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 Abstract
The so-called Long-Term (LT) modeling of sinusoidal 
parameters, proposed in previous papers, consists in modeling 
the entire time-trajectory of amplitude and phase parameters 
over large sections of voiced speech, differing from usual Short-
Term models, which are defined on a frame-by-frame basis. In 
the present paper, we focus on a specific novel contribution to 
this general framework: the comparison of four different Long-
Term models, namely a polynomial model, a model based on 
discrete cosine functions, and combinations of discrete cosine 
with sine functions or polynomials. Their performances are 
compared in terms of synthesis signal quality, data compression 
and modeling accuracy, and the interest of the presented study 
for speech coding is shown. 

1. Introduction 
Sinusoidal modeling of digital audio signals has been 
extensively studied since the eighties and successfully applied to 
a wide range of applications, such as coding or time- and 
frequency-stretching [1]–[5]. In such model, the speech signal is 
represented as the sum of a small number I of time-evolving 
sinusoids (also called partials): 
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The amplitudes Ai(n), phases θi(n) and digital frequencies i(n)
are slowly evolving with time. An analysis-synthesis system 
based on such model usually requires the measurement of these 
parameters at the centers of consecutive signal frames, and then 
the interpolation of the consecutive measures at each sample 
time index to reconstruct the entire signal by applying (1) on the 
interpolated values. Amplitudes measures are generally 
interpolated linearly between frames and different models are 
proposed in the literature for the frame-to-frame interpolation of 
phase parameters [1][3][4]. 

In three recent papers [6][7][8], we proposed to model the 
entire trajectory of each partial phase [6][8] and amplitude [7][8] 
over each voiced section of speech with a single so-called Long-
Term (LT) model. In other words, speech is first segmented into 
voiced and invoiced parts, then the sinusoidal parameters are 
measured along each voiced section on a short-term basis, and 
finally the LT model is used to represent the whole parameters 
trajectory over each entire voiced section.  

In this paper, we present an important additional contri-
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 to this approach: we focus on the specific problem of the 
e of the LT model. Indeed, in [7][8] only one single model 
onsidered: a sum of discrete cosine functions (plus a linear 
n the case of phase modeling). In [6], we also dealt with a 
omial model (also considered in [9]) but a raw SNR-based 
on was used for phase model fitting. Since this criterion 
eplaced in [8] by a more pertinent perceptual criterion (see 
n 3.3), the comparison of different LT models within the 

ptual criterion framework has not been achieved yet, either 
ase or amplitude trajectory modeling. This is the major 

of the present study: we compare now the already assessed 
-based model with three other models: a polynomial 

l, an hybrid cosine + sine model and an hybrid 
omial + cosine model. For this aim, we reuse the method 
he perceptual criterions of [7][8] to automatically fit the 
ls for each section of modeled speech. 
his paper is organized as follows. The four LT models are 
ted in Section 2. The complete analysis-modeling-

esis process is presented in Section 3. New experiments 
esults in Section 4 allow to compare the performances of 
ur competing models in terms of modeling accuracy, 
 quality, and data compression. Finally, the interest of this 
 for speech coding is briefly discussed in Section 5. 

2. The Long Term Models 
entioned before, we suppose that the signal is previously 
nted into voiced and unvoiced parts by usual V/UV 

fiers (not described here). For each partial i, 1≤i≤I, we 
er the problem of separately modeling the time-trajectory 
 phase and amplitude parameters of (1) over an entire 

d section of speech s(n), running from n = 0 to N. The first 
 four proposed LT models is a polynomial model (PM): 
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econd model is a sum of cosine functions and a linear term, 
 it is called linear + discrete cosine model (LDCM): 
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hird model is a combination of linear term, discrete cosine 
ne functions (LDCSM) (Pi is assumed to be even here): 
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The fourth model is a combination of polynomial and cosine 
functions (PDCM), in equal numbers (Pi is assumed to be even): 
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In each case, Pi is a positive integer defining the total order of 
the model. The coefficients cip are all real. The linear term is 
quite useful to model the linear background shape of the phase 
trajectories, which results from the time-integration of the 
frequency tracks. The higher-rank polynomials or trigonometric 
functions are useful to model the variations of the phase around 
this basic linear shape. Adding corresponding sine functions to 
the cosine amounts to allow these cosine for a free (model) 
phase offset. Thus, we want to test if allowing a phase offset is 
efficient compared to adding higher-rank cosine functions. And 
with the PDCM, we want to see if the sets of cosine and 
polynomial functions complete themselves well. 
 For the amplitudes, the models are the same, except that there 
is no linear term in (3)(4) since the amplitude trajectories do not 
systematically increase over time. Hence, we have for amplitude 
to compare the PM and PDCM with a discrete-cosine model 
(DCM) and a discrete cosine+sine model (DCSM). 

