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Abstract—Compared to conventional processors, stochastic
computing architectures have strong potential to speed up com-
putation time and to reduce power consumption. We present
such an architecture, called Bayesian Machine (BM), dedicated to
solving Bayesian inference problems. Given a set of noisy signals
provided by low-level sensors, a BM estimates the posterior
probability distribution of an unknown target information. In the
present study, a BM is used to solve a sound source localization
(SSL) problem: the BM computes the probability distribution of
the position of a sound source given acoustic signals captured by
a set of microphones. Assuming free field wave propagation (no
reverberations), we express the SSL problem as the maximization
of a likelihood function fed with audio features provided by the
time-frequency (TF) analysis of the captured audio waves. The
proposed BM uses bitwise parallel sampling to fuse the resulting
multi-channel information. As the number of channels to fuse
is large, the standard BM architecture encounters the so-called
“time dilution problem” (long delays are necessary to obtain valid
samples). We tackle this problem by using max-normalization of
the distributions combined with a periodic re-sampling of the bit
streams after processing a reasonably small subset of evidences.
Finally, we compare the localization performance of the proposed
machine with the results obtained using a standard version of
the machine. The re-sampling leads to an impressive acceleration
factor of 103 in the computation.

I. INTRODUCTION

A. Stochastic machines for probability computation and
Bayesian inference

Artificial intelligence and robotics face more and more
difficulties to solve problems with incomplete and uncertain
knowledge. Logic, the essence of traditional computer science,
is not the most appropriate paradigm to do so. On the contrary,
probability theory, an extension to logic, may be used as
an alternative for rational reasoning under uncertainty [16].
Our general research objective is to imagine and build new
programmable machines based on probability rather than
on logic. As Moore’s law [19] reaches its limit, no more
exponential progresses can be expected for computers with
conventional architecture. One of our more specific goals is
thus to conceive new architectures taking advantages of new
nano-devices to solve probabilistic inference problems. Within
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the former Bambi project,1 we designed several prototypes
of those machines (see e.g. [12] and [7]) leading to a first
generation of stochastic machines dedicated to Bayesian In-
ference. In the on-going MicroBayes project,2 more complex
and realistic problems are tackled. In the present paper, we
present a stochastic machine dedicated to localizing a sound
source from signals received by several microphones. We show
how this problem may be expressed as a Bayesian inference
with many evidences. We devise a new stochastic architecture,
called the Sliced-BM, which overcomes the slow convergence
induced by this large number of evidences.

B. Related work
The goal of an inference machine is to compute a (posterior)

probability distribution based on a number of evidences and
priors. There are several ways to represent and process proba-
bility distributions. On Von Neumann machines, a probability
distribution is represented by a set of parameters, such as
the mean and the variance for a normal distribution, or by
an array of probability values for a histogram, all stacked
in memory. In his Bayesian inference machine, Vigoda [28]
used analog signals to code probability values and a message
passing algorithm to compute exact inferences. Blanche et
al. [2] used the intensity of light at different wave lengths to
simultaneously represent all the values defining a probability
distribution, allowing to multiplex the processing on the same
optical hardware. In [18], “Strain switched Magneto Tunneling
Junction (SMTJ)” devices are used to code probability values.
Two magneto-electric circuits perform additions and multipli-
cations on this representation. Since inference only uses these
two types of operation on probability values, one can map any
inference into a circuit by spatially organizing these devices
on a silicon substrate. Friedman et al. [13] used Muller C-
Elements to combine stochastic signals and achieved naive
Bayes fusion for binary random variables.

In the above-mentioned architectures, a specialized hard-
ware is dedicated to computing probability values. Another ap-
proach is to represent a probability distribution with sequences

