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Perceptual Long-Term Variable-Rate
Sinusoidal Modeling of Speech

Laurent Girin, Member, IEEE, Mohammad Firouzmand, and Sylvain Marchand

Abstract—1In this paper, the problem of modeling the time-tra-
jectory of the sinusoidal components of voiced speech signals is
addressed. A new global approach is presented: a single so-called
long-term (LT) model, based on discrete cosine functions, is used
to model the overall trajectories of amplitude and phase parame-
ters, for each entire voiced section of speech, differing from usual
(short-term) models defined on a frame-by-frame basis. The com-
plete analysis-modeling-synthesis process is presented, including
an iterative algorithm for optimal fitting between LT model and
measures. A major issue of this paper concerns the use of percep-
tual criteria in the LT model fitting process (both for amplitude
and phase modeling). The adaptation of perceptual criteria usually
defined in the short-term and/or stationary cases to the long-term
processing is proposed. Experiments dealing with the ten first har-
monics of voiced signals show that the proposed approach provides
an efficient variable-rate representation of voiced speech signals.
Promising results are given in terms of modeling accuracy, syn-
thesis quality, and data compression. The interest of the presented
approach for speech coding and speech watermarking is discussed.

Index Terms—Perceptual models, sinusoidal model, speech mod-
eling, speech processing, variable rate.

1. INTRODUCTION

DDITIVE synthesis [1] is the original spectrum modeling

technique. It derives from Helmholtz’s research and is
rooted in Fourier’s theorem, which states that any periodic
function can be modeled as a sum of sinusoids at various am-
plitudes and harmonic frequencies. The most famous technique
for additive synthesis is probably the phase vocoder [2]-[4],
which is mainly an implementation of the short-time Fourier
transform [5]. Also, the experiments conducted by Helmholtz
found new developments with computer music, when Risset
and Mathews measured the time-varying spectra of several
musical instruments [6]. For quasi-stationary pseudoperi-
odic sounds, the amplitudes and frequencies of the sinusoids
continuously evolve slowly with time, controlling a set of
pseudo-sinusoidal oscillators commonly called partials. Using
this model, so-called sinusoidal model of speech by McAulay
and Quatieri when applied to speech signals in [7], the signal
s(n) is given by

s(n) = Z A;(n) cos[f;(n)] (1)
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with
Bi(n) =Y w;(k)+6:(0) 2)

k=0

where I is the number of partials, and the functions A;(n),
6;(n), and w;(n) are the instantaneous amplitudes, phases, and
digital frequencies (expressed in radians per sample) of the sth
partial, respectively, and are slowly evolving with time.

An analysis-synthesis system based on such a model usually
requires the measurement of these parameters at the centers of
consecutive (possibly overlapping) signal frames, and the in-
terpolation of the consecutive measured values at each sample
index to reconstruct the signal by applying (1) and (2) on the
interpolated values. For this aim, a key technique called par-
tial tracking consists in following the evolutions of power spec-
trum maxima in time to form the partial trajectories [7], [8]. This
model is now used in many software packages like AudioSculpt
[9], Lemur [10], PARSHL [11], SMS [12], or InSpect [13]. For
real-time additive synthesis, several methods have been pro-
posed, either using the inverse Fourier transform [14] or digital
resonators [15], [16]. Also, this approach has been successfully
applied to a wide range of applications, such as coding [17] or
time- and frequency-stretching [18], [19].

Since the process attempts to follow the time dynamics of
speech or music, measures are generally spaced with a delay of
a few milliseconds. In the remainder of the paper, we denote
by the label short-term (ST) models, the interpolation process
that reconstructs the signal samples between two consecutive
measures spaced by such ranges of intervals (also, this segment
is called the short-term synthesis frame). In such approach,
amplitudes are generally interpolated linearly between frames,
though more sophisticated methods can be applied (e.g., cubic
polynomial interpolation). For frequency/phase trajectories, the
problem is slightly more complicated, since the frequencies are
the time-derivatives of the phases, and the phase measures are
generally provided modulo 27. Early works considered piece-
wise linear interpolation of frequencies (e.g., [20]). However, if
one wants to accurately reconstruct the signal waveform shape
(the shape-invariant property of [18]), in addition to measured
frequencies, measured phases must be respected, e.g., as with
the cubic polynomial interpolation proposed in [7]. Other
models were proposed in the literature, e.g., [21], [22].

In this paper, we focus on speech signals, and we propose
a different approach to reconstruct the signal from the mea-
sured parameters of the sinusoidal model. Instead of interpo-
lating these measures from one analysis frame center to the next,
we propose to consider longer sections of speech, beyond the
phoneme or syllable level, and model the entire trajectory of the
parameters of each partial over the considered section with a
single so-called long-term (LT) model (as opposed to the previ-
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ously mentioned short-term models). In this paper, these long
sections of speech are continuously voiced sections. In other
words, speech is first segmented into voiced and unvoiced parts,
then the sinusoidal model is applied to each one of the voiced
sections, and a single LT model is used to represent the whole
trajectory of either the amplitude or phase of a partial over this
section. In this paper, the proposed LT model for amplitude and
phase trajectories is based on a linear combination of cosine
functions, quite similar to the well-known discrete cosine trans-
form (DCT). Of course, other models are possible, as discussed
at the end of this paper.

Several remarks must be made here to better understand this
new approach. First, entirely voiced sections generally appear as
weakly nonstationary quasi-periodic signals. One can thus sim-
plify the whole analysis-modeling-synthesis process by using
the harmonicity assumption: partials become regularly spaced
harmonics. Thus, parameter measures of the same rank can be
directly associated before applying our LT model on these mea-
sures, and the partial tracking is actually avoided.! Unvoiced
sections are not considered in this paper, since they cannot be
modeled efficiently by the sinusoidal/ harmonic model (at least,
the way it is processed in this study). Other adequate models can
be used for these sections, see, e.g., [8], [11], and [23]-[25], and
part of our future work deals with testing adequate LT models
for unvoiced speech.

