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ABSTRACT

In this paper we address the problem of enhancing speech signals
in noisy mixtures using a source separation approach. We explore
the use of neural networks as an alternative to a popular speech
variance model based on supervised non-negative matrix factoriza-
tion (NMF). More precisely, we use a variational autoencoder as
a speaker-independent supervised generative speech model, high-
lighting the conceptual similarities that this approach shares with
its NMF-based counterpart. In order to be free of generalization is-
sues regarding the noisy recording environments, we follow the ap-
proach of having a supervised model only for the target speech sig-
nal, the noise model being based on unsupervised NMF. We develop
a Monte Carlo expectation-maximization algorithm for inferring the
latent variables in the variational autoencoder and estimating the un-
supervised model parameters. Experiments show that the proposed
method outperforms a semi-supervised NMF baseline and a state-of-
the-art fully supervised deep learning approach.

Index Terms— Audio source separation, speech enhancement,
variational autoencoders, non-negative matrix factorization, Monte
Carlo expectation-maximization

1. INTRODUCTION

Speech enhancement is a classical problem of speech processing,
which aims to recover a clean speech signal from the recording of a
noisy signal, where the noise is generally considered as additive [1].
In this work we address single-channel speech enhancement, which
can be seen as a an under-determined source separation problem,
where the sources to be separated are of different nature.

Statistical approaches combining a local Gaussian modeling of
the time-frequency signal coefficients with a variance model have
attracted a lot of attention in the past few years [2]. Within this
framework, non-negative matrix factorization (NMF) techniques are
especially popular to structure the time-frequency-dependent signal
variance [3]. Recently, deep neural networks were also success-
fully investigated for speech enhancement, to generate either time-
frequency masks or clean power spectrograms from noisy spectro-
grams [4], or to model the signal variance [5] (here in a multichannel
framework). Similarities between NMF and standard autoencoders
have been reported in [6]. The recent approach [7] also falls into the
variance modeling framework. Very interestingly, the authors devel-
oped a semi-supervised single-channel speech enhancement method
mixing concepts of Bayesian inference and deep learning, through
the use of a variational autoencoder [8].

In the present work, we follow a similar approach, using a
speaker-independent supervised Gaussian speech model based on a
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variational autoencoder. For a given time-frequency point, it mainly
consists in modeling the speech variance as a non-linear function
of a Gaussian latent random vector, by means of a neural network.
Compared with [7], we further introduce a time-frame-dependent
gain in order to provide some robustness with respect to the loudness
of the training examples. The noise model is Gaussian and based
on unsupervised NMF, so as to be free of generalization issues re-
garding the noisy recording environments. We propose a new Monte
Carlo expectation-maximization algorithm [9] for performing semi-
supervised speech enhancement. Experimental results show the
superiority of our approach compared with a baseline method using
NMF, and also compared with a state-of-the-art fully supervised
deep learning approach [10].

We first provide in Section 2 a brief presentation of the NMF-
based variance modeling framework commonly used in audio source
separation. This will help us emphasizing the conceptual similari-
ties shared with the speech model used in this work. In Section 3
we present the model. Our inference algorithm is detailed in Sec-
tion 4. The optimization problem related to the variational autoen-
coder training is presented in Section 5. Experiments are described
in Section 6 and we finally conclude in Section 7.

2. VARIANCE MODELING FRAMEWORK

We work in the short-term Fourier transform (STFT) domain. For all(f, n) ∈ B = {0, ..., F − 1}×{0, ...,N − 1}, where f denotes the fre-
quency index and n the time-frame index, the single-channel speech
enhancement problem consists in recovering the clean speech STFT
coefficients s

fn

∈ C from the noisy observed ones x
fn

= s
fn

+ b
fn

,
where b

fn

∈ C is a noise signal. The source STFT coefficients are
modeled as complex circularly symmetric Gaussian random vari-
ables [2]:

s

fn

∼N
c

(0, v
s,fn

); b

fn

∼N
c

(0, v
b,fn

), (1)

whereN
c

(µ,�2) denotes the complex proper Gaussian distribution,
which is circularly symmetric (rotational invariant in the complex
plane) if µ = 0. Under a local stationarity assumption [11], the vari-
ances in (1) characterize the short-term power spectral density of
the audio source signals. Note that this Gaussian model has been
recently extended to other complex circularly symmetric and ellip-
tically contoured distributions [12], such as the symmetric alpha-
stable [13] or the Student’s t [14] distributions.

