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ABSTRACT

We present a new algorithm for the automatic estimation of the voic-
ing cut-off frequency (VCO), i.e., the frequency that separates the
periodic low-frequency part from the aperiodic high-frequency part
in voiced segments of natural speech. Starting from the power spec-
trum of a two pitch period speech frame, we define the VCO to be
located at the frequency for which the sum of the periodic and ape-
riodic energy in the spectral band below and above that frequency
respectively, is maximised. By formulating the problem in terms
of a score function we are able to apply a dynamic programming
based smoothing technique. Remarkably smooth and accurate VCO
contours were obtained, despite the simplicity of the proposed algo-
rithm. In a formal evaluation the algorithm compares favourably to
two existing VCO estimation techniques.

Index Terms— Speech analysis, spectral analysis, speech cod-
ing, speech synthesis, speech processing

1. INTRODUCTION

In various domains of speech signal processing the spectrum of a
speech frame is analysed in terms of its degree of harmonicity. The
observation that for most speech frames the harmonic structure is
most pronounced in the lower part of the spectrum has motivated
researchers to split the spectrum in two distinct parts : a harmonic
low-frequency part, and an aperiodic high-frequency part [1]. The
transition between both parts occurs at the voicing cut-off frequency
(VCO).

An important application of this concept is found in e.g., harmonic-
plus-noise modelling (HNM) and coding, in which the speech signal
is represented by the combination of a series of harmonically related
sinusoids and a synthetic noise signal. HNM is successfully used
for high-quality corpus-based speech synthesis, and it is suited for
high-quality speech modification as well [2]. In automatic speech
recognition systems, the decomposition of speech into a harmonic
and a stochastic part has proven to provide useful information for
the disambiguation of phones [3].

The location of the VCO can vary a lot from one section of a
speech signal to another. It is determined mainly by turbulent flow
in the vocal tract (e.g., fricative, plosive or aspiration noise), and
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also by cycle-to-cycle irregular variations in the shape of the glot-
tal excitation signal (shimmer), as well as by the perturbation of the
fundamental frequency (jitter). Moreover, even a regular evolution
of the speech signal within the analysis frame (e.g., F0 melody of
speech) can have an influence on spectral characterisation. In prac-
tice, a speech spectral slice almost never shows two clearly distinct
parts. Rather, it is very common to find adjacent harmonic-like and
noise-like bands in the mid-range frequencies. This makes the def-
inition of a hard transition point in the spectrum (the VCO) an ill-
posed problem, and its estimation is a heuristic process. Fortunately,
such a two-band model has proven to be a reasonable and effective
approximation of reality, as illustrated by the very naturally sound-
ing HNM speech [2], despite the low number of parameters involved
in this representation.

Several algorithms for the estimation of the VCO exist. Spec-
tral analysis-by-synthesis methods like, e.g., [4, 5, 6], are based on
the goodness-of-fit of the short-time speech spectrum to a harmonic
sinusoidal representation. Those methods usually do not account
for the distribution of the harmonic and noise energy along the fre-
quency axis. It is therefore not unlikely that with this strategy the
VCO is placed in the middle of a series of well-identified harmon-
ics, or in the middle of a clearly aperiodic spectral region.

This problem is circumvented by methods that inspect individ-
ual harmonics of the speech signal, and put the HN split-point at
the frequency where harmonicity seems to disappear [1]. In [2],
Stylianou classifies the speech spectrum at every pitch harmonic as
either voiced or unvoiced (binary decision), based on the peakiness
of a high-resolution FFT spectrum and on the deviation of that peak
from its expected location (the latter is a means to deal with the ef-
fects of e.g., jitter). The resulting series of ones (voiced harmonic)
and zeros (unvoiced harmonic) are further smoothed by a 3rd order
median filter. The spectrum is then considered to be voiced up to
the first pitch harmonic classified as unvoiced. The heuristic nature
of the procedure leads to the adoption of parameters for which the
optimal values are set empirically.

Alternatively, time-domain methods for VCO estimation exist,
which are generally based on a measure of the periodicity of the
(filtered) time signal, using autocorrelation functions [7, 3]. In [8],
for every candidate value f of the VCO, a periodicity score for the
low frequency band (0-f Hz) and a non-periodicity score for the high
frequency band (f -fs/2 Hz) are calculated (with fs the sampling
frequency). Both are based on the time autocorrelation function.
The VCO is then defined as the frequency for which the sum of both
scores reaches a maximum.
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In the next section, we propose a new algorithm for VCO esti-
mation. This algorithm is innovative but it also combines some ideas
from literature mentioned above [2, 8] and from our recent work [9].
It operates on a normalised power spectrum from which cumula-
tive periodic and aperiodic subband energy scores are combined and
maximised. Also, it is important to mention that for all algorithms,
excessive frame-to-frame variations of the estimated VCO are al-
most unavoidable. These variations can be significantly reduced by
applying an appropriate smoothing technique, and we describe in
section 3 a smoothing procedure to be associated with our VCO es-
timation process. The overall process is evaluated in section 4.