Second, the length and shape of entirely voiced sections can
vary widely. For example, it can contain several phonemes
or syllables (it can even be a quite long sentence in some
cases). That is why we also propose in this paper a method to
automatically adjust the complexity (i.e., the order) of the LT
model according to the characteristics of the modeled speech
section, resulting in a variable-rate modeling process. A generic
fitting algorithm, based on an iterative weighted mean square
error minimization, is proposed, and adapted for amplitude and
phase trajectories modeling. A major point is that this method
is based on perceptual optimization criteria: the model order is
iteratively adjusted so that a psychoacoustically based criterion
is achieved. This criterion is based on a frequency-domain
amplitude masking threshold model in the case of amplitude
modeling, and it is based on a frequency modulation threshold
model in the case of phase modeling. In both cases, the pro-
posed method jointly ensures optimal estimation of the model
order and optimal perceptual fitting of the model with the data.

Finally, it can be noted that the idea of modeling the long-run
trajectory of speech features was also recently proposed in [26],
simultaneously with a preliminary version of our work that only
considered phase LT modeling without perceptual criteria [27].
The authors of [26] proposed to model the trajectories of line
spectral frequencies (LSFs) parameters by a polynomial, and
they implemented a very low bit rate speech coder exploiting
this idea. However, this study significantly differs from ours on
at least three points: First, we consider sinusoidal parameters
instead of LSF. Second, we use an LT model based on discrete
cosine functions, whereas in [26], a polynomial model is con-
sidered. Third, we deal with variable-order models to capture
large variable-size trajectories, whereas the study of [26] con-
siders limited fixed-order models (four-order polynomials) en-
coding limited fixed-size sets of parameters (ten LSF values).

I'This would be also true in the short-term approach, e.g., the partial tracking
process of [7] is largely simplified in the harmonic case.

However, the study of [26] provides an inspiring basis for ap-
plying our LT modeling approach to very low bit-rate speech
coding, as discussed at the end of this paper.

This paper is organized as follows. The proposed long-term
model is described in Section II. The complete analysis-mod-
eling-synthesis process is presented in Section III, including the
description of the fitting algorithm. The perceptual criteria are
presented in Section IV, for both amplitude and phase mod-
eling. Experiments and results are given in Section V, evalu-
ating the proposed approach in terms of modeling accuracy, syn-
thesis signal quality, and data compression. Finally, the interest
of such models for speech coding and watermarking is discussed
in Section VL.

II. LONG TERM MODELS

As mentioned before, we suppose that the signal is al-
ready segmented into voiced and unvoiced parts by some
usual voiced/unvoiced classifier (not described here). For each
partial 7, 1 < ¢ < I, we consider then the problem of separately
modeling the time-trajectory of amplitude parameters A;(n)
and phase parameters 6;(n) of (1) over an entire voiced section
of speech s(n), running arbitrary from n = 0 to N. Different
kinds of models can be proposed for this task. The problem of
choosing appropriate models and comparing their performances
is more extensively discussed in Section V. We only consider in
this paper the discrete cosine model (DCM), which is a linear
combination of cosine functions

i

P,
Ai(n) = Z Cip COS (pw%) 3)

p=

where P; is the order of the model, and the P; 41 coefficients c;,
are all real. Such a model is known to be efficient in capturing the
variations of a signal (e.g., when directly applied to the signal
samples as for the DCT, or on its spectral envelope as in [28],
[29]). Thus, it should be well suited to capture the global shape
of sinusoidal parameter trajectories.

In the case of phase modeling, a linear term is added to the
model, resulting in a linear + DCM (LDCM) model

P;

A n

6;(n) = E Cip COS (pwﬁ) + ci(p+1)N- )
p=0

This linear term is quite useful for modeling the basic linear
background shape of the phase trajectories, which results from
the integration in time of the frequency trajectories. Thus, the
cosine functions are used to model the variations of the phase
trajectories around this basic linear shape. Of course, these vari-
ations are closely related to the frequency variations, as dis-
cussed in more detail in Section VI-B.

III. ANALYSIS, LT MODELING, AND SYNTHESIS

A. Analysis

Although the analysis step aims at providing the set of am-
plitude and phase measures to be long-term modeled, it is still
a short-term process as in typical analysis-modeling-synthesis
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processes. The experiments described in this paper were con-
ducted with a pitch-synchronous analysis. The voiced sections
of the processed speech signals are first pitch-marked using
Praat.2 This means each period of signal is automatically time-
labeled and used as an analysis frame.3 The fundamental fre-
quency w§ at the center of the kth period is directly given by
the inverse of the period length. Then, given the fundamental
frequency, the amplitudes A¥ and phases 6¥ of the harmonics at
the center of each period are estimated using the procedure of
George and Smith in [19]. The estimation is based on an iterative
minimum mean square error (MMSE) fitting of the harmonic
model with the signal. This analysis method has been shown to
provide very accurate parameter estimation with very low com-
putational cost.

The phase estimation provides modulo 27 values ¥ that must
be unwrapped to correctly reflect the “true” phase trajectory
that we want to model: fluctuations around an increasing linear
background shape, resulting from the summation of positive fre-
quency values in (2). The unwrapping is done by cumulate ad-
dition of M times 27 to each measured phase value, with M
given by [7]

1 i k k+1
M=e [g (ef—ef+1+i (‘”O“L% Ly

where e[z] denotes the nearest integer from x and Ly, is the
number of samples between the centers of analysis frames &
and k£ + 1. Since we used a pitch-synchronous analysis, M is
most of the time (but not always) equal to the rank of the ana-
lyzed partial. In the following, we always deal with unwrapped
phases, while keeping the same notation #¥ as before.

At the end of the analysis process, each section of K con-
secutive periods of voiced speech is represented by I sets of K
amplitude parameters A; = [ A! A2 AK1" and T sets
of K unwrapped phase parameters 8; = [0} 07 0K,
since we have one set of each parameter for each partial trajec-
tory (* denotes the transposed vector/matrix).