A widely used linear variance model for the source signals relies
on NMF. For j ∈ {s, b}, let W

j

∈ RF×Kj+ be a matrix containing K

j

spectral patterns, and let H
j

∈ RKj×N+ be a matrix containing the
activations of these spectral patterns over the time frames. At each
time-frequency point (f, n) ∈ B, the variance v

j,fn

is modeled as
follows:

v

j,fn

= (W
j

H
j

)
f,n

=w�
j,f

h
j,n

, (2)



where w�
j,f

∈ RKj+ is f -th row of W
j

, h
j,n

∈ RKj+ is n-th column
of H

j

, and ⋅� denotes the transposition operator. Without any ad-
ditional constraint on the model parameters, the NMF rank K

j

is
generally chosen such that K

j

(F + N) � FN . Compared with
the unconstrained Gaussian model in (1), the number of parameters
to be estimated is therefore considerably reduced, which is of great
interest for solving an under-determined problem.

In a semi-supervised speech enhancement setting [15], W
s

is
learned on a clean speech database. The variance model in (2) is
therefore seen as a linear function of the activations. Then, in the
speech enhancement algorithm, only the speech activation matrix
H

s

and the noise NMF parameters W
b

and H
b

are estimated from
the observation of the noisy mixture signal. It has been shown in
[3] that maximum likelihood estimation of the NMF parameters un-
der this Gaussian model amounts to solving an optimization problem
involving the Itakura-Saito divergence. An optimal estimate of the
speech signal in the minimum mean square error sense is then ob-
tained by Wiener filtering.

3. MODEL

3.1. Supervised Speech Model

In a supervised setting, the variance model in (2) is limited by its lin-
ear nature. Moreover, the number of trainable parameter is restricted
by the factorization rank, which is usually chosen to be small. In
this work we consider a supervised and non-linear modeling of the
speech variances. Independently for all (f, n) ∈ B, we have the fol-
lowing generative model, involving a latent random vector z

n

∈ RL:

z
n

∼N (0, I); (3)

s

fn

� z
n

;✓
s

∼N
c

(0,�2
f

(z
n

)), (4)

where N (µ,⌃) denotes the multivariate Gaussian distribution for
a real-valued random vector, I is the identity matrix of appropriate
size, and �

2
f

∶ RL � R+, f ∈ {0, ..., F − 1}, represents a non-linear
function parametrized by ✓

s

. The output of this function is provided
by one neuron in the F -dimensional output layer of a neural net-
work, whose weights and biases are denoted by ✓

s

. In the context of
variational autoencoders, the model (3)-(4) is called the generative
network or probabilistic decoder [8].

As in the case of an NMF-based supervised variance model,
we assume that the parameters ✓

s

are learned on a clean speech
database. This is done using a recognition network or probabilistic
encoder in addition to the probabilistic decoder, as will be explained
in Section 5. Only the latent random vectors {z

n

}N−1
n=0 will have to

be inferred from the observed data. Moreover, the latent dimension
L is set much smaller than F .