2. PROPOSED TECHNIQUE

We assume that an accurate pitch contour of the speech signal is
available. The pitch extraction tool from the Praat software [10]
proved to perform excellently for our purpose, but many other excel-
lent algorithms have been proposed. Unvoiced speech segments are
assigned a VCO of 0 Hz. To the voiced speech portions a variable-
length framing is applied, with a fixed frame shift in the range 2-5
ms. For each voiced speech frame with a pitch frequency of p Hz,
we now estimate the number of harmonics h, and the VCO is given
as h.p. The successive steps of the algorithm are as follows :
Spectral estimation The VCO estimation algorithm that we pro-
pose is based on the observation that the Fourier transform of a
speech frame that contains an integer number of pitch periods, is
an excellent starting point for splitting that speech frame into a har-
monic and an aperiodic part. This principle is used, e.g., in the time
domain harmonic scaling (TDHS) method of Malah [11], and in
the harmonic/noise separation technique of Jackson and Shadle [12]
who considered signal frames of four pitch-periods.

Let here s(k), k = 1 . . . N be a speech frame of two pitch pe-
riods length1, with corresponding discrete Fourier transform (DFT)
S(k), k = 1 . . . N based on a rectangular windowing :

S(k) =

NX
i=1

s(i) exp−j2π(k−1)
(i−1)

N , k = 1 . . . N

Without loss of generality and to simplify the derivation, we assume
that N is odd, and we only consider the first (N + 1)/2 DFT coef-
ficients, i.e., the “positive” frequencies of the DFT.

It is clear that the odd lines (k = 1, 3, . . . , (N + 1)/2) and the
even lines (k = 2, 4, . . . (N − 1)/2) of S(k) contain pitch periodic
(or harmonic) components and pitch aperiodic (or noise) compo-
nents of s(k), respectively. If the speech frame contains a noise part,
it will be spread over all DFT coefficients, and the harmonic part
will be perturbed. If we assume that the noise part has a relatively
smooth unvoiced spectrum, then – on average – approximately half
of its energy will be contained in the harmonic part.

Apart from the DC component, which can be assumed zero with-
out loss of generality, we haveK = (N−1)/4 pitch harmonic spec-
tral lines and K spectral lines that contribute to the aperiodic part.
We now try to find the number h (1 ≤ h ≤ K) of pitch harmon-
ics that are well resolved and that clearly exceed the neighbouring
aperiodic spectral components. In other words, we are looking for a
division of the spectrum into a low-frequency part that is maximally
harmonic, and a high-frequency part that is maximally aperiodic.
Normalisation Before proceeding we switch to the power spectrum
P (k) = |S(k)|2, and perform a spectral equalisation (normalisa-
tion) step, inspired by the observation that the estimated degree of

1Fewer pitch periods means less frequency modulation within the analysis
window, which leads to a more reliable spectral estimation.

harmonicity of a spectrum should be independent of the spectral en-
velope. We define the normalised power spectrum as :

Pn(k) =

8><
>:

1 for k = 1
(P (k)+P (k+2))/2

(P (k)+P (k+2))/2+P (k+1)
for k = 2, 4, . . . (N−1)/2

P (k)
(P (k−1)+P (k+1))/2+P (k)

for k = 3, 5, . . . (N+1)/2

Observe that two neighbouring values of Pn(k), with k > 1 always
add up to 1, and that

P(N+1)/2
k=1 Pn(k) ≈ K.

Cumulative energy We now calculate the cumulative periodic en-
ergy Eh(j) that is associated with the first j pitch harmonics. In
other words, Eh(j) is a measure of the degree of harmonicity for the
spectral bandwidth from 0 to j.p Hz:

Eh(j) =
X

i=3,5,...1+2j

max (0, Pn(i) − Pn(i − 1)) , for j = 1 . . . K

The noise subtraction in the above calculation is similar to theWiener
filtering process applied in the sinusoidal framework [13].

We also calculate the cumulative aperiodic energy Ea(j) that
is associated with the spectral part starting from the jth pitch har-
monic and up. In other words, Ea(j) is a measure of the degree of
aperiodicity of the spectral bandwidth from j.p Hz to fs:

Ea(j) = 2
X

i=2j,2j+2,...(N−1)/2

Pn(i), for j = 1 . . . K

Combining cumulative energies The VCO is now defined as the
number of harmonics j for which the combination of Eh(j) and
Ea(j) is maximised, multiplied by the frame pitch p

VCO =

„
arg max

j
Eh(j) + bEa(j)

«
. p

in which b is a parameter that controls the behaviour of the VCO
estimator. The higher b, the lower the average estimate of the VCO
will be. The optimal value will mostly depend on the application
(e.g., sometimes we want the VCO to be the frequency below which
the spectrum is mostly voiced, sometimes we rather like it to be the
frequency above which little harmonic-like spectral part is identi-
fied). From experiments, we found that the value of b is typically in
the range 0.2 - 0.6. Note that the value of b is fixed for all speech
frames. An illustration of VCO estimation from cumulative energies
is given in section 4.