(&)

B. LT Model Parameters Estimation

LT modeling consists in replacing each set amplitudes and
phases, respectively, by a reduced set of DCM and LDCM
coefficients, respectively. We first give in this subsection the
general principle of the coefficients calculation, given that
the order of the model is known: this is done by a weighted
MMSE (WMMSE) minimization process. We then present an
algorithm to automatically estimate the optimal model order
and the optimal weights for each section of modeled speech.

Let us denote by N = [n; ng ng ]t the vector
containing the sample index of the signal period centers, and

2[Online]. Available: http://www.praat.org

30f course, standard techniques using a fixed-size sliding analysis window
could also be used. In this study, the pitch-synchronous analysis has the advan-
tage of providing a large amount of coherent measures (one per period of signal),
thus facilitating the fitting of the LT model, as we will see in Section III-B.

M; the K x P; + 1 matrix that concatenates the DCM terms
evaluated at the components of N

n n
1 cos (ﬂ'nﬁl) cos (27rnﬁ:)
1 cos (Wﬁ) cos (27Tﬁ)
o (FEY con (35725
(6)

Let us also denote by C; = [cio  ¢;1 Cip, ]t the vector
of LT model coefficients. When we use the LDCM instead of
the DCM, N is concatenated to M; so that we have an addi-
tional column of linear terms, and C; has one additional entry
Ci(p,+1)- Now, the WMMSE estimation of C; is given by min-
imizing the weighted mean square error between M;C and the
parameters vector V; = A; or V; = 8;, depending on which
parameter trajectory is modeled, over all possible vectors C

cos (P,ﬂr%)
cos (Pﬂrﬁ) .

. €oS (P,nrnWK)

M=

min

Lmin [vic - Vi)' wMic- V)| @

C, = arg
where W is a K x K diagonal matrix of (positive) weights
that are iteratively adjusted in the algorithm presented next.
Those weights depend on the perceptual criteria presented in
Section IV. It is important to note that, to improve modeling
accuracy, they are defined along the time axis to give a relative
importance to different time regions.

Since the modeling process intrinsically aims at providing a
reduction in data dimension, we assume# that P, + 1 < K and
the optimal WMMSE coefficient vector is classically given by

Ci = (M'WM,) " MIWV,. 8)

As mentioned in the introduction, the shape of parameter tra-
jectories can vary widely, depending on the length of the con-
sidered voiced section, the phoneme sequence, the speaker, the
prosody, or the rank of the partial. Thus, the appropriate order
of the LT model for these trajectories can also vary widely. It
is therefore crucial to find a method to automatically adjust the
order for each section of modeled speech, for each kind of pa-
rameter, and for each partial. For this aim, we propose an iter-
ative algorithm, which updates the order and the weights of the
WMMSE process according to perceptual constraints. We give
here the general form of the algorithm. The precise perceptual
criteria for amplitude and phase modeling to be used in the al-
gorithm are given in detail in Sections IV-A and B, respectively.

The general principle of the proposed algorithm is to give
more weight in the WMMSE process of (8) to time regions
where a given function f(E;) [given later in (10) and (17)] of the
modeling error E; = M;C; — V; overcomes a given perceptu-
ally based threshold model T; = [T} 17 T (also
specified later). Accordingly, smaller weights are given to time
indexes where the error is under the threshold model (steps 4
and 5 of the algorithm below). Hence, for a given model order,
the weighting vector is iteratively updated until the ratio R of

4When the LDCT model is used for phase modeling, we have C' € R¥i+2 in
(7), and we must assume that P; + 2 < K. Note that the proposed LT models
can be efficiently exploited in very-low bit-rate speech coding if in practice P;
is generally significantly lower than K (see Sections V andVI).
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the time regions where the error is below the masking threshold
overcomes a user-defined target ratio R,;,. (close to 1, e.g.,
from 0.75 to 0.90, see Section V). If the condition R > R,
holds within a maximum number of iteration Itermax, the model
order is decreased, otherwise it is increased (step 6). Then, the
weighting process is iterated. Itermax is within a range of 10-20
(see Section V). The order P; is initially set to the power of two
closest to K /4, and the order update § P;, initially set to P; /2, is
divided by two at each iteration. This allows a large increase of
the speed of the algorithm. The algorithm stops when 6 P; = 0
and the last P; value for which R > R,,;, is retained.

Algorithm to be applied to either amplitude or phase measure

sets.

1) For each time index k € [1, K] and each partial 7 € [1, I],
calculate the associated threshold T} (see Sections IV-A
and B). Form the threshold trajectory T';. Then, for each
partial ¢:

2) Initiate the order P; to the power of two closest to K/4 and
the order update 6 P; to P;/2.

3) Initiate a K -diagonal weight matrix W with all diagonal
entries set to one. Then iterate from step 4 to step 6:

4) Calculate the LT model coefficients C; with (8) and the
associated modeling error E; = M,;C; — V.

5) Increase the weight vector W according to

AW = f(E;) - T;
AW — AW + min(AW)

(so that AWis always positive)

W — W + diag(AW/ max(AW))

6) Calculate the ratio R of negative elements in f(E;) — T;.
If R < Rpnin and the maximum number of iterations
Itermax is not reached, then go to step 4.

Else if R > Ruin, set P, — P, — 6P;, set 6P; — 6P;/2,
and go to step 3.

Else if R < Ru;. and Itermax is reached, set P;
P, + 6P;, set 6P; — 6P;/2 and go to setp 3.