3.2. Unsupervised Noise Model

As introduced in Section 2, we use an unsupervised NMF-based
Gaussian model for the noise. Independently for all (f, n) ∈ B:

b

fn

;w
b,f

,h
b,n

∼N
c

�
0, (W

b

H
b

)
f,n

�
. (5)

3.3. Mixture Model

The observed mixture signal is modeled as follows for all (f, n) ∈ B:

x

fn

=√g

n

s

fn

+ b
fn

, (6)

where g

n

∈ R+ represents a frame-dependent but frequency-
independent gain. We introduce this term in order to provide some

robustness with respect to the loudness of the training examples
used to learn the variational autoencoder parameters ✓

s

(this will
be illustrated in Section 6). The speech and noise signals are fur-
ther supposed to be mutually independent given the latent random
vectors {z

n

}N−1
n=0 , such that for all (f, n) ∈ B:

x

fn

� z
n

;✓
s

,✓
u,fn

∼N
c

�
0, g

n

�

2
f

(z
n

) + (W
b

H
b

)
f,n

�
, (7)

where ✓
u,fn

= {w
b,f

,h
b,n

, g

n

} is the set of unsupervised model
parameters at time-frequency point (f, n).

4. INFERENCE

Let us introduce the following notations:
▷ x

n

= {x
fn

}F−1
f=0 : The set of mixture STFT coefficients for a

given time frame n ∈ {0, ...,N − 1};
▷ x = {x

fn

}(f,n)∈B: The set of all mixture STFT coefficients;

▷ z = {z
n

}N−1
n=0 : The set of all latent variables;

▷ ✓
u

={✓
u,fn

}(f,n)∈B: The set of unsupervised model parameters.
From the set of observations x, our primary goal is to estimate the
unsupervised model parameters ✓

u

, which will serve in the final in-
ference of the speech STFT coefficients. Unfortunately, straightfor-
ward maximum likelihood estimation is here intractable. A common
alternative then consists in exploiting the latent variable structure
of the model to derive an expectation-maximization (EM) algorithm
[16]. From an initialization ✓�

u

of the model parameters, it consists
in iterating the two following steps until convergence:
▷ E-Step: Compute Q(✓

u

;✓�
u

)=E
p(z�x;✓s,✓�u)[lnp(x,z;✓s

,✓
u

)];
▷ M-Step: Update ✓�

u

← argmax✓u
Q(✓

u

;✓�
u

).
4.1. E-Step

Due to the non-linear relation between the observations and the
latent variables (7), we cannot compute the posterior distribution
p(z � x;✓

s

,✓�
u

) in an analytical form. Therefore we cannot com-
pute the expectation involved in the definition of Q(✓

u

;✓�
u

) at the
E-Step. We consequently approximate it by the following empirical
average (Monte Carlo approximation):

Q(✓
u

;✓�
u

) ≈ ˜

Q(✓
u

;✓�
u

)
c= − 1

R

R�
r=1 �

(f,n)∈B
� ln �g

n

�

2
f

�z(r)
n

� + (W
b

H
b

)
f,n

�
+ �x

fn

�2
g

n

�

2
f

�z(r)
n

� + (W
b

H
b

)
f,n

�, (8)

where c= denotes equality up to additive constants with respect to
✓
u

and ✓�
u

, and {z(r)
n

}
r=1,...,R is a sequence of samples drawn

from the posterior p(z
n

� x
n

;✓
s

,✓�
u

) using a Markov Chain Monte
Carlo (MCMC) method. Here we use the Metropolis-Hastings algo-
rithm [17]. This approach forms the basis of the Monte Carlo EM
(MCEM) algorithm [9]. Note that unlike the standard EM algorithm,
it does not ensure that the likelihood increases at each iteration. Nev-
ertheless, some convergence results in terms of stationary point of
the likelihood can be obtained under suitable conditions [18].

