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Abstract. In this paper, we consider the underdetermined convolutive
audio source separation (UCASS) problem. In the STFT domain, we con-
sider both source signals and mixing filters as latent random variables,
and we propose to estimate each source image, i.e. each individual source-
filter product, by its posterior mean. Although, this is a quite straightfor-
ward application of the Bayesian estimation theory, to our knowledge,
there exist no similar study in the UCASS context. In this paper, we
discuss the interest of this estimator in this context and compare it with
the conventional Wiener filter in a semi-oracle configuration.3
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1 Introduction

To address the difficult problem of underdetermined audio source separation,
probabilistic methods working in the Short-Term Fourier Transform (STFT)
domain have been developed, e.g. [1–4]. These methods combine a physical mix-
ture model, including source-to-microphone channel, with a source prior model.
The mixture is often considered as convolutive, while using a (complex-valued)
local Gaussian model (LGM) for the sources is now very popular. The convolu-
tive mixture is generally approximated in the STFT domain as an instantaneous
mixture at each frequency [2], even though this approximation can be questioned
when the impulse response of the mixing filters is longer than the STFT win-
dow. A more general channel model has been proposed in [3], and combined with
source LGM: the covariance matrix of the source image4 is modeled as the prod-
uct of the source power spectral density (PSD) with a spatial covariance matrix
(SCM). A full-rank SCM is claimed to appropriately model diffuse sources and

3 This work is partly supported by the French National Research Agency (ANR) as
a part of the EDISON 3D project (ANR-13-CORD-0008-02), and by the European
Research Council (ERC) Advanced Grant VHIA 340113.

4 A source image is defined as the multichannel version of the source signal, as recorded
at the microphones [5].



to overcome to some extent the limitation of the convolutive-to-multiplicative
approximation [3], whereas the SCM model reduces to the convolutive model
when the SCM is rank-1.

In all these papers, the coefficients of the channel model are considered as pa-
rameters of the overall probabilistic model. The source signals are considered as
latent variables. The inference of sources and the estimation of (source and chan-
nel) parameters are made using an Expectation-Maximization (EM) algorithm
or a similar two-step iterative procedure. Considering the channel coefficients
as random variables or random processes, hence additional latent variables, has
been recently proposed in a few audio source separation studies [6–9]. In [6, 8], a
prior distribution is assigned to the channel coefficients. This enables to introduce
prior information about the mixture and acoustic environment in a principled
manner, e.g. dependencies of the channel with source location or knowledge on
room acoustics. In [7, 9] a time-varying channel is considered as a random pro-
cess and is estimated using a hidden Markov model with states corresponding to
source direction of arrival (DoA) [7] or using a more general Kalman smoother
[9]. The whole model solution is obtained following the variational EM method-
ology, which relies on the approximation of the joint posterior distribution of
hidden variables (for instance source and channel) into a factorized form [10].

In a general manner, in all the above-mentioned studies, the extraction of the
source signals from the mixture signal is made by some kind of Wiener filtering,
in the E-step of the EM. Wiener filters are built from the current value of source
parameters and from the current value of channel coefficients, be these latter
considered as parameters or random variables. In turn, the new source estimates
are used to update the channel coefficients (in the M-step or in some other
part of the E-step). Therefore, channel estimation and source signal estimation
are two separate sequential processes. Yet, in a fully Bayesian approach, where
source and channel coefficients are considered as random variables, the posterior
distribution of the source, and the associated source MMSE estimator, take a
more general form: a stochastic integral that is generally not tractable [1, 11].
Therefore, the (standard or variational) EM methodology can be seen as a way
to break this intractability into an iterative sequential process that is suboptimal
at each iteration but that is globally efficient.

In the present study, we consider the convolutive case, and we consider the
mixing matrix in the STFT domain as a latent variable affected with a prior
distribution. Instead of the sequential channel estimation and Wiener filtering
inherent to the EM, we propose to directly estimate the source image, i.e. the
product of a monochannel source and the corresponding mixing vector, by its
posterior expectation, i.e. the “fully Bayesian” MMSE estimator applied to the
source image. Hence, in contrast to the EM, the mixing filters are considered
here as a latent random variable during the source inference step. This may
sound quite trivial at first sight, but the inference of the product of two random
variables is not easy. In particular, we assume that the posterior probability
of the filter-source product does not factorize, as opposed to what is done in
approximate variational methods [7, 9]. In Section 2, we discuss this important



point in more details and explain how the source image estimator contrasts with
the conventional (convolutive) Wiener estimator. Actually, we put in evidence
theoretical links between latent mixing vectors and the SCM model of [3].