C. Synthesis

After calculation of the model coefficients, the synthesis is
achieved by simply applying (3) for the amplitude trajectories
and (4) for the phase trajectories, from n = 0 to N. Since the
amplitudes must always be positive values, possible local nega-
tive values (which are generally very small) are set to zero. Then,
(2) and (1) are applied to generate the synthesis signal. Note that
since their frequency varies with time, the higher-rank partials
can locally overcome the Nyquist frequency. In that case, am-
plitude values corresponding to this “no signal’s land” are also
set to zero during the analysis, modeling, and synthesis steps. In
this paper, we experimented only the modeling of the ten first
partials of voiced speech (see Section V), all of them always
lying under the Nyquist frequency. Thus we do not deal with
this problem. Also remember that, in this study, we only con-
sider voiced parts of speech. The unvoiced sections were simply
concatenated with the LT-modeled voiced sections with local
overlap-add windowing to avoid audible artifacts [19].

IV. PERCEPTUAL WEIGHTING FOR MODEL FITTING

We give in this section a presentation of the perceptual cri-
teria used in the algorithm of Section III-B. We first present the
criterion used for amplitude trajectories modeling and then the
one used for phase trajectories modeling.

A. Perceptual Criterion for Amplitude Trajectories

In the case of amplitude trajectories modeling, we considered
perceptual constraints based on the widely used frequency-do-
main amplitude masking model [30], [31]. Thus, we aim at esti-
mating the order of the LT model so that it is the minimal value
for which the modeling error power is almost always below the
masking threshold, and thus is expected to be inaudible. This
condition is a quite standard issue in perceptual speech coding
(see [31] for a complete review), but the major point here is
that the terms “almost always” evoke a constraint over time, and
not only over frequency: in the present study, we model sepa-
rately the amplitude trajectory of each partial, and the associ-
ated modeling error trajectory must lie under the trajectory of
the masking threshold over time, on the entire considered sec-
tion of K speech frames.

Therefore, for amplitude LT modeling, the first step of the
proposed algorithm of Section III-B consists in calculating a
model of the masking threshold time-trajectory over the mod-
eled speech section, from the successive short-term values of
this masking threshold. Since the modeled speech section is
considered as quasi-harmonic, we used a simplified version of
the masking threshold of the ISO standard [30] also depicted
in [31]. We calculated the short-term masking threshold at each
time index k, k € [1, K], directly from the amplitude spectrum
A¥. i € [1,1I]. Thus, we only considered the additive contribu-
tion of tonal maskers and not the contribution of noise maskers
[31]. Each individual tonal masker T} at frequency w§ = jw
has a masking contribution at frequency w¥ = iw® given by

T} = PF —0.275B + SF — 6.025 9)

where P} is the power of the masker at frequency w¥, all
powers being normalized in SPL [30], B;? is wf expressed
in Barks [32], [33], and S’fj is a piecewise-linear function of
Pf that assumes the well-known approximate triangular shape
of the masking threshold model [31]. The global short-term
masking threshold TF at frequency w’ is obtained from the
linear-scale summation over j of all individual maskers TZ’;
within a 10-Bark neighborhood, also including the abso-
lute hearing threshold contribution [31]. Then, to obtain the
time-trajectory T,; of the threshold model for each partial <,
the resulting values T are simply sorted along the time axis
according to T; = [T} T? TX]'. Note that this time
model takes into account the influence of the other partials,
since the short-term masking threshold model it is built on does.

Once the masking threshold time-model is available, it can be
compared with the power of the modeling error over time, thus
the function used in the algorithm of Section III-B is given by
(square denotes the element-wise square function)

f(E;) = %square(Ai —A)= %square(Ai - M;C;). (10)
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B. Perceptual Criterion for Phase Trajectories

The problem of estimating the model order for phase trajec-
tories with perceptual constraints is much more delicate than in
the case of amplitude trajectories. Indeed, perceptual effects of
phase distortion of sinusoidal signals are rather complex. Al-
though they have been extensively studied (see a good recent
review in [34]), they are more or less clearly identified only
in the ideal stationary case. For example, Ploboth and Kleijn
[34] or Kim [35] only considered the case of synthetic peri-
odic vowels. At the same time, relatively poor attention has
been paid to accurately encode the phase information in the
modern speech/audio coding systems, compared to the magni-
tude information. This is because phase is generally considered
of less perceptual importance compared to magnitude. How-
ever, as stressed by the authors of [34], “it is fair to state that
no sinusoidal-modeling-based speech coders exist that provide
transparent speech quality without the use of explicit informa-
tion about the STFT phase spectrum.” Thus, the recent study
of Kim [36] aimed at exploiting the result of [35] in a percep-
tually driven bit allocation process for phase quantization, but
was also limited to periodic vowels. It was also the case in [34],
in the design of perceptually weighted phase vector quantizers,
and the authors concluded that “the improvement [of their per-
ceptual encoding of phase] compared to squared-error encoding
is small and generally will not justify the additional computa-
tional effort required.” On the other hand, other studies show
the improvement of real speech coded quality when using per-
ceptually based phase codebooks, see, e.g., [37].

Now, in all those studies, the signals are assumed to be sta-
tionary, at least on each short-term frame when real speech is
considered, and phases are of the general form

91(7’1,) = 1wp X (n—no)-l—Hi(no) (11
where ng is an arbitrary time index reference (possibly the pitch
pulse event), and the fundamental frequency wq is supposed
to be constant on each frame. Therefore, perceptual studies
and quantization techniques actually concern the phase offset
6;(no), that is the constant term of phase that encodes the
relative offset between the stationary harmonics. Now, it seems
clear to us that, for real speech, phase is better described by (2)
(with harmonic relationship between frequencies in the pseu-
doperiodic case) than by consecutive local equations like (11),
since the frequencies are constantly evolving in time, more or
less rapidly. That is why we claim that phase distortion due to
the LT modeling (and possibly coding) process should rather be
described as a frequency modulation of the original frequency
trajectories, and perceptual effects should be analyzed from
this point of view.

Therefore, we propose to introduce in our LT modeling of
phase trajectory a perceptual criterion based on the control of
the error between the frequency LT model and the original fre-
quency trajectory. This frequency LT model is defined as the
derivative of the phase LT model of (4)

P;
v
N
p=0

. n
PCip SIN (p7r—) + cip41)- (12)

i(n) = N

Then, we propose to estimate the order of the LT phase model
as the lowest order that assumes that the absolute difference
between the frequency LT model and the corresponding orig-
inal (measured) frequency trajectory remains below a frequency
modulation (FM) threshold trajectory.