At the m-th iteration of the Metropolis-Hastings algorithm and
independently for all n ∈ {0, ...,N − 1}, we first draw a sample z

n

from a proposal random walk distribution:

z
n

� z(m−1)
n

; ✏

2 ∼N (z(m−1)
n

, ✏

2I). (9)



Using the fact that this is a symmetric proposal distribution [17], we
then compute the acceptance probability ↵ defined by:

↵ =min

���1,
p (x

n

� z
n

;✓
s

,✓�
u

)p (z
n

)
p �x

n

� z(m−1)
n

;✓
s

,✓�
u

)�p �z(m−1)
n

�
��� , (10)

where p (x
n

� z
n

;✓
s

,✓�
u

) = ∏F−1
f=0 p(x

fn

� z
n

;✓
s

,✓�
u,fn

) with
p(x

fn

� z
n

;✓
s

,✓�
u,fn

) defined in (7) and p (z
n

) defined in (3).
Then we draw u from the uniform distribution U([0,1]). If u < ↵,
we accept the sample and set z(m)

n

= z
n

, otherwise we reject the
sample and set z(m)

n

= z
(m−1)
n

. We only keep the last R samples
for computing ˜

Q(✓
u

;✓�
u

) in (8), i.e. we discard the samples drawn
during a so called burn-in period.

4.2. M-Step

At the M-step of the MCEM algorithm, we want to maximize
˜

Q(✓
u

;✓�
u

) in (8) with respect to the unsupervised model parameters
✓
u

. As usual in the NMF literature [19], we adopt a block-coordinate
approach by successively and individually updating H

b

, W
b

and
g = [g0, ..., gN−1]�, using the auxiliary function technique. We
will provide derivation details only for H

b

, as the procedure is very
similar for the other parameters.

Let C(H
b

) be the opposite of ˜

Q(✓
u

;✓�
u

) in (8), seen as a func-
tion of H

b

only (other parameters are fixed). Our goal is to minimizeC(H
b

) under a non-negativity constraint.

Definition 1 (Auxiliary function). The RKb×N+ ×RKb×N+ � R+ map-
ping G(H

b

,

˜H
b

) is an auxiliary function to C(H
b

) if and only if

∀(H
b

,

˜H
b

) ∈ RKb×N+ ×RKb×N+ , C(H
b

) ≤ G(H
b

,

˜H
b

); (11)

∀H
b

∈ RKb×N+ , C(H
b

) = G(H
b

,H
b

). (12)

In other words, G(H
b

,

˜H
b

) is an upper bound of C(H
b

) which is
tight for ˜H

b

= H
b

. The original minimization problem can be re-
placed with an alternate minimization of this upper bound. From an
initial point H�

b

we iterate:

H�
b

← argmin

Hb∈RKb×N+
G(H

b

,H�
b

). (13)

This procedure corresponds to the majorize-minimize (MM) algo-
rithm [20], which by construction leads to a monotonic decrease ofC(H

b

). Moreover, its convergence properties are the same as the
ones of the EM algorithm [21].

Proposition 1 (Auxiliary function to C(H
b

)).
The function G(H

b

,

˜H
b

) defined below is an auxiliary function toC(H
b

).
G(H

b

,

˜H
b

) = 1

R

R�
r=1 �

(f,n)∈B

������ ln �gn�
2
f

�z(r)
n

� + �W
b

˜H
b

�
f,n

�

+ (Wb

H
b

)
f,n

− �W
b

˜H
b

�
f,n

g

n

�

2
f

�z(r)
n

� + �W
b

˜H
b

�
f,n

+ �x
fn

�2 ����
g

n

�

2
f

�z(r)
n

�
�g

n

�

2
f

�z(r)
n

� + �W
b

˜H
b

�
f,n

�2

+ Kb�
k=1

w

b,fk

˜

h

2
b,kn

h

b,kn

�g
n

�

2
f

�z(r)
n

� + �W
b

˜H
b

�
f,n

�2
����
������, (14)

where for all (f, n) ∈ B and k ∈ {1, ...,K
b

}, w
b,fk

= (W
b

)
f,k

h

b,kn

= (H
b

)
k,n

and ˜

h

b,kn

= ( ˜H
b

)
k,n

.

Proof. The proof is provided in [22] due to space limitation.