Unfortunately, just like in the general case, the source image MMSE estima-
tor takes the form of an intractable stochastic integral. Nevertheless, we further
derive an advanced formulation of that stochastic integral in the case where the
mixing filters follow a complex Gaussian distribution. The resulting expression
depends on the source distribution, and though we use the LGM source model
in the present study, the formulation is valid for any other distribution. We then
turn to numerical approximation techniques to compute values of the source im-
age estimator. We conduct experiments using a very basic sampling technique,
for instance the Metropolis algorithm [12, chap. 3]. We validate this approach in
a “semi-oracle” configuration, where the source and channel parameters are esti-
mated “offline” from the individual source images. In the present study, we only
implement and discuss the inference step (in this semi-oracle configuration). The
design of a complete blind separation process based on the proposed inference
scheme and most likely of iterative nature, is out of the scope of the present
paper. This paper must be considered as a prospective paper that discusses the
use of a direct source image inference scheme in the UCASS framework, and
positions this approach w.r.t. Wiener filtering.

Note that although the principle of the direct source image estimator is simple
in essence, we could not find any paper exploring this idea in the present UCASS
framework and reporting associated experiments. Probably the need to resort
to computationally heavy sampling schemes can explain it. For example, a sam-
pling process was applied to source separation in [11], but this study only dealt
with instantaneous mixtures with mixing parameters assumed to be known. The
present study however echoes [13], in which a joint system and signal Kalman fil-
ter was proposed and applied to single-channel speech enhancement and speech
dereverberation. Interestingly, this joint scheme was opposed to a dual scheme,
with sequential system and signal estimation, which can be seen, according to the
authors of [13], “as a sequential variant of the EM procedure.” The distribution
of the source-system product within the joint Kalman filter was sampled using
the Unscented Transform. In short, [13] considered a unique speech signal and a
dynamic system, and the present paper considers a source separation problem,
with stationary filters that can be easily extended to non-stationary filters.

2 Latent mixing filters and estimation of source image

2.1 Principle

As in many source separation methods, the mixture signal is modeled as a convo-
lutive noisy mixture of the source signals. Relying on the so-called narrow-band
assumption, i.e. the impulse responses of the mixing filters are shorter than the
time-frequency (TF) analysis window, the I × 1 mixture signal is expressed in



the short-time Fourier transform (STFT) domain as:

xf` = Af`sf` + bf` =

J∑
j=1

aj,f`sj,f` + bf`, (1)

where f ∈ [1, F ] is the frequency bin index, ` ∈ [1, L] is the frame index,
sf` = [s1,f`, . . . , sJ,f`]

> ∈ CJ (where symbol .> denotes the transpose oper-
ator) is the vector of source coefficients, considered as a latent variable, Af` =
[a1,f`, . . . ,aJ,f`] ∈ CI×J is the mixing matrix (aj,f` ∈ CI is the mixing vector
for source j), and bf` = [b1,f`, . . . , bI,f`]

> ∈ CI is a residual noise.

In the present study, we consider the mixing filter matrix Af` as a latent
variable, as opposed to a parameter as done in most audio source separation
studies.5 Moreover, in contrast to the classical use of a Wiener filter, we propose
to estimate a source image signal yj,f` = aj,f`sj,f` directly by its posterior
expectation, i.e. the MMSE estimator:

ŷj,f` = Eq(H)[aj,f`sj,f`] = Eq(aj,f`,sj,f`)[aj,f`sj,f`], (2)

where Eq denotes the mathematical expectation w.r.t. the probability density
function (PDF) q, q(.) denotes the posterior probability of a variable, i.e. q(.) =

p(.|x), andH denotes the complete set of hidden variables, i.e.H = {Af`, sf`}F,L
f,`=1