3. Analysis, LT Modeling, and Synthesis 

3.1. Analysis 
The experiments described in this paper were conducted with the 
pitch-synchronous analysis previously used in [7][8] (see those 
papers for more details). Each period of signal was time-marked 
and used as an analysis frame. Thus, the fundamental frequency 

k
0ω  was given by the inverse of the period. The amplitudes k

iA
and phases k

iθ  at the center nk of each period were estimated by 
the least mean square error (LMSE) procedure of [3]. This 
technique has been shown to provide accurate parameter 
estimation at very low computational cost. The phase values are 
provided 2π−modulo and are unwrapped by using the procedure 
of [1], to correctly reflect the “true” phase trajectories. Finally, 
for each section of K speech periods, the analysis provides I sets 
of K amplitudes [ ] tK

iiii AAA ...21=A and unwrapped phases 
[ ]tK

iiii
21 ...θθθ=  at time indexes N = [n1 n2 … nK]t.

3.2. LT Model Coefficients Estimation 

LT modeling consists in replacing each set of parameters by a 
reduced set of LT model coefficients by using LMSE regression. 
Let us denote by Mi the “LT model matrix”. In the PM and 
DCM cases, Mi is the K×(Pi+1) matrix of general entry p

kkp nm =
and )/cos( Nnpm kkp π= , respectively. In the DCSM and PDCM 
cases, Mi results from the concatenation of general entries 

)/cos( Nnpm kkp π=  and )/sin( Nnpm kkp π= , and p
kkp nm =  and 

)/cos( Nnpm kkp π= , respectively. For the LDCM or LDCSM, N is 
concatenated to Mi. The coefficients vector Ci=[ci0,ci1,…,ciPi]t

(with one more coefficient for the LDC(S)M) is found by 
minimizing the mean square error between MiC and Vi=θi  or 
Vi=Ai over all vectors C. Hence, Ci is given by: 
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contro
eleme
e shape of amplitude and phase trajectories can vary 
y, e.g. depending on the length of the section, the phoneme 
nce, the speaker, the prosody, or the rank of the partial. 
fore, we proposed and tested in [7][8] a method to 
atically fit the LT model and estimate its appropriate order 
ch section of modeled speech and for each partial. This 
d considers perceptual constraints for both amplitudes and 
s LT modeling. The algorithm (to be applied to each 
d section of K frames) is given below, the error Ei and 
ptual threshold model Ti being defined below: 
nitiate an arbitrary order Pi, e.g. the integer closest to K/4,
nd an order update δPi, e.g. the integer closest to Pi/2.
nitiate Rmin an arbitrary target ratio, typically 0.75–0.9  
nitiate a weight vector W of length K with all entries set to 
ne. Then iterate from step 3 to step 6: 
ultiply element-by-element W with each column of Mi on 

he one hand and with Vi on the other hand, to obtain a 
eighted matrix W

iM and a weighted vector W
iV .

alculate the LT model coefficients Ci by applying (5) to 
he weighted data. 
alculate the trajectory of the modeling error Ei, the 
ssociated perceptual threshold model Ti, and the difference 

ii TEW −=∆ . Increase the weight vector W according to: 
)( WWW ∆+∆←∆ min   (so that ∆W is always positive) 

)(/ WWW ∆∆+← max
alculate the percentage R of negative elements in ∆W

before adding min(∆W)). If R<Rmin and some maximum 
umber of iterations is not reached, then go to step 3.  
lse if R Rmin, decrease the model order Pi←Pi–δPi,
et δPi←δPi/2 and go to step 2.
lse if R<Rmin and the maximum number of iteration is 

eached, increase the model order Pi←Pi+δPi,
et δPi← δPi/2 and go to step 2. 
e perceptual criterion for amplitude LT modeling is an 
ation of the frequency-domain masking threshold model of 
the values of the masking threshold model k

iT  at each time 
nk are resorted along the time axis, so that the time-

tory of the threshold model [ ]tK
iiii TTT 21 ...=T is obtained 

ch partial i [7]. Here, Ei is actually the trajectory of the 
 of the modeling error Ai–MiCi along the time axis, and 