The auxiliary function G(H
b

,

˜H
b

) is separable in convex
functions of the individual coefficients h

b,kn

, k ∈ {1, ...,K
b

},
n ∈ {0, ...,N − 1}, which is convenient for updating those parame-
ters. By canceling the partial derivative of G(H

b

,

˜H
b

) with respect
to h

b,kn

, we obtain an update which depends on ˜

h

b,kn

. According
to the MM algorithm, we can use the fact that ˜h

b,kn

is equal to the
previous value of h

b,kn

for obtaining the following multiplicative
update in matrix form:

H
b

←H
b

⊙
����������

W�
b

��X �⊙2 ⊙ R∑
r=1�V(r)x

�⊙−2�
W�

b

R∑
r=1�V(r)x

�⊙−1
����������

⊙1�2

, (15)

where ⊙ denotes element-wise multiplication and exponentia-
tion, matrix division is also element-wise, V

(r)
x

∈ RF×N+ is the
matrix of entries �V(r)

x

�
f,n

= g

n

�

2
f

�z(r)
n

� + (W
b

H
b

)
f,n

, and

X ∈ CF×N is the matrix of entries (X)
f,n

= x
fn

.
We can straightforwardly apply the same procedure for maxi-

mizing ˜

Q(✓
u

;✓�
u

) with respect to W
b

. The resulting multiplicative
update rule is given by:

W
b

←W
b

⊙
����������

��X �⊙2 ⊙ R∑
r=1�V(r)x

�⊙−2�H�
b

R∑
r=1�V(r)x

�⊙−1H�
b

����������

⊙1�2

. (16)

Again, in a very similar fashion, the vector of speech gains is
updated as follows:

g� ← g� ⊙
����������

1� ��X �⊙2 ⊙ R∑
r=1�V(r)s

⊙ �V(r)
x

�⊙−2��
1� � R∑

r=1�V(r)s

⊙ �V(r)
x

�⊙−1��

����������

⊙1�2

, (17)

where 1 is an all-ones column vector of dimension F and V
(r)
s

∈
RF×N+ is the matrix of entries �V(r)

s

�
f,n

= �2
f

�z(r)
n

�.
The non-negativity of H

b

, W
b

and g is ensured provided that
those parameters are initialized with non-negative entries. In prac-
tice, at the M-step of the MCEM algorithm, we perform only one
iteration of updates (15), (16) and (17).

4.3. Speech reconstruction

In the following ✓�
u

= {W�
b

,H�
b

,g�} denotes the set of parameters
estimated by the above MCEM algorithm. For all (f, n) ∈ B, let
s̃

fn

=√g

�
n

s

fn

be the scaled version of the speech STFT coefficients
as introduced in (6), with g

�
n

= (g�)
n

. Our final goal is to estimate
those coefficients according to their posterior mean:

ˆ

s̃

fn

= E
p(s̃fn �xfn;✓s,✓�u)[s̃fn]

= E
p(zn �xn;✓s,✓�u) �Ep(s̃fn �zn,xn;✓s,✓�u)[s̃fn]�

= E
p(zn �xn;✓s,✓�u) � g

�
n

�

2
f

(z
n

)
g

�
n

�

2
f

(z
n

) + (W�
b

H�
b

)
f,n

�x
fn

. (18)



This estimation corresponds to a soft-masking of the mixture signal,
similarly as the standard Wiener filtering. Exactly as before, this
expectation cannot be computed in an analytical form, but we can
approximate it using the same Metropolis-Hastings algorithm as de-
tailed in Section 4.1. Note that this estimation procedure is different
than the one proposed in [7]. Here the STFT source coefficients are
estimated from their true posterior distribution, without condition-
ing on the latent variables. The time-domain estimate of the speech
signal is finally obtained by inverse STFT and overlap-add.

5. SUPERVISED TRAINING OF THE SPEECH MODEL

For supervised training of the speech model, we use a large dataset of
independent clean-speech STFT time frames str = {s

n

∈ CF }Ntr−1
n=0 .