Possible refinements : In practice, if one pitch period T (= fs/p)
does not contain an integer number of samples, the DFT will not
evaluate the spectrum at exactly the pitch frequencies and its har-
monics. In [9] we have shown that the error that we make is ac-
ceptable, even at the highest harmonics. An accurate estimation of
the spectral amplitudes at the exact frequencies is always possible
by performing a least squares (LS) spectral estimation instead of a
DFT-based one. Also, this can be combined with a refinement of the
pitch measure. This is what we do in the calculation of the spectro-
grams in section 4, but the method has been shown to work very well
without those refinements.

3. TIME SMOOTHING

As mentioned in the introduction, any frame-based algorithm for the
determination of the VCO can result in significant frame-to-frame
variations. The main reason for these time fluctuations is the lack
of robustness of the estimation algorithms to the ill-posed problems
they have to solve. Note that even when the VCO of an individual
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speech frame is manually annotated by different human experts, sig-
nificant differences can be observed. If the speech context (e.g., by
providing the spectrogram) is known, a more consistent VCO esti-
mate can be found using a smoothing procedure.

Most algorithms that are found in literature apply some local
smoothing technique, e.g., averaging over some neighbouring frames,
or heuristic decision-based smoothing when e.g., the difference in
measured VCO between adjacent frames exceeds some threshold.
However, the effectiveness of these approaches in producing cor-
rectly smoothed VCO contours is mostly limited.

Here we use a totally different approach to obtain a smooth and
accurate VCO contour that we presented in [9]. Instead of indepen-
dently extracting the maxima of the individual combined cumulative
energy functions, we calculate a constrained (smooth) path through
a series of these score functions, using dynamic programming (DP).
For a speech utterance containing L frames, we find the smoothed
series of values h̃1 . . . h̃L using a constrained Viterbi algorithm in
which the following total score is maximised :

h̃i ←− arg max
h̃1,h̃2...h̃i+F

i+FX
j=1

h
th̃j−1,h̃j

+ (Eh(h̃j) + b Ea(h̃j))
i

with tk,l the score for a transition from k harmonics in the current
frame to l harmonics in the next frame, and F the number of frames
of the look-ahead. In other words, h̃i at frame i is found on the basis
of information up to frame i+F . For F sufficiently large, the Viterbi
path at frame i tends not to depend on data beyond frame i + F , but
to avoid abrupt changes, search paths not passing through h̃i are
pruned. We assume that the speech is embedded in silence, such
that h0 = 0. Otherwise, another appropriate initialisation should be
made.

Since both the smoothness and the location of the optimal path
is to a large extent dependent on the values of the transition scores
tk,l, a well-considered choice has to be made. First, smoothness can
be controlled by excluding transitions that induce a frame-to-frame
change in the number of harmonics of more than e.g., 5 (note that this
is dependent on the frame update rate). Second, the smoothness can
also be influenced by the relative difference between the different
transition scores.

Based on simulations with a 3ms frame shift, we found that ex-
cellent results are obtained if only frame-to-frame changes of max-
imally 2 (high pitched speech) to 5 (low pitched speech) harmonics
are allowed, and if all other transitions are excluded. If the gender
of the speaker is unknown, a good compromise is to set tk,k±l =
10, 8, 7, 7, 6, 6 (∀k and l = 0, 1, 2, 3, 4, 5). Allowing larger transi-
tions is a means to account for the fact that in the case of a lower pitch
and/or fast speaking rate, the number of voiced harmonics should be
allowed to change faster over time. Note that excluding unlikely
transitions also significantly reduces the search space and limits the
computational load.

The look-ahead strategy that is embedded in the DP process
leads to an algorithmic delay. For off-line applications (e.g., stor-
age of compressed speech in corpus-based text-to-speech (TTS) sys-
tem [2]) the algorithmic delay is of no importance and can be user-
specified. For on-line applications, experiments indicated that a rea-
sonable look-ahead of 20 ms is sufficient in most cases for obtaining
reliable smooth VCO trajectories.