d, it must remain under the trajectory of Ti.
r the phases, we proposed, discussed and tested in [8] a 
ptual criterion based on a frequency modulation (FM) 
old model: for each partial, the absolute difference 
en the derivative of the LT model of phase and the 
ponding frequency trajectory must stay under an FM 
old model. This latter is an adaptation of the (static) 
old identified in experiments on the detection of sinusoidal 
) frequency modulation [11]. Thus, we have here: 
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 α is an arbitrary ratio within the range 1%–5% that 
ls the frequency modulation excursion, abs denote the 
nt-by-element modulus function, and Qi is the “derivate 



matrix” derived from Mi: in each case, the general entry of Qi is 
the derivative of the general entry of Mi, e.g., when the 
polynomial model is used, the general entry of Qi is 
and when the DCM is used, we have q .

1−= p
kkp pnq

NNnk /)/ppkp sin( ππ−=

3.3. Synthesis
The synthesis is achieved by applying one of equations (2–5) for
phases, and a similar equation for amplitudes, depending on the 
chosen model, and applying (1). Since the modeling only
concerns the voiced part of speech, the unvoiced sections are 
simply concatenated with the LT-modeled voiced sections with
local overlap-add windowing to avoid audible artifacts [2].

4. Experiments 
4.1. Summary of previous experiments as a reference
The perceptual criterions and the algorithm of Section 3 have 
been extensively assessed in [7][8], using only the (linear+)
discrete-cosine LT model. The basic results are summarized here
and provide a reference for the comparison between the four 
competing LT models that will be presented below.

A set of experiments was conducted on 8-kHz continuous 
speech produced by 12 different speakers (six male and six 
female speakers). About 3500 voiced segments of different sizes
were extracted, representing more than 13 minutes of speech,
and the first ten harmonics of each section were modeled.

The main results that were obtained with the (L)DCM model
in [7][8] are: 1) The LT model generally fitted the amplitude or 
phase trajectories quite well (i.e., the modeling error is shaped 
just under the trajectory of the perceptual threshold model)
within ten iterations of the algorithm. A value of Rmin = 0.75 was
shown to be sufficient to ensure a satisfactory fitting because of 
the intrinsic smoothness of the model (and of the data
trajectories at a lesser extend). A value of Rmin = 0.90 was also
tested and allowed to increase the modeling accuracy at the price 
of additional iterations and increasing order. 2) Informal
listening tests revealed that the LT model generally provided a
synthesis quality identical to the one obtained with usual Short-
Term interpolation of the measured parameters. This result was
generally ensured with Rmin≥0.75 for both amplitudes and phases 
(even though the higher value of 0.9 was sometimes needed for
the two first harmonics), and α≤3% for phase modeling (for 
α>4%, a difference between LT and ST synthesized signals can
be heard for some speech sections). 3) The LT model was shown
to provide efficient data compression: Mean coefficient rates of 
respectively 26 and 20.5 coefficients/s/harmonic were found for 
amplitudes and phases respectively, in conditions satisfying the
results of 2). Comparison with the 50 frames/s of usual ST
coders results in a compression factor of 2–2.5. 

4.2. Criterions for comparison 
The four competing models of Section 2 were used to model the
trajectories of amplitude and phase parameters of the 3500 
voiced segments of our database, by using the algorithm of
Section 3. Then, we first made extensive listening tests that led
to observe that the signal quality obtained with the four models
(for the same conditions, Rmin=0.75 or 0.9, and α=2–4%) was 
identical, and identical to Short-Term synthesis for a restrained
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t of these conditions (see Section 4.1). It results from this 
vation that other quantitative criterions must be used to 
are the performances of the four models. We used the 
cient rate (defined as the average number of model
cients necessary to model one second of speech), 
usly calculated for the (L)DCM model in [7][8]. We also 
he percentage PR of sections for which the target ratio Rmin
eached. Indeed, the algorithm cannot guarantee that Rmin is 
ed for any section, since the order is limited by two factors:
e one hand, the updating process of order estimation
sically provides an upper limit of K/2, which is the limit of
-training” the model, and on the other hand we introduced 
er limit resulting from computational considerations: the
 to be inverted in (6) must not be ill-conditioned. Thus,

R value can be seen as a quantitative measure of the 
putational flexibility” of the models.

esults 
ive on Fig. 1 the amplitude mean coefficient rates and the 
ntages PR obtained for the four models and the ten first
nics, averaged over the complete corpus (for Rmin=0.75).
tes are increasing with the harmonic rank. This is mainly
se the complexity of amplitude trajectories generally also
se with the rank. The rates of the four models are quite 
Average values across the ten harmonics are respectively:
28.2, DCM: 26.5, DCSM: 27.7 and PDCM: 28.1 
cients/s. Thus, the DCM performs slightly better than the 

