinsic 
smoothness and should be used efficiently in the
watermarking scheme, including when applied to the 
amplitude and not only the frequency trajectories. This
point is also part of our future works. 
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