For this aim, we chose to exploit and extend some results
of [32] and [38] characterizing the perceptual thresholds for a
single stationary sinusoid modulated by a sinusoidal modula-
tion. In [32], [38], the FM threshold, i.e., the maximum devia-
tion Aw of the tone frequency for which the modulation remains
inaudible, has been shown to be approximately proportional to
the tone (carrier) frequency, for a given modulation frequency (if
this latter is significantly lower than the former), with an almost
constant lower bound. For example, for a modulation frequency
of 4 Hz, and a carrier frequency w greater than 500 Hz, the au-
thors of [32] propose the model

Aw = max(2 Hz, 0.0035w). (13)
Now, the fundamental frequency of usual speakers can be
seen as the carrier frequency of time-varying sinusoids, within
the approximate range 100-300 Hz. This also stands for the dif-
ferent harmonics of the signal, with a proportional range. As
the proposed LT model of phase (4) and its derivative (12) are
intrinsically “smooth,” the modeling error can be seen as a fre-
quency modulation that depends on the model order but that is
always small compared to the range of the fundamental. There-
fore, we propose to adapt the stationary case model of (13) to
the nonstationary case of LT modeling. For each partial 7, and
each frame £ of the modeled speech section, the FM threshold
model we propose to use in the LT approach is
Aw! ~ max (2 Hz, aw!) . (14)

In (14), « is a constant ratio for which the allowed range has
been estimated through pilot perceptual listening tests. These
tests have revealed that it could be tuned to a significantly higher
value than in the stationary FM case of [32], [38] without major
perceptual degradation. In the experiments of Section V-B, « is
within the range of 2%—5%.

Finally, since we used the harmonic assumption and did not
make specific measures of the frequencies for each partial in
the analysis step of Section III-A, we replace w’ in (14) by the
multiple of the measured fundamental frequency wf. Thus the
frequency masking threshold trajectory for partial ¢ in the algo-
rithm of Section III-B is finally

T = Aw; = [Aw} Aw? AwK ] (15)
with

Awf ~max (2Hz, ciwf),  forl <k < K. (16)

Accordingly, the modeling error trajectory in the same algo-
rithm is here defined by

f(E;) = abs(w; — @;) = abs(w; — Q;C;) (17

. . . t
where w; = [iw} iw? ... iwk], abs denotes the entry-

wise modulus function, and Q; is the matrix “derived” from M;,
as shown in (18) at the bottom of the next page.
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Fig. 1. Top and middle: Measured (upper raw curve) and DCM modeled (upper
smooth curve) amplitude trajectory for the second harmonic of an all voiced
male speech long sequence (11000 samples at 8 kHz, ' = 157); Masking
threshold (light curve in the middle); Modeling error (lower curve); All curves
are on log scale (decibels); R,in = 0.90. Top: before convergence of Algo-
rithm 1: R < 0.70, model order P; = 8. Errors overcoming the masking
threshold are marked by a star. Middle: after convergence of Algorithm 1: R =
0.95, order P; = 17. Bottom: measured (smooth curve) and DCT modeled
(stars) amplitude trajectory after convergence, on a linear scale.

V. EXPERIMENTS

In this section, we describe the set of experiments that were
conducted to test the presented LT modeling of amplitude and
phase trajectories. We used 8-kHz continuous speech produced
by 12 speakers (six male and six female speakers). About 3500
voiced segments of different sizes were modeled, representing
more than 13 min of signal. For each section, the first ten har-
monics were modeled. We first present in Section V-A a se-
ries of results concerning the amplitudes, and then we give in
Section V-B a series of results on the phases.

A. LT Modeling of Amplitude Trajectories

1) LT Model Fitting: We first illustrate in Fig. 1 the behavior
of the algorithm of Section III-B and the ability of the LT model

to globally fit the amplitude trajectories. We plotted the trajec-
tory of the second harmonic of a quite long sequence (= 1.4 s)
of male voiced speech. We can see that the DCM model exhibits
smooth trajectories around the amplitude measures. For this ex-
ample, the final estimated DCM order is 17, while the number
of measures is K = 157 (Rpyin = 0.90). We found out that it is
generally not necessary to force the modeling error to stay com-
pletely below the masking ratio (by setting Ry, = 100%), for
at least two reasons. First, lower ratios can provide high quality
synthesis (e.g., Ryin = 0.90 to 0.75 according to the considered
harmonic, see Section V-A2). Second, very local “strong mod-
eling efforts” might result into a lower global fitting. Thus, it
requires unnecessary computational efforts and model order in-
crease to force small irregular portions of trajectory to lie under
the masking threshold trajectory, especially when considering
that such local irregularities can result from analysis errors.

Given a range of 0.75-0.90 for R;,, it was generally found
that less than ten iterations of the weighting process of the fit-
ting algorithm were sufficient to test if the order model is appro-
priate or not (generally, after fast adaptive global shaping within
a few iterations, there is a rather small evolution of the model
from one iteration to the next). Also, it was found in practice
that the algorithm generally converges toward an order value
that is significantly lower than the number K of measures. This
illustrates the ability of the proposed LT model to intrinsically
allow data compression by efficient dimension reduction (see
Section V-A3 for quantitative results).

2) Informal Listening Tests: To qualitatively assess the per-
ceptual effects of the amplitude LT modeling, informal listening
tests were conducted on signals of the test database. In this sec-
tion, the signals were synthesized by applying the perceptually
weighted LT model on amplitudes and by linearly interpolating
the phase measures (as in [22]) before applying (2) and (1).
This was because we wanted to separate the effects of ampli-
tude LT modeling and phase LT modeling, the latter being tested
in Section V-B. Also, remember that the LT model is applied
only on the first ten harmonics. The amplitudes of the other har-
monics are interpolated linearly. For comparison, we also syn-
thesized reference signals with short-term linear interpolation
of the measured amplitudes of all harmonics (and also linear in-
terpolation of the phases).