1https://www.bambi-fet.eu
2https://persyval-lab.org/en/sites/content/microbayes



of samples. Even with a good entropy source, obtaining “true”
samples of a distribution is a complex issue [20]. Designers
of Stochastic Programming systems [15] address this issue
by defining stochastic programming languages leading to
exchangeable stochastic samples. Algorithms can then be run
on Von Neumann architectures or transposed at the hardware
level. Jonas [17] designed such a specialized machine using
standard random bit generators and fixed-point arithmetic to
sample integer variables for applications ranging from signal
processing to three-dimensional image analysis. One direction
of research is to bridge the gap between the circuit and the
dedicated entropy generator technology such as the already
existing STRNG [5] or the more experimental MTJ [24].
Indeed, the system integration requires today the ability to
integrate all the bayesian machine elements on one die. For
example, Thakur et al. [27] used stochastic electronics to pro-
cess hidden Markov models and Bayesian networks. Finally,
Faix [11] designed a general purpose sampling machine based
on a binary version of the Gibbs sampler [10], [3]. More-
over, contrary to the other above-mentioned architectures, the
machine of Faix [11] is programmable: it is not necessary to
map a particular program into a particular layout. A compiler
translates any Bayesian program [1] into a binary code which
becomes the input of a general purpose Gibbs sampler.

In the present paper, we present another type of sampling
machine dedicated to sensor fusion problems with many
evidences. Coninx et al. [7] proposed an initial architecture for
a small number of evidences which was successfully imple-
mented on a Field-Programmable Gate Array (FPGA). Results
of fault injection campaigns at the RTL level provide the first
evidences of the intrinsic robustness of such architectures [6].

C. Paper outline

This paper is organized as follows. Section II gives a
presentation of the Sound Source Localization (SSL) problem
and how it can be addressed with a stochastic machine. It also
reminds the initial Standard-BM architecture and the issues
about convergence when too many evidences are at hand.
Section III presents the improved BM architecture applied
to SSL. In particular, it presents the solution to address the
temporal dilution problem, i.e. the re-sampling mechanism
used to regenerate the stochastic signal associated to the max-
normalization process. Experimental results are presented and
discussed in Section IV. A comparison with the previous
Standard-BM architecture is provided. Finally, some conclu-
sion is drawn from this work and the ongoing work is stated.

II. BACKGROUND

A. Sound source localization

Sound Source Localization (SSL) consists in estimating
the location of a sound source in a given environment from
recorded multichannel signals emitted by this sound source.
This problem has been extensively studied in the acoustic
signal processing community. Recent works deal with proba-
bilistic models designed to link inter-channel acoustic features
extracted from the sensor signals to the source position, e.g.
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Fig. 1. Schema of the proposed sound source localization setup.

[22], [26], [23], [29], [8], [9], [21]. These models generally
combine a physical model of wave propagation with machine
learning techniques (mostly Gaussian mixture models).

The configuration and the recording set-up considered in
the present study are illustrated in Fig. 1. The sound source is
a person speaking in a large room (6.4 m × 6.4 m × 3.1 m).
The person is assumed to be still, but a set of experiments
were conducted with different static source positions. The
recording set-up, inspired from [9], is composed of two pairs
of microphones placed in the center of the walls. In the present
study, we target SSL in the first two dimensions of the room.

Straightly stated, SSL is based on the analysis of delays
between the signals received on each pair of microphones [4].
The combination of delay information from all microphone
pairs is closely related to the 2D source position [9]. We
assume that the acoustic propagation follows a free-field
model, i.e. the microphones are omni-directional and fixed
on stands that have no effect on sound propagation (in other
words, all microphones are “floating” in the room). Also,
the reverberations on the walls are assumed to be negligible,
and the source to microphone distance L is large enough
to consider the acoustic waves reaching the microphones as
plane waves. Let us first consider one pair of microphones
for simplicity of presentation. Let y1(t) and y2(t) denote the
recorded signals on channel 1 and 2 respectively. With the
above assumptions, both sensor signals are attenuated and
delayed versions of the speech signal s(t) emitted by the
speaker, and y2(t) is a delayed version of y1(t):

y1(t) = a · s(t− ts), with 0 < a < 1,

y2(t) = y1(t− t0).
(1)

The delay t0 corresponds to the wave path difference between
the two microphones (we assume that the attenuation on this
part of the wave path is negligible). It depends on the azimuth
θ of the source, which is defined as the angle between the
axis perpendicular to the inter-microphone axis and the source
direction (see Fig. 2). Assuming the source-to-microphone
distance L much larger than the the inter-microphone distance
d, we have:

t0 =
d

C
sin(θ), (2)
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Fig. 2. Schema of the source-to-microphones wave propagation.

where C is the speed of sound (≈ 340 m.s−1 in the air).
Therefore, a measure of t0 (or an equivalent information)
can lead to an estimation of the source azimuth. Merging
the azimuth information provided by several microphone pairs
(at least two) can then lead to an estimate of the absolute
source position. This principle is formalized below within
a probabilistic model, after we further characterize the link
between t0 and the sensor signals.