In our speech enhancement method detailed above, we are only in-
terested in using the generative model defined in (3) and (4). How-
ever, in order to learn the parameters ✓

s

of this generative model,
we also need to introduce a recognition network or probabilistic en-
coder q(z � str;�), which is an approximation of the true poste-
rior p(z � str;✓

s

) [8]. Independently for all l ∈ {0, ..., L − 1} and
n ∈ {0, ...,N

tr

− 1}, q(z � str;�) is defined similarly as in [7] by:

z

l,n

� s
n

;� ∼N �µ̃
l

��s
n

�⊙2� , �̃2
l

��s
n

�⊙2�� , (19)

where z

l,n

= (z
n

)
l

and µ̃

l

∶ RF+ � R, �̃2
l

∶ RF+ � R+ are non-
linear functions parametrized by �. The output of each function
is provided by one neuron in the 2L-dimensional output layer of a
neural network, whose weights and biases are denoted by �.

As explained in [8], the recognition network parameters � and
the generative network parameters ✓

s

can be jointly trained by max-
imizing the evidence lower-bound (ELBO) defined by:

L (✓
s

,�) = E
q(z�str ;�) �lnp �str � z;✓s

��
−D

KL

�
q

�z � str;�� ∥ p(z)� , (20)

where D

KL

(q ∥ p) = E
q

[ln(q�p)] is the Kullback-Leibler diver-
gence. The first term in the right-hand side of (20) is a reconstruction
accuracy term, while the second one is a regularization term. From
(3), (4) and (19), the ELBO can be developed as follows:

L (✓
s

,�) c= − F−1�
f=0

Ntr−1�
n=0

E
q(zn �sn;�) �dIS ��sfn�2 ;�2

f

(z
n

)��
+ 1

2

L−1�
l=0

Ntr−1�
n=0
�ln �̃2

l

��s
n

�⊙2� − µ̃
l

��s
n

�⊙2�2 − �̃2
l

��s
n

�⊙2�� , (21)

where d

IS

(x; y) = x�y − ln(x�y) − 1 is the Itakura-Saito (IS) di-
vergence. We note that maximizing the ELBO with respect to the
parameters ✓

s

of the generative speech model amounts to minimiz-
ing a cost function that involves the IS divergence between the ob-
served power spectrogram �s

fn

�2 and the variance model �2
f

(z
n

). It
is interesting to highlight the similarity with the Gaussian generative
speech model (1)-(2), where maximum likelihood estimation of its
parameters also amounts to minimizing the IS divergence between�s

fn

�2 and the NMF-based variance parametrization (W
s

H
s

)
f,n

,
as proved in [3].

Finally, as the expectation in (21) cannot be computed in an an-
alytical form, we again use a Monte Carlo approximation:

E
q(zn �sn;�)�dIS��sfn�2 ;�2

f

(z
n

)��≈ 1

R

R�
r=1

d

IS

��s
fn

�2 ;�2
f

�z(r)
n

��,
(22)

sampling

Fig. 1. Structure of our variational autoencoder. All layers are fully
connected. Next to each layer we indicate its size along with the
activation function that is used.

where for all r ∈ {1, ...,R}, z
(r)
n

is independently drawn from
q (z

n

� s
n

;�) in (19), using the so-called reparametrization trick
[8]. Independently for all l ∈ {0, ..., L − 1}, it consists in sampling:

z

(r)
l,n

� s
n

;� ∼ µ̃
l

��s
n

�⊙2� + �̃
l

��s
n

�⊙2�N (0,1). (23)

Injecting (22) in (21), we obtain an objective function which is dif-
ferentiable with respect to both ✓

s

and �, and which can be opti-
mized using gradient-ascent-based algorithms.

6. EXPERIMENTS

Database: The supervised speech model parameters are learned
from the training set of the TIMIT database [23]. It contains almost
4 hours of speech signals at a 16-kHz sampling rate, distributed over
462 speakers. For the evaluation of the speech enhancement algo-
rithm, we mixed clean speech signals from the test set of the TIMIT
database and noise signals from the DEMAND database [24], with
various noisy environments: domestic, nature, office, indoor public
spaces, street and transportation. We created 168 mixtures at a 0 dB
signal-