Two subjects with normal hearing extensively listened to
the synthesized signals using a high-quality PC soundcard and
Sennheiser HD280 headphones. First, the perceptual difference
between original and synthesis signals is quite low. Second,
the main result of these tests is that the long-term amplitude
modeling generally provides a synthesis quality identical to the

0 —% sin (W%) —2]\—7,r sin (QW%) coo ——%—sin (Pﬂr%) 1
Q=10 — T sin (ﬂ'%) _2]\_7; sin (2%%) R ij sin (Pnr%) 1 (18)
0 —=%sin (ﬂ%) —2% sin (27r A) —I—;(,ﬂ sin (Pﬂr%) 1
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Fig. 2. Synthesized harmonic component corresponding to Fig. 1: amplitude
short-term linear interpolation (top) and order-17 DCT model of Fig. 1 (bottom).
Phase measures are linearly interpolated in both cases.

one obtained with the short-term linear interpolation of the
measured amplitudes. In other words, the signals synthesized
with both ST and LT amplitude models cannot be distinguished.
Moreover, this result was possibly observed even for quite low
model orders compared to the number of measures, e.g., for
rates of about 20-30 coefficients/s depending on the considered
harmonic and speaker gender. In fact, perceptual transparency
between LT and ST modeling seems to be guaranteed as long
as the modeling error power globally lies below the masking
threshold, even if it locally overcomes this threshold: a value of
Rpin = 0.75 seemed reasonable for most harmonics to ensure
transparent quality compared to short-term modeled signals,
although the two first harmonics seemed to possibly require a
higher value (e.g., 0.90). This flexibility explains that the signal
waveform shape may be significantly modified by the LT model
without major perceptual effects (see Fig. 2). This demonstrates
the efficiency of the LT version of the perceptual masking
model and suggests that the corresponding LT amplitude model
should be exploited in very low bit-rate speech coders.

3) Data Compression Gain: This subsection provides a first
quantitative assessment of possible coefficient rates. For this,
we selected the two values R, = 0.75 and R,;n = 0.90,
after the listening tests of Section V-A1. We separated the results
obtained for female and male voices, mainly because of their
different ranges of fundamental frequency. Fig. 3 displays the
model order value as a function of the length of the modeled
speech section, for all sections of our database, for harmonics 2
and 5 and for R,,;, = 0.75. These plots illustrate the diversity
of situations, e.g., long sections modeled with quite low orders
versus short sections modeled with higher orders. Then, these
order values for all voiced segments were summed and divided
by the total length of the segments, so that we obtain a mean
coefficient-rate. This was done for each harmonic from rank 1
to 10 and for R,,;, set to 0.75 and 0.90.

The results are gathered in Table 1. They show that the mean
order increases with the harmonic rank. This can also be seen
on Fig. 3: the values for harmonic 2 are more spread out and
shifted towards lower orders compared to the values for har-
monic 5. This may happen because the amplitude trajectory gen-
erally becomes more complex as the rank of the harmonic in-

Amplitude - Female - Harmonic 2

Amplitude - Female - Harmonic 5

[ 0.5 1 1.5 0 0.5 1 1.5

Amplitude - Male - Harmonic 2

Fig.3. LT model order value for amplitude modeling as a function of the length
of the modeled speech section (in second). Ry, = 75%. Top: female speakers.
Bottom: male speakers. Left: harmonic 2. Right: harmonic 5.

TABLE I
RESULTS OF LT AMPLITUDE MODELING IN TERMS OF COEFFICIENT RATES
(NUMBER OF COEFFICIENTS PER SECOND PER HARMONIC)

Harmonic 1 2 3 4 5 6 7 8 9 10
Fem. speech | 7.7 |20.9|21.7(23.027.7 |33.036.1|37.1|37.6|39.9
Ryin=0.75

Male speech | 5.4 |15.1]19.0(19.9(20.6 | 27.7 |23.5|24.5|25226.0
Ryin=0.75

Fem. speech | 16.529.9 |32.9|38.4(43.0 | 45.1 |45.8|45.7|46.0 | 46.2
Ryin=0.90

Male speech | 9.8 |20.8|23.8|252|264|27.2(27.6(27.9|28.0]28.3
Ryin=0.90

creases, partly because of stronger noise/lower harmonic power
in high-frequency regions, and corresponding difficulty to ob-
tain accurate measures. This suggests again that constraints on
order estimation (e.g., the R,;, value) should be adapted to the
harmonic rank. Unsurprisingly, the mean coefficient-rates are
higher and more spread out for female speech than for male
speech. This is coherent with the previous remark, since we must
take into account the different pitch ranges of female and male
speech. Thus, it is more costly to model a female speech har-
monic than a male speech harmonic of the same rank, whereas
female speech globally requires less resource since it contains
less harmonics. This observation is coherent with general re-
sults on the gender dependency of sinusoidal speech coding ef-
ficiency. Eventually, note that the coefficient-rates are higher for
Roin = 0.90 than for R,,;, = 0.75. This is obvious, since the
order estimation directly depends on this parameter.