To this aim, the microphone signals are sampled at sam-
pling frequency fs = 1/Ts and we calculate their Short-
Time Fourier Transform (STFT), i.e. a sequence of Discrete
Fourier Transforms (DFT) calculated on a sliding analysis
window [25]:

Y1(k, l) = STFT(y1(nTs)) =
N−1∑
i=0

y1((i+ lH)Ts)e
−j2π ikN

Y2(k, l) = STFT(y2(nTs)) =
N−1∑
i=0

y2((i+ lH)Ts)e
−j2π ikN ,

(3)
where k, l are the frequency and time-frame indexes, N is the
size of the analysis window, and H is the size of the window
shift. Inserting model (1) into (3), we obtain:

Y2(k, l) ≈ Y1(k, l)e−j2π
kt0
NTs . (4)

Eq. (4) is an approximation mainly because of the finite size
of the STFT window, but if model (1) holds, (4) is a very
good approximation in practice for STFT bins that contain a
significant amount of energy.

Furthermore, we define a 64×64 regular grid of 2D source
positions within the room (one position every 10 cm in both
dimensions). For every candidate source position (x, y), we
calculate the corresponding source azimuth θm(x, y) with
respect to each microphone pair indexed by m (in the present
study we use two pairs of microphones, and we set dm = d for
m ∈ {1, 2}). The corresponding (theoretical) candidate delay
is given by (2) with θ = θm(x, y). Using (4) the corresponding
(theoretical) inter-channel STFT coefficient ratio Rm(k, l) for
microphone pair m is given by:

Rm(k, l) =
Y2,m(k, l)

Y1,m(k, l)
≈ e−j2π

kd
NCTs

sin(θm(x,y)). (5)

From (5), we have:

φm(k, l) = argRm(k, l) ≈ −2π kd

NCTs
sin(θm(x, y)). (6)

This motivates the following probabilistic model, in the spirit
of the previous works on SSL cited above, in which φm(k, l)
is often referred to as the Inter-channel Phase Difference
(IPD). Let φmeas

m (k, l) denote the argument of the inter-channel
ratio calculated on the measured sensor signals (in short
φmeas
m (k, l) is the measured IPD). Given an acoustic source

emitting from position (x, y), φmeas
m (k, l) is assumed to follow

a Gaussian distribution centered on φm(k, l) (given by (6))
and of arbitrary variance σ2

φ:

φmeas
m (k, l) ∼ N (φm(k, l), σ2

φ). (7)

Note that the choice of having a variance that is independent
of k and l is just an arbitrary simplifying assumption, which
does not prevent this model to work well. In practice, (6) and
thus (7) hold for all STFT bins that contain significant signal
energy. We thus have a large set of STFT ratios that inform
about the source location. However, since φmeas

m (k, l) is a phase
measure calculated from sensor signals, it actually consists of a
principal angle value within [0, 2π[. To ensure that (6) and (7)
are not spoiled by phase ambiguity, a simple solution consists
in i) setting d to a small value to minimize t0, and ii) given
d and other parameters, selecting the low-frequency bins for
which t0 is assumed to be less than a period of the spectral
component,3 i.e:

kd

NCTs
� 1⇔ k � NCTs

d
. (8)

In practice, we set d = 5 cm and (8) is verified for a large
range of frequency bins k.

In summary, our probabilistic model for SSL consists of a
series of distribution values

p(φmeas
m (k, l)|x, y) = 1√

2πσφ
exp

(
− (φmeas

m (k,l)−φm(k,l))2

2σ2
φ

)
(9)

conditioned on source position (x, y) through (6), and evalu-
ated i) for each point of the 64× 64 source position grid, ii)
for a series of low-frequency TF bins where the sensor signals
are assumed to have significant energy and (8) holds.

In the next section, values of (9) represent the evidences
of the Bayesian fusion model. Because the BM machine uses
probability values corresponding to discrete variables, in our
practical implementation the measured IPDs φmeas

m (k, l) are
actually quantized (with a resolution that is appropriate for
the SSL problem), and values of the continuous distribution
(9) are turned into probability values. This is further detailed
in the next section.