(note that results are ordered slightly differently for 
0.90: PM: 31.5, DCM: 33.0, DCSM: 31.4 and PDCM:
but the results stay close to each other). At the same time,
R results of the DC model outperforms the three other 
ls, the polynomial model being the quite worse (closely
ed by the PDCM). This may be because the polynomial
are far ahead the most sensitive to computational

ms, because of the large range of calculated values when
ection length and/or the model order is high. On the 
ry, the DCM, which is almost equivalent to the discrete 
 transform (DCT) widely-used in coding applications, is 
robust to model longer sections of speech, as the DCT is 
coding large numbers of signal samples.
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re 1: Comparative results for amplitude LT modeling; Up:
ean coefficient rates ; Down: Percentages PR (see text). 
Results are averaged over 3500 sections, Rmin=0.75.



For the phases, the results are different (see Fig. 2). The 
polynomial model is the most efficient regarding the coefficient 
rate criterion (see Fig. 2 and the averaged values across the ten
harmonics in Table 1). All values of α provide coherent results. 
According to the PR criterion, the LDCS model is first and the 
polynomial model is hardly lesser, but all values are high and
quite close for α≥3%.

Phase LT modeling
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Figure 2: Comparative results for phase LT modeling; Up: Mean
coefficient rates ; Down: Percentages PR (see text). Results are 

averaged over 3500 sections, Rmin=0.75, α=3%.

model P DC DCS PDC Selec P DC DCS PDC
α=2% 21.1 25.1 21.2 21.5 19.1 79.8 74.0 82.0 76.2
α=3% 18.1 21.1 19.1 19.5 16.6 93.8 92.6 94.3 90.6
α=4% 16.1 19.2 17.9 18.3 14.9 97.9 97.5 97.8 95.6

Table 1: Results of phase LT modeling (as those of Fig. 2) 
averaged across harmonics; Left: Coefficient rates; Right: PR.

Given those results, it seems difficult to make a definitive choice 
on the “best” model for each type of parameter. Rather, the
remark we previously made about the sensitivity of the
polynomial model to computational problems led us to explore if 
each model could be “specialized” in a specific kind of voiced
section, e.g. depending on its length. Thus, we plotted 
histograms (not shown here) describing the repartition of the 
“winner” model (defined as the model that needed the fewer
number of parameters) for all voiced sections of the corpus. 
Even if the polynomial model appeared to be generally selected 
for the shorter voiced sections and the (L)DC model appeared to 
be generally selected for the longer voiced sections, the
histograms were sufficiently confused so that they did not allow
for a general rule for model selection. Therefore, we tested
another “optimal” strategy, which consisted in simply choosing 
the winner model for each section. This is an optimal strategy
regarding the coefficient rate criterion, but it requires to transmit
additional bits to the decoder/synthesizer to encode the type of
selected LT model for each section. However, since the mean
number of voiced sections per second was 4.3 on our database, 
and 2 bits are necessary for each section to encode the
information on the model type, the additional rate is very low,
less than 10 bits/s, and quite lower than the bit saving
corresponding to the gain on coefficients provided by optimal
model selection. Indeed, the new mean coefficient rate
corresponding to optimal selection among the four models, is

found
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 to be 25.7 coefficient/s for amplitude modeling with
0.75 (29.7 if Rmin=0.90) and respectively 19.1, 16.6, and 
oefficients/s for phase modeling with α=2%, 3% and 4%
tively (Rmin=0.75) (see the “selection” values plotted on
–2 and in Table 1). Therefore, the main new result of this
is that the use of a “multi-LT model” can save 3–10% of 
cient rate for amplitudes, and about 21–24% of coefficient 
r phases, compared to the (L)DCM alone. 

5. Conclusion 
different Long-Term models for sinusoidal speech 

eter trajectories, based on polynomial, cosine and sine 
ons, were compared in terms of data compression
ncy and computational robustness, since the synthesis
 quality was found to be comparable for all models.
ually, the selection of the “best” model for each section
to significantly decrease the coefficient rate for both 

tudes and phases compared to the same synthesizer using
the (L)DC model (or any other of the four tested model
). This result will be exploited in our future work, which
with the elaboration of a very-low bit-rate “Long-Term

h coder” based on the sinusoidal model of speech, the LT
ling approach and additional quantization schemes.
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