Now, by averaging the mean order values across the ten har-
monics, taking R,,;, = 0.90 for harmonics 1 and 2 and R,,;, =
0.75 for harmonics 3 to 10 after the results of Section V-A2, we
obtain global mean values of 30.3 and 21.7 coefficients/s per
harmonic, for female and male speech, respectively. Therefore,
if as much female speech as male speech is considered, the mean
coefficient rate across gender and per harmonic would be 26.
Comparatively, the mean number of short-term analysis frame
per second (which is also the mean pitch value since the anal-
ysis was pitch-synchronous) was about 220 for female speech
and 140 for male speech. Thus, the LT model allows to divide
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Fig.4. (a)and (c) Measured (raw dark curve) and modeled (smooth light curve)
frequency time-trajectory for the second harmonic of a long voiced male speech
segment versus sample indexes (11 000 samples at 8 kHz, k' = 157, same sec-
tion as in Figs. 1 and 2). The frequency trajectory model, used in the perceptual
matching algorithm, is the derivative of the phase trajectory model. (b) and (d)
Frequency modulation threshold (upper light curve). Frequency modeling error
(lower dark curve); Rpnin = 0.90; a = 4%. (a), (b) Before convergence of the
modeling algorithm: R < 0.70, model order P; = 9. (c), (d) After convergence
of the modeling algorithm: R = 0.91, model order P; = 11.

the number of parameters by a factor of about 7 (at least for
the ten first harmonics), compared to the short-term synthesizer
using the pitch-synchronous measured amplitudes, while pro-
viding the same overall subjective quality (see Section V-A2).
However, it may be fairer to compare the coefficient-rates with
the ones of ST speech coders using usual fixed-size frame of
about 10-20 ms, i.e., a range of 50-100 measures per second.
In this case, the coefficient rate is divided by a factor within the
range 2—4. Note that for such application as ultralow bit-rate
speech coding, the model orders can be further decreased while
preserving acceptable synthesis quality.

B. LT Modeling of Phase Trajectories

1) LT Model Fitting: As for the amplitudes, the LT model
presents a rather good ability to globally fit the signal phase tra-
jectories. Again, we arbitrarily selected the two values R i, =
0.75 and R, = 0.90. In the case of phase modeling, we have
the additional parameter « that controls the frequency modula-
tion excursion (see Section IV-B). Figs. 4 and 5 represent the
frequency and phase trajectories for the male voiced segment of
Section V-Al. As before, the model exhibits smooth trajecto-
ries around the measures. For this example, the estimated order
of the model is 11 (with Rpin = 0.90 and o = 4%), to be
compared with the number of measures K = 157. Generally,

L L ! L

0 2000 4000 6000 8000 10000

Fig. 5. Measured (raw dark curve) and modeled (smooth light curve) phase
trajectory for the section of speech corresponding to Fig. 4(c) (male speech,
11000 samples at 8 kHz, K = 157, o« = 4%, R = 0.91, P, = 11). The
global linear term of the trajectories has been removed for better visualization.
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Fig. 6. Short-term and long-term phase synthesis signals corresponding to the
1400-2400 segment of Fig. 5. The amplitude measures are linearly interpolated.
The LT synthesis signal is first in advance on the ST one, then it is late, as could
be predicted from the phases of Fig. 5. Such dephasing can be interpreted as
frequency modulation and is inaudible in this example.

the shape invariance of the synthesis signal is globally ensured
for Ryin = 0.90, and o« =2%—-3%, since phase measures are
well fitted by the model for the related orders. If the constraints
are relaxed, local dephasing appears whereas the signal wave-
form is generally preserved (see Fig. 6, where o = 4%). This
is because in this study phase measures and not frequency mea-
sures are modeled, even if the latter are used in the perceptive
criterion.

2) Informal Listening Tests: As for amplitude modeling, in-
formal listening tests were conducted on the signals of the test
database. In this section, the signals were synthesized by ap-
plying the LT model on phase trajectories (of the first ten har-
monics) and by linearly interpolating the amplitude measures.
The two subjects mentioned in Section V-A2 listened to the
newly synthesized signals. The main result of these new tests
is that, as for amplitude LT modeling, the LT phase model can
provide a synthesis quality similar to the one obtained with
short-term interpolation of the measured phases. Because of
the additional parameter «, it was difficult to extensively test
all conditions. However, it can be reported that this result was
obtained approximately for R,;, ~ 0.80 and « < 3%. For
example, if « is set to 5%, a difference between LT and ST syn-
thesized signals can be heard for some speech sections. The per-
ceptual threshold value of « is thus difficult to evaluate, since it
seems to depend on other modeling constraints (e.g., the value
of Ruin), and possibly on additional signal characteristics (e.g.,
the amplitude of the modeled harmonic). However, it must be
stressed that the range of perceptually acceptable values of v in
this nonstationary LT modeling context is significantly higher
than the values reported in [32] for stationary sinusoidal FM:
about 0.03 in our case versus, e.g., 0.0035 in (13). This shows
that the nonstationarity of real speech signals may provide an in-
trinsic masking effect on phase distortion, compared to the more
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TABLE II
COEFFICIENT -RATES OF LT PHASE MODELING (NUMBER OF COEFFICIENTS
PER SECOND PER HARMONIC), FEMALE SPEECH, R,.,;, = 0.75

Harmonic 1 2 3 4 5 6 7 8 9 10

F. a=2% 28.3[29.5(31.0)32.4|31.8|31.1[30.7[30.2]30.0]30.0

F. a=3% 20.8|21.3(22.1]22.6[223[22.0]|21.7[21.5|214|214

F. a=4% 16.7117.017.1 173173 [17.2]117.0[16.9]16.9 | 16.9

F. a=5% 1441145]146|14.6[146|146]|145[144 145|144
TABLE III

COEFFICIENT -RATES OF LT PHASE MODELING (NUMBER OF COEFFICIENTS
PER SECOND PER HARMONIC) MALE SPEECH, R,,;, = 0.75

Harmonic 1 2 3 4 5 6 7 8 9 10
M. a=2% [24.0[24.0|243[24.2]1243[242(24.2|244(24.2]|24.0
M. a=3% 1931194 [19.5]19.6]19.6|19.619.5[19.3]19.3]19.3
M. a=4% 159(159]159(16.1]16.1 [16.0|16.0]|159[159]15.9
M. a=5% 13.9(13.8]13.8(13.8]139[13.8|13.8]|13.8[13.8]|13.8

perceptually sensitive case of stationary signals. This seems to
confirm previous similar results reported in [39]. Anyway, ex-
tensive formal listening tests should be conducted to quantify
more precisely this point.