3Another solution would be to use a circular distribution such as the von
Mises distribution instead of (7), but in the present study it is very easy to
ensure (8) and thus using (7) is fine.



B. Bayesian machines

1) Bayesian fusion: The goal of our work is to propose new
architectures to compute posterior probability distributions
from a Bayesian model. Let us consider a discrete searched
variable S, a discrete known variable K, and their joint
distribution P (S∧K). S and K can be themselves conjunction
of variables. The inference over n known variables is done
using the Bayes rule:

P (S|K1, . . . ,Kn) =
1

Z
P (S)

n∏
i=1

P (Ki|K1, . . . ,Ki−1, S)

(10)
where P (S) is the prior, P (Ki|K1, . . . ,Ki−1, S) are the
conditional distributions and Z is the normalization constant.
Notice that the inference is made by multiplying the terms.
Hence no need of addition operation. In the case of naive
Bayesian fusion, each conditional distribution is seen as a like-
lihood of independent sensor variables (a so-called evidence)
and (10) simplifies to:

P (S|K1, . . . ,Kn) =
1

Z
P (S)

n∏
i=1

P (Ki|S). (11)

In the SSL problem, the searched variable S is equal to
(X,Y ), i.e. the discrete Cartesian coordinates of the source
in the room (or equivalently, S is the index of the source
position on the localization grid). Each known variable Ki

is a quantized version of the measured IPD φmeas
m (k, l) for a

given frequency bin k and for a given microphone pair m
(SSL will be performed independently for each time frame l).
The corresponding conditional discrete distribution P (Ki|S)
is evaluated using (9). More specifically, during the design of
the BM, a large codebook of quantized (prototype) values of
φmeas
m (k, l) is first used to compute a large set of probability

values P (Ki|S) corresponding to (9). These latter are stored
in memory. Then, during actual SSL, quantized values of the
measured IPDs obtained from sensor signals are used as inputs
to the BM: they index the corresponding evidence values
P (Ki|S) in memory. After this preliminary mapping between
sensor information and evidence values, the problem of the
BM is the calculation of (11).

2) Stochastic bit stream representation: The Bayesian ma-
chine is based on computing (11) by sampling each term. Prob-
ability values are encoded by streams of stochastic bits [14],
drawn from a Bernoulli distribution. Each sample 0 or 1
represents p = P (X = xi). Discrete temporal integration over
nT steps gives an approximation of p: this is done by counting
the number n1 of 1 and dividing by nT , so we have:

n1
nT
−−−−−→
nT→∞

p. (12)

The main operation to carry out in (11) is the product between
different evidences and between prior and evidences. The
bit stream representation can perform a probability product
computation with a simple AND gate. Indeed, let p1 and
p2 be two probability values respectively encoded by their
bit stream chain B1 and B2. The chain B3 resulting from

applying an AND gate over B1 and B2 encodes the probability
p3 = p1 × p2.

3) Standard Bayesian Machine: In this subsection, we
rapidly present the architecture of the standard BM, on which
we build the improved BM. More details can be found in [7].

Let us focus on a specific value of the discrete search
variable S = sj . From (11), the machine computes :

P (S = sj |k1, . . . , kn) =
1

Z
P (S = sj)

n∏
i=1

P (ki|S = sj).

(13)
This computation (for index j) is represented on the second
line of the left part of Fig. 3. Indeed, as shown in this
figure, the architecture of the machine is shaped as a matrix
of elementary blocks, each block representing an individual
probability product operator. Each input obtained from the
sensor signals (i.e. a quantized value of measured IPD for a
given frequency bin and a given microphone pair, represented
by the value ki) is sent to every block of a given column.
Hence, the different columns correspond to different inputs
(different frequency bins and microphone pairs). The different
lines of the matrix correspond to the different values of the
search variable S. A block at position (j, i) in the matrix takes
as inputs: i) the quantized IPD value ki (or equivalently the
index representing this value in the codebook of quantized
IPDs) as stated above, and ii) the bit stream bj,i−1 representing
the product (13) up to index i − 1, which is the output of
the previous column for the same line. The right part of
Fig. 3 details the basic operator (OP). It is composed of
the AND gate to perform the product between bj,i−1 and
the bit stream representing the evidence value corresponding
to ki. As mentioned before, this evidence value is read in
the memory where all evidence values are stored. Then, a
stochastic bit stream generator (SBG) generates samples with
Bernoulli distribution corresponding to the evidence value.
The output of the AND gate is the new bit stream bj,i. In
summary, each column-wise process updates the current state
of knowledge with a new evidence.