4. EVALUATION

4.1. Illustration

The VCO estimation algorithm is illustrated in figure 1 for the phoneme
/e/ (as in tail). The high resolution FFT is not used in the algorithm
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Fig. 1. Illustration of the VCO estimation algorithm : (a) time sig-
nal, (b) high-resolution FFT, (c) normalised power spectrum with
periodic lines and aperiodic lines, (d) Eh(j) (dash-dotted), b.Ea(j)
(dashed), and their sum (solid) with b = 0.4.

but it is depicted here for illustration purposes only. It can be seen
that the harmonic structure of the spectrum in figure 1.b is visible in
the lower part, whereas the upper part is much more noisy. Conse-
quently, harmonic and noise bins are much more tied together in the
upper part of figure 1.c. As illustrated in figure1.d, the cumulative
energy criterion is effective in capturing the boundary between those
regions.

The parameters of the VCO algorithm and the Viterbi tracking
have been optimised based on a training database containing sen-
tences of Dutch female speech, as well as on male and female En-
glish spoken utterances. An illustration is given in figure 2 (top part),
from which the smooth adaptation of the VCO contour to the time-
varying signal characteristics can be observed.

From our tests we have found that very accurate and smooth
VCO contours can be obtained, and that the estimated VCO contours
gracefully adapt to changes in the value of control parameter b.

4.2. Experiment

For the evaluation of the new algorithm we have set up a formal
experiment in which 11 subjects have participated (the authors not
included). We randomly selected 16 speech files (8 male, 8 female)
from a large database of English speech (the test files were not used
for the tuning of the algorithm). For each file, we estimated the
VCO contour with our new method, and with Kim et al.’s method
(CSPS) and Stylianou’s method (HI), implemented as described in
[2] and [8], respectively. Following the author’s suggestion, the HI
algorithm was combined with two consecutive median filterings of
order 5. This proved to generate smooth VCO contours. We found
that the smoothing method proposed for the CSPS method was not
able to provide sufficient smoothness. We therefore combined the
algorithm with an adapted version of our Trellis-based tracking.
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Fig. 2. Example of VCO annotation for an utterance of the words the
result is. Top : narrowband spectrogram with VCO contour obtained
with the new method. Bottom: dedicated spectrogram with VCO
curve obtained by our method (solid), the HI method (dotted), and
the CSPS method (dashed). Only voiced parts were analysed.

From each test file we created a spectrogram based on speech
frames of two pitch periods length. In order to prevent the test per-
sons from being misled by the speech formants, we removed the for-
mant information by an inverse linear prediction (LP) filtering. The
unusual resulting spectrograms guarantee that the harmonic charac-
ter of the speech (if present) is visible as much as possible. An illus-
tration is given in figure 2 (bottom part).

To each spectrogram we added the VCO contours estimated by
the three methods (the linestyles were randomly mixed for each test
file). The subjects were briefly informed about the VCO concept,
and were asked to rate the quality of each VCO contour on a scale
from 1 to 5 (1 for much below average, 5 for much above average).
Repeated views as well as rescoring were allowed.

The mean scores – averaged over the 11 subjects and over the 16
files – are 3.91 for our algorithm, 2.03 for the HI method, and 1.97
for the CSPS method. The score differences are statistically signifi-
cant: a Wilcoxon signed-rank test for paired observations gives a P-
value of 0.00043 for our method vs. the HI method, and a P-value of
0.00044 for our method vs. the CSPS. These results clearly show that
the new algorithm provides more accurate results than the reference
methods. Moreover, our algorithm performs definitely more consis-
tently over a large pitch range. The HI estimator has a tendency to
underestimate the VCO, and the CSPS seems to be very sensitive to
changes in the voiced/unvoiced ratio, which leads to large frame-to-
frame fluctuations in the estimated VCO (even when combined with
an adapted Trellis-based tracking technique).

Besides, the results indicate that our method performs slightly
better for female than for male speech. The HI method performs
better for male speech than for female speech, and the CSPS estima-
tor produces quite disappointing results for male speech.

5. CONCLUSIONS

The estimation of the VCO is a heuristic and ill-posed problem. We
have shown that the spectrum of a two pitch-period speech segment,

combined with the sum of the cumulative periodic and aperiodic en-
ergies of the lower and higher frequency band, is a simple but ex-
cellent basis for the separation of this spectrum into a periodic and
a aperiodic part. A control parameter in the summation enables the
user to set the degree of peakiness that is required for a spectral band
to be classified as harmonic.

We also described a dynamic programming approach that has
proven to provide excellent VCO contours, while the minimal algo-
rithmic delay is low and the overall complexity remains reasonable.

Even though the algorithm yields very accurate results in most
cases, there is still room for improvement, especially for low pitched
voices. Probable extensions are e.g., spectral estimation based on
prefiltered speech, and the use of 3 pitch period frames (more robust
spectral estimation but with reduced time resolution). These exten-
sions will further increase the robustness, but at the expense of a
higher computational load.
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