3) Data Compression Gain: In the case of phase modeling,
the mean numbers of model coefficients per second over the
complete test database and for the ten first harmonics are given
in Table II for female speech and in Table III for male speech
(both for R,y = 0.75). As for amplitudes, the rates for female
speech are greater than the rates for male speech, but the dif-
ference is much smaller than for amplitudes. For example, for
a = 3%, the mean coefficient-rate across harmonics is 21.7 for
female speech and 19.4 for male speech, resulting in a global
rate across gender of 20.5 coefficients/s per harmonic. As could
be expected, the rate increases when « decreases, but for the
tested range of values, it always remains significantly lower than
the number of measure values.>

Now, contrary to the amplitude results, for each « value, the
coefficient-rates across harmonics remain very close. This is
confirmed by the mean standard deviation of the order, calcu-
lated across harmonics for each section of modeled speech, and
then averaged over the entire database. With R,;, = 0.75 and
a = 3%, we found 0.6 for female speech and about 0.4 for
male speech (low values are also found for other settings). This
is due to the fact that, although the LT model fits phase trajec-
tories, the perceptual criterion that drives the process is based
on frequency trajectories fitting using the harmonic assumption.
Therefore, we obtain for the different harmonics, a set of LT
models that are almost in harmonic relationship (but not exactly,
since it must jointly fit the phase measures).

Now, taking Ry, = 0.75 and o = 3%, we obtained above
a mean rate of 20.5 coefficients/s per harmonic. Thus, the LT
model allow a gain-factor of approximately 7—10 on the number
of phase parameters compared to the short-term-model-based
synthesizer using the measured phases (remember that the
mean number of measured parameters is 220 for female speech
and 140 for male speech). Compared to fixed-frame coders at
50-100 frames/s, the gain is within the range 2.5-5. Thus, as

SFor simplicity, extended results for Rumin = 0.90 are not presented, but it
can be noted that the more drastic of our tested settings, Ryin = 0.90 and
a = 2% gives a mean rate across gender of 31.5 coefficient/s per harmonic.

for amplitudes, the LT phase model could be useful for ultralow
bit-rate speech coding. Also, in such application, the model
orders could be further decreased while preserving acceptable
synthesis quality.

VI. DISCUSSION

A. Brief Summary of the Main Results

The proposed discrete cosine-based long-term model for si-
nusoidal speech amplitude and phase trajectories was shown to
fit the measured parameter trajectories very well (at least for the
ten first harmonics). An iterative algorithm provided efficient
order estimation and perceptually relevant shaping of the model
by using perceptual constraints on either amplitude or phase.
As a result, the synthesized signals were of very good quality,
at least as good as the signals synthesized with usual short-term
models. Thus, the perceptually weighted LT model appears like
a simple and efficient framework to study, mimic, and encode
the time-dynamics of voiced speech.

B. Possibility for Other LT Models

Future work should include the implementation and test of
other kinds of models. A polynomial model was also consid-
ered in our preliminary experiments on phase LT modeling [27].
It provided similar overall performances than the LDCM, while
numerical instabilities due to the wide range of calculated values
appeared when the order of the polynomial increased. This is
why we did not consider this model in the present extended
study. However, preliminary side tests let us think that this poly-
nomial model could work well and even sometimes better than
the DCM on short sections of voiced speech. Thus, future works
will concern the use and comparison of other LT models, espe-
cially including the mixing of DCM and low order polynomial
terms.

As mentioned in the introduction, the study of LT adequate
models for unvoiced speech is also under consideration. We also
plan to test a joint LT modeling of amplitude and phase, with
combined perceptual criteria, since there may be some percep-
tual interference between them [37].

C. Application to Speech Coding

The proposed LT modeling was shown to provide synthesis
signals of quality equivalent to short-term sinusoidal synthesis
while providing efficient data compression through dimension
reduction. Therefore, the presented method can be applied
to very-low bit-rate speech coding, an application where the
efficiency of the sinusoidal/harmonic model has already been
shown [17]. LT models could lead to further significantly de-
crease the bit-rate of sinusoidal coders, although it would be at
the expense of significantly increasing the encoding-decoding
delay. This latter point is penalizing for telecommunication ap-
plications although it would not prevent the use of such coders
in database storage and offline synthesis applications. Note
that, since the presently proposed LT model is of variable-rate
on variable-size frames, the resulting coders would also be of
variable-rate and variable-delay. We are currently investigating
in this direction, first addressing the problem of quantizing the
LT model parameters or an equivalent representation of these
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parameters. Note that the quantization may benefit from the
robustness to quantization of DCM coefficients as illustrated
by the DCT transform.

Of course, the principle of such LT model-based coding
should not be limited to sinusoidal context. It could be extended
to other kinds of coders, e.g., LPC-based coders with LT
modeling and coding of LSF parameters, as proposed in [26]
with a fixed and limited multiframe approach. In fact, the LT
approach could be extended to a wide range of model-based
speech/audio coding techniques of different rates and quality.
For example, for ultralow bit-rate speech coding, only the am-
plitudes and the fundamental frequency should be considered,
and not the phases of the different harmonics. On the contrary,
if one wants to accurately encode the phase values and not only
the frequency values in order to preserve the signal waveform
shape, only one additional parameter is needed from frequency
trajectory modeling to phase trajectory modeling within the LT
framework, since the frequency LT model is the derivative of
the phase LT model.

D. Application to Speech Watermarking

Finally, we recently proposed an original speech water-
marking process based on the sinusoidal model [39]. Water-
marking consists in embedding additional data in a signal in an
imperceptible way [40]. It is a technology of growing interest
for copyrights and protection of data. In [39], we proposed to
hide data within the dynamics of the frequency trajectories of
the sinusoidal model of speech, by adequately modulating these
trajectories. The watermarking process was shown to be effi-
cient if the frequency trajectories that support the modulation
were smooth enough, a property that may not be assumed by
usual frame-by-frame interpolation schemes [21], [22]. The LT
model presented in this paper is characterized by an intrinsic
smoothness and should be used efficiently in the watermarking
scheme. This point is also part of our future works.
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