The machine generates samples at each calculation step,
for each value of the searched variable. For each line, i.e for
each searched value, the result of the n cascaded AND gates
after m calculation steps is stored in counters. This discrete
temporal integration allows to recover the target distribution.
Indeed, the output of the machine is the normalized values of
the counters counterj∑

l counterl
which are the approximate values of

the searched distribution P (S = sj |k1, . . . , kn).

III. TACKLING TEMPORAL DILUTION WITH THE
SLICED-BM

A. The temporal dilution problem

Because of the data representation, when bit streams go
through AND gates, this inevitably leads to a decrease of
the number of “1” in the output. We call this effect the
temporal dilution. In particular, since we mainly deal with
low probability values, the bit stream representation requires
long streams to represent such low values. Fig. 4 illustrates
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this problem. The product between p1 = 0.8, p2 = 0.5 and
p3 = 0.5 is performed with two cascaded AND gates. The
resulting bit stream, encoding p1×p2×p3 = 0.2, is composed
of only two “1” in a chain of 10 bits.

B. Max-normalization

To address this problem, we first propose to maximize each
set of probability values (priors and evidences) while keeping
unchanged the ratios between the different values. To this aim,
each prior value is normalized by the maximum of prior values
and the same is done for the evidences:

Priors :
P (S = sj)

Max
s∈S
{P (S = s)}

,

Evidences :
P (Ki = ki|S = sj)

Max
s∈S
{P (Ki = ki|S = s)}

.

(14)

This process is referred to as max-normalization. At the end
of each line of the BM “matrix”, one can evaluate:

P (S = sj |k1, . . . , kn)

=
1

Z

P (S = sj)

Max
s∈S
{P (S = s)}

n∏
i=1

P (ki|S = sj)

Max
s∈S
{P (ki|S = s)}

.
(15)

Therefore, the “true” posterior probabilities can be obtained
by conventional normalization of (15).4

To demonstrate the efficiency of the max-normalization, let
us take a simple example with a uniform distribution on priors
and evidences. For simplicity, let m be here the dimension
of the search space and let n be the number of evidences
corresponding to the number of columns of the matrix. The
probability of generating a “1” for each prior or each evidence
is p = 1

m . Through the n AND gates, the probability for
each line to finally emit a “1”, and fill the corresponding
counter, is pout = 1

mn+1 . This probability quickly tends

4For an application such as SSL where we look for the maximum over j
of P (S = sj |k1, . . . , kn), this final normalization is not even necessary.

towards “0” even with small values for n and m. In this
case, the machine needs a very long time to obtain useful
information incrementing the counters. Yet, in this example,
the important information is that all counters encode the same
value. Using the max-normalization subtlety over both priors
and evidences, each normalized probability value becomes
equal to 1. Then, all tiles of the matrix output a bit stream
only composed of ”1” encoding the value 1. At each step
computation, all counters are incremented, hence the values
of the different counters remain equal. To get the approximate
value of P (S = sj |k1, . . . , kn), again, we compute the ratio
counterj∑
l counterl

=
counterj

m×counterj = 1
m which is the expected result

of the uniform law.

C. Sliced BM architecture with dynamic re-sampling

Based on the previous considerations, we propose an im-
proved BM, so-called the Sliced-BM, which architecture is
shown in Fig. 5. It is composed of multiple Standard-BM (see
Section II-B3) of limited number of columns, called slices,
with a re-sampling unit between each pair of consecutive
slices. Fig. 5 presents a Sliced-BM with two slices. In the
experiment section, we will run a Sliced-BM with 10 slices
to solve our SSL problem.