= {aj,f`, sj,f`}F,L,J
f,`,j=1. Note that we assume for simplicity that all distributions

factorize over f and `. We also naturally assume that sources and filters are in-
dependent in the prior sense, i.e. p(aj,f`, sj,f`) = p(aj,f`)p(sj,f`). However, and
very importantly, we do not want here q(aj,f`, sj,f`) to factorize over aj,f` and
sj,f`, as opposed to what was done in the variational approximation approach,
e.g. [7, 9]. This is for two reasons: i) In a general manner, a joint process is opti-
mal compared to a combination of subprocesses. For instance, we want to take
benefit from a possible posterior correlation between source and mixing filter.
ii) We want the proposed inference process to account for a diffuse source, seen
as the “sum” of (possibly many) punctual sources with identical PSD and fil-
tered with slightly different filters. Here the expectation in (2) takes the role of
such summation. In contrast, factorizing q(aj,f`, sj,f`) over aj,f` and sj,f` would
lead to ŷj,f` = Eq(aj,f`)[aj,f`]Eq(sj,f`)[sj,f`] = âj,f`ŝj,f`, i.e. a “unique” filtered
source estimate, loosing the ability to represent diffuse sources. Note that the
EM/Wiener approach within the convolutive mixture model is also problematic

5 Considering the filters as latent variables enables us to make them depend on the
time frame ` at no additional cost, compared to frame-independent latent filters Af ,
given that both models have the same set of parameters. This also comes at a much
lower cost than the parametric case. However this does not necessarily mean that
we have “trajectories” of filters, as for the moving sources or moving sensors in [7,
9]. This simply allows the realization of the filters to be different for each frame, e.g.
modeling slight movements of sources around their mean position. In the following,
aj,f` is assumed wide-sense stationary (WSS) along `, hence its mean and covariance
matrix do not depend on `.



in this regard: a single mixing vector estimate âj,f` is used to build a single
Wiener filter, whose ability to filter out diffuse sources is questionable.

Before entering into the technical derivation of (2), we now want to mention
that considering the mixing filters as (WSS) latent variables also has a very inter-
esting interpretation in terms of spatial properties of the sources from the prior
distribution point of view. Indeed, let us define µa,j,f = Ep(aj,f`)[aj,f`] the (prior)

mean vector of aj,f`, and Σa,j,f = Ep(aj,f`)[(aj,f` − µa,j,f )(aj,f` − µa,j,f )H] its

(prior) covariance matrix (.H denotes the conjugate transpose operator). Then,
assuming prior uncorrelation between source and filter, the prior covariance ma-
trix of a source image is given by:

Ry,j,f` = Ep(H)[yj,f`y
H
j,f`] = Ep(sj,f`)[|sj,f`|

2]Ep(aj,f`)[aj,f`a
H
j,f`], (3)

hence
Ry,j,f` = vj,f`Ra,j,f , (4)

where vj,f` = Ep(sj,f`)[|sj,f`|2] is the PSD of source j at TF-bin (f, `), and

Ra,j,f = Ep(aj,f`)[aj,f`a
H
j,f`] = µa,j,fµ

H
a,j,f + Σa,j,f (5)

is the 2nd-order moment of the corresponding mixing filter. In conventional
studies using the (time-invariant) convolutive model with aj,f considered as a
parameter, (4) holds with Ra,j,f being defined as Ra,j,f = aj,fa

H
j,f and thus lim-

ited to be rank-1. In the parametric context Ra,j,f is referred to as the spatial
covariance matrix (SCM) of source j, and an extension to a full-rank SCM has
been proposed in [3]. This full-rank matrix is assumed to model well a diffuse
source, though interpreting this model in terms of the process generating the
source image is not easy. An interpretation was given in [4, 6] in the form of a
finite summation of punctual sources filtered by different filters, all considered
as parameters during the source inference step. In contrast, considering the mix-
ing filter as a latent variable as proposed in the present study enables to directly
define Ra,j,f as a full-rank matrix with (5), while keeping the mixture comfort-
ably described by a simple convolutive model (i.e. one source-filter product per
image source signal). Obviously, the proposed filter model reduces to the para-
metric convolutive case when Σa,j,f tends to zero. Hence, we believe that the
fully probabilistic model presented in the present paper generalizes —or at least
provides an elegant interpretation of—, the “parametric” definition of the SCM.
It actually provides an elegant probabilistic interpretation of both the genera-
tion of diffuse source signals, as a “probabilistic convolution” (a probabilistic
source-filter product in the TF domain), and their estimation, as a continuous
summation of source-filter products.

2.2 General expression of the source image MMSE estimator

Let us now provide some technical derivations, starting with a general formula-
tion of the source image MMSE estimator. Eq. (2) writes:

ŷj,f` =

∫ ∫
aj,f`sj,f`p(Af`, sf`|xf`)dAf`dsf`. (6)



Since we have p(Af`, sf`|xf`) =
p(xf`|Af`,sf`)p(Af`)p(sf`)

p(xf`)
, (6) rewrites:

ŷj,f` =
1

p(xf`)

∫
sj,f`

(∫
aj,f`p(xf`|Af`, sf`)p(Af`)dAf`

)
p(sf`)dsf`. (7)

Note that this expression is completely independent of the form of all densities.
It only relies on definition (6) and the Bayes product rule. Obviously, (7) can
be extended in the Bayesian sense by including priors on the parameters of the
different distributions. In the present work, we stick to the above form.

2.3 The Gaussian case

In this section, we go a bit further and derive a “simplified” or “advanced”
form of the source image MMSE estimator in the case where the mixing filters
are assumed to follow a complex Gaussian distribution. For this aim, let us
first specify and reshape p(xf`|Af`, sf`)p(Af`). As in several other studies, bf`

is assumed to be a zero-mean circular stationary complex Gaussian noise, i.e.
p(bf`) = Nc(bf`;0,Σb,f ), where Σb,f is the noise covariance matrix to be
estimated.6 In addition, bf` may be assumed to be isotropic, i.e. Σb,f = vb,fII
with vb,f ∈ R+ and II denoting the identity matrix of size I. We thus have
p(xf`|Af`, sf`) = Nc(xf`;Af`sf`,Σb,f ). Now it is natural to assume that the
mixing filters Af` follow a complex Gaussian prior distribution, since the latter is
the conjugate prior of the Gaussian distribution for the mean parameter. For the
sake of technical derivation, Af` is first vectorized by vertically concatenating
its J columns aj,f` into a single column vector a:,f`, i.e. a:,f` = vec(Af`) =
[a>1,f`, . . . ,a

>
J,f`]

> ∈ CIJ . Then we assume:

p(Af`) = p(a:,f`) = Nc(a:,f`;µa,f ,Σa,f ), (8)

where the mean vector µa,f ∈ CIJ and the covariance matrix Σa,f ∈ CIJ×IJ

are parameters to be estimated. µa,f is the concatenation of the individual mean
mixing vectors µa,j,f , j ∈ [1, J ], defined for each source. Σa,f is block diagonal,
assuming prior decorrelation of filters corresponding to different sources.

Let us then rewrite Af`sf` =
J∑

j=1

aj,f`sj,f` = (s>f`⊗ II)a:,f` = Uf`a:,f`, with

Uf` = s>f` ⊗ II (⊗ denotes the Kronecker matrix product). Then, we can write:

p(xf`|a:,f`, sf`)p(a:,f`) = p(a:,f`|xf`, sf`)p(xf`|sf`), (9)

since both sides are equal to p(xf`,a:,f`|sf`). Because p(a:,f`) is the conjugate
prior of p(xf`|a:,f`, sf`), p(a:,f`|xf`, sf`) is a complex-Gaussian distribution that
can be written p(a:,f`|xf`, sf`) = Nc(a:,f`;µd,f`,Σd,f`). Then, since a:,f` is
Gaussian and bf` is Gaussian, it follows that p(xf`|sf`) is a Gaussian distribution

6 The proper complex Gaussian distribution is defined as Nc(x;µ,Σ) =
|πΣ|−1 exp

(
− [x−µ]HΣ−1[x−µ]

)
, where |.| denotes the matrix determinant [14].



that can be written p(xf`|sf`) = Nc(xf`;µe,f`,Σe,f`). Identifying the quadratic
terms in a:,f` in (9), we get:

Σ−1d,f` = UH
f`Σ

−1
b,fUf` + Σ−1a,f . (10)

Then, identifying the linear terms in a:,f` in (9), we get:

µd,f` = Σd,f`(U
H
f`Σ

−1
b,fxf` + Σ−1a,fµa,f ). (11)

Then, identifying the quadratic terms in xf` in (9) and applying the matrix
inversion lemma [15, pp. 18-19], we get:

Σ−1e,f` = Σ−1b,f −Σ−1b,fUf`Σd,f`U
H
f`Σ

−1
b,f

⇔ Σe,f` = Σb,f + Uf`Σa,fU
H
f`. (12)

Finally, identifying the remaining linear terms in xf`, we get:

µe,f` = Σe,f`(Σ
−1
b,fUf`Σd,f`Σ

−1
a,fµa,f ). (13)

Now we can inject (9) into (7), and we get:

ŷj,f` =
1

p(xf`)

∫
sj,f`µd,j,f`Nc(xf`;µe,f`,Σe,f`)p(sf`)dsf`, (14)

with µd,j,f` being the sub-vector of µd,f` that corresponds to source j. If we

concatenate the source images as yf` = [y>1,f`, . . . ,y
>
J,f`]

> ∈ CIJ , we can rewrite
(14) for all sources in compact form:

ŷf` =
1

p(xf`)

∫
(sf` ⊗ II)µd,f`Nc(xf`;µe,f`,Σe,f`)p(sf`)dsf`. (15)

Note that (14) and (15) are valid for any source distribution. In the following,
we use the LGM with diagonal covariance matrix: p(sf`) = Nc

(
sf`;0,vf` =

diagJ(vj,f`)
)
. Even for such a classical source distribution, the integral in (14)

or (15) has no closed-form expression since µd,f` is a non-linear function of sf`
implying the inversion of a quadratic form (which is also present in µe,f`). Also,
(14) or (15) requires the calculation of the observation marginal density p(xf`),
which is a classical obstacle in inference problems. Therefore we have to turn
towards sampling techniques.

2.4 Inference of source image using Metropolis algorithm

For the computation of values of the source image estimator (15), in the present
study, we propose to use the Metropolis algorithm. Because this algorithm is very
classical and quite basic, and because of room limitation, we will not present it
into details. The reader is referred to [12] for a general overview of sampling
techniques, and to [12, chap. 3] for a tutorial on the Metropolis algorithm.



3 Experiments

In this section, we report experiments conducted with three different stereo (I =
2) mixtures of J = 3 speech signals.7 In Mix 1 and Mix 2, the source signals
were monochannel 16 kHz signals randomly taken from the TIMIT database
[16]. The source images yj(t) were individually generated using the room impulse
response (RIR) simulator of AudioLabs Erlangen.8 The setting was the following:
room size 7 m × 5 m × 2.5 m, sensor array placed at (3.5 m , 1.5 m , 1.5 m),
distance between microphones d = 0.15 m, reverberation time T60 = 150 ms,
source-to-sensor distance 1.2 m. In Mix 1, sources s1, s2 and s3 are initially
located at azimuths −45◦, 0◦, 45◦, respectively, and they all move by 20◦ around
the microphone array, within the signal duration of 2 s. In Mix 2, they start
at azimuths −75◦, −25◦, 25◦ and they all move by 50◦. Finally, for Mix 3,
three speakers were (separately) recorded in an office (T60 ≈ 0.6 s). They were
initially located at azimuths −45◦, 0◦, 45◦, at 1.5 m from a two-microphone
array (omnidirectional), and moved by about 45◦ in 2 s.

The STFT window was a 1024-point sine window with 50% overlap. The
parameters µa,f and Σa,f were set to “semi-oracle” values calculated from the
individual source images. More precisely, for each j ∈ [1, J ], µa,j,f and Σa,j,f

were calculated from yj,f`, the STFT of yj(t), following the spirit of the full-rank
SCM initialization in [3]: yj,f` was first normalized in phase, i.e. we calculated
ỹj,f` = yj,f`e

−iarg(y1,f`); then µa,j,f and Σa,j,f were calculated as the empirical
mean and empirical covariance matrix of ỹj,f`, ` ∈ [1, L]; finally, vj,f` was calcu-
lated for each frame by vj,f` = 1

I trace(R−1a,j,fyj,f`y
H
j,f`). The noise variance vb,f

was set to 10−6 times the average PSD of the mixture signal. The semi-oracle
setting of the parameters is of course an artificial close-to-optimal configuration
that ensures very good separation performance (as verified in Table 1).

The computation of the Metropolis source image estimator was made using
the semi-oracle values of the parameters and the mixture signal, with the PDF
in the integral of (15) used as the target distribution and a complex-Gaussian
distribution used as the candidate distribution. 15, 000 samples were drawn at
each TF bin (1, 000 for burn-in). The separation of each 2s-mixture required
about 4 hours on a 4-core 2.3GHz Intel Core i7 using the Matlab Parallel Tool-
box. For comparison, the rank-1 Wiener estimator (R1W; as used in [2]) and the
full-rank Wiener estimator (FRW; as used in [3]), using the same semi-oracle
values of the parameters, were calculated as:

ŷj,f` = vj,f`µa,j,fµ
H
a,j,f

(
J∑

k=1

vk,f`µa,k,fµ
H
a,k,f + vb,fII

)−1
xf`, (16)

ŷj,f` = vj,f`Ra,j,f

(
J∑

k=1

vk,f`Ra,k,f + vb,fII

)−1
xf`. (17)

7 Matlab code and data are available at:
www.gipsa-lab.grenoble-inp.fr/~laurent.girin/demo/lva2017.zip.

8 www.audiolabs-erlangen.de/fau/professor/habets/software/rir-generator.



Mix 1 Mix 2 Mix 3

Method Meas. s1 s2 s3 s1 s2 s3 s1 s2 s3
SDR 14.28 12.49 8.83 12.52 10.01 7.47 -3.39 -1.28 -2.55

Rank-1 SAR 16.28 15.12 8.78 14.95 13.12 8.70 2.21 1.62 1.92
Wiener SIR 17.18 14.25 7.77 15.52 12.71 7.05 0.56 -0.96 0.93

ISR 16.30 18.70 14.56 14.59 14.88 14.14 1.35 3.73 3.96

SDR 19.88 15.54 13.98 18.88 14.56 13.67 7.68 8.96 8.22
Full-Rank SAR 22.43 17.25 16.44 20.89 16.79 12.05 10.74 6.71 7.13

Wiener SIR 24.94 19.31 18.14 23.47 19.46 12.44 11.56 6.14 7.27
ISR 24.04 20.29 19.74 23.33 18.59 19.38 11.82 12.64 12.26

SDR 19.99 15.82 14.02 18.86 14.64 13.56 7.62 8.94 8.29
Proposed SAR 22.62 18.27 16.24 21.30 16.46 12.41 9.70 6.14 6.85

SIR 26.24 21.93 18.38 25.16 19.21 13.05 10.88 5.54 7.10
ISR 24.48 20.57 20.12 23.32 18.88 19.77 12.10 12.89 12.84

Table 1. Separation performance (in dB). Best scores across methods are in bold
(when the difference is larger than 0.1 dB).

Four standard audio source separation objective measures were calculated be-
tween the estimated and ground truth source images, namely: signal-to-distortion
ratio (SDR), signal-to-interference ratio (SIR) signal-to-artifact ratio (SAR) and
image-to-spatial distortion ratio (ISR) [17]. The results are presented in Table 1.
We can see that both the FRW and the proposed estimator provide separation
measures that are notably larger than the R1W. This confirms that both are
able to efficiently exploit the spatial information on the mixture encoded in the
SCM (remember that for each source, the SCM is equivalent to the second-
order moment of the mixing filter, see (5)). For Mix 1 (sources moving relatively
slowly), the proposed estimator performs globally better than the FRW. For Mix
2 (sources moving more rapidly), the results of the proposed estimator and FRW
are more similar. Finally, the results for the real recordings tend to slightly favor
FRW, even if the difference in SDR is especially small.9

4 Conclusion

Altogether, these results show the potential of the proposed method to overcome
the state-of-the-art. As opposed to the Wiener filter build from the full-rank
spatial covariance matrix of [3], the proposed source image estimator has the
freedom to use the latter to independently estimate (an infinite set of) filter
values at every frame and use it for image source estimation. In contrast, the
Wiener filter of [3] directly uses the same spatial information at every frame.
Yet, the results for real recordings are mitigated. The proposed estimator may be
more sensible than the full-rank Wiener filter to the convolutive-to-multiplicative
approximation for long mixing filters, for reasons that must be investigated. We
will also work on improving the sampling scheme, and integrating the proposed
estimator in a fully blind (iterative) separation process.

9 So far, no statistical test could be performed on a large set of mixtures to test the
significativity of the results because of the huge computational cost of the Metropolis.
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