To limit the temporal dilution, we apply the max-
normalization described in Section III-B over all probability
distributions. The max-normalization allows to have at least
one tile per column with only “1s” as inputs which maximizes
the probability of having a “1” at the corresponding output.
However, when the number of evidences, and hence the
number of columns of the matrix, becomes large, the temporal
dilution problem is still present. The concept of dynamic
re-sampling is used to tackle this problem. It consists in
regenerating the stochastic signal after a subset of groups of
evidences (i.e. here after a slice). In the same way that the
Standard-BM uses an output counter bank to store the samples
of the target distribution, the Sliced-BM uses a counter bank
in each re-sampling unit to regenerate signals “with more 1s”.
To implement the max-normalization into each re-sampling
unit, as shown in Fig. 6, we set a re-sampling threshold (RT)
value for all counters. When a counter reaches this value, the
machine activates the process for the next slice, with prior
probability pj =

counterj
RT for line j. The re-sampling unit
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maximizes the output probability of a slice, and allows to
send a maximum number of “1s” (useful information) as input
of the next slice. We illustrate the particular case of a line
reaching the threshold value in Fig. 6: The stochastic bit stream
generated on line 2 is composed of only “1s”.

IV. EXPERIMENTATIONS

This section presents the experimentations conducted to
evaluate the proposed Sliced-BM architecture. To this aim, a
high-level simulator of the Sliced-BM architecture has been
implemented in C++ and Python, simulating the different
components and connections of the BM.

A. Experimental setup

1) Signals and SSL setup: The source (speech) signals were
mono-channel 16-kHz signals. The sensor signals yi,m(t) were
generated using the room impulse response (RIR) simulator of
AudioLabs Erlangen and a reverberation time of 150ms.5 The
IPDs were calculated using the Short-Time Fourier Transform
(STFT) as stated in Section II-A, with N = 1,024. As already
mentioned in Section II-A, the 6.4 m × 6.4 m room has
been discretized in 10 cm × 10 cm tiles, leading to a grid
of 64 × 64 = 4,096 candidate source positions (x, y). The
set of quantized measured IPDs and theoretical IPDs were
used to calculate the evidences P (Ki|S) of the Sliced-BM for
all candidate source positions. In order to deal with uncertain

5www.audiolabs-erlangen.de/fau/professor/habets/software/rir-generator

sensors we have chosen a fairly high value σ2
φ = 0.75 rad2

for the variance in (9).
A first round of experimentations with the sound source

placed in the center of the room provided very good local-
ization results with both the Standard-BM and the Sliced-
BM. Therefore, we choose to present in detail the results
obtained for a more difficult case, in which the temporal
dilution problem becomes a real problem. In this case, the
speaker is placed at (x, y) = (4.8 m, 1.6 m), as sketched in
Fig. 1.

2) Sliced-BM configuration: In the Sliced-BM, each line
j corresponds to a candidate position in the room. Thus, the
Sliced-BM has 4,096 lines. The column inputs ki of the Sliced-
BM are the measured IPDs for the different frequency bins k
and microphone pairs m. To limit computations, we selected a
range of frequency bins where i) the voice spectrum generally
has high energy, and ii) Eq. (8) is verified. We have chosen
the frequency band [200 Hz, 1 kHz], corresponding to bins
12 to 64 of the STFT. As we have 52 frequency bins and 2
pairs of microphones, there are 52 × 2 = 104 columns
in the Sliced-BM. The size of each slice has been set to 10
columns. The re-sampling threshold has been set to 128. Thus
each re-sampling unit waits for a counter to reach 128 before
re-sampling the stochastic signal and activating the next slice
of the machine.

B. Results

In this section, we present the experimental results. First,
we characterize the localization performance of the Sliced-
BM with the obtained probability map. Second, the Sliced-BM
and the Standard-BM are compared using the Kullback-Leibler
divergence.

1) Localization performance: Fig. 7 shows the probability
map obtained after running the Sliced-BM for 5,000,000 steps.
Typically, running the machine for such a large number of
steps provides a probability map with high precision. The
green point gives the position of the maximal counter, i.e. the
line of the Sliced-BM with the highest counter, representing
the maximum of the probability distribution. The real position
of the source is given by the red point. Clearly the localization
is not perfect, though the two points are globally in the same
region. It is important to note that the localization obtained
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Fig. 7. Probability map for Sliced-BM at 5.000.000 steps. Maximum points
of Ground truth source position (red), Source position estimated by the Sliced-
BM (green) which stays stable after 10.000 steps, Source position estimated
by the EM algorithm of [9] (orange), Source position estimated by exact
inference method (blue).

with the Sliced-BM is similar to the one obtained with the
SSL state-of-the-art algorithm of [9] using the same setup
(shown as orange point in Fig. 7). It also is very close to
the localization provided by exact inference (i.e. floating-point
calculation of (11); blue point; of course all methods were fed
with the same sensor information). Therefore, the difference
between estimated and true localization is not due to the
accuracy of the inference of the Sliced-BM but it is rather
due to i) the low amount of used STFT frames, ii) the limited
number of microphone pairs, and iii) the approximations made
by the SSL model are not sufficient for this situation. In
particular, room reverberations which are neglected in the
model probably perturb the localization, since the speaker is
located relatively close to the walls.

2) Computation speed: Since the distributions provided by
Bayesian machines are approximate and the accuracy increases
with computation time, it is interesting to inspect the results
at different computation steps. In this section, the computation
speed and output accuracy of the two BM versions is com-
pared. First, Fig. 8 displays the sum of all output counters of
the machine as a function of the number of computation steps.
This plot illustrates the temporal dilution since it shows how
many “1s” are produced at the output of the machine. One can
observe that both architectures have a certain “warm-up” time
before providing a first significant approximate result. The
Sliced-BM bars (lightblue) raise considerably between 1,000
and 5,000 steps. This is due to the re-sampling threshold (RT)
which is set to 128. Since we have 10 slices in the machine, we
need to wait at least 10× 128 = 1,280 steps before getting a
first output. The Standard-BM architecture (red bars) exhibits
a much longer warm-up time which is clearly due to the time
dilution problem. Moreover, the sum of all output counters
reaches a much higher value after 5,000,000 steps with the
Sliced-BM (about 1,728,000,000) than with the Standard-BM
(only 31,741).

Fig. 8. Sum of all output counters (on a log-scale) as a function of the number
of computation steps.

Now, we inspect the accuracy of the posterior probability
distribution computed by the BMs, denoted Pexp. To this
aim, we first calculate the theoretical probability distribution
Pth corresponding to an exact inference method, directly
combining (9) and (11). Then we calculate the Kullback-
Leibler divergence (KLD) between Pexp and Pth:

DKL(Pth, Pexp) =
∑
i

Pth(i) log
Pth(i)

Pexp(i)
. (16)

The KLD is a classical measure of the “distance” between two
probability distributions.6 Fig. 9 displays the KLD values for
both Standard-BM and Sliced-BM, as a function of the number
of computing steps. Note that, since each BM needs some
“warm-up” time as shown in Fig. 8, the plotted bars start at the
number of steps where the machine computed enough useful
information for comparison with the exact inference. The KLD
value difference between Standard-BM (in red) and Sliced-BM
(in lightblue) is due to the re-sampling method which strongly
reduces the temporal dilution. In the Standard-BM, the number
of ”1s” present at the end of all columns (and incrementing
the final counters) is very low. However, in the Sliced-BM,
the number of ”1s” is much higher so is the number of
incremented counters at the output level. This allows to obtain
a much faster and a much better approximation of the target
distribution. For example, after only 5,000 steps the Sliced-
BM nearly gets the same KLD value as the Standard-BM
after 5,000,000 steps, hence an impressive acceleration factor
of 103.

V. CONCLUSION & FUTURE WORK

In this work, a new architecture for a Bayesian machine has
been presented. This architecture tackles the temporal dilution
problem by combining max-normalization and re-sampling

6Although not symmetric, the KLD behaves as a distance. In particular
it is positive and a KLD equal to 0 indicates that the two distributions are
identical.



Fig. 9. Comparison of the Kullback-Leibler divergence between the dis-
tribution computed by the BM (standard and sliced version) and the exact
distribution as a function of the number of computation steps.

of the probability distribution calculated after integrating a
subset of evidences. This technique provides very good results
compared to the existing Standard-BM architecture, as shown
by SSL experiments. An acceleration by a factor of 103 in the
computation has been obtained.

As future work, we consider improving the architecture
using a filter-like approach to perform the localization using
multiple STFT frames and also support localization of moving
sound sources. Moreover, we will study the effect of varying
the number of columns in the slices and the value of the
re-sampling threshold. Furthermore, a measurement technique
may be developed to provide the user with an insight of the
localization quality depending on the content of the sensor
signals in the different time frames. Finally, the proposed
Sliced-BM architecture will be integrated on an FPGA to get
an analysis of the resource consumption and perform faster
and more realistic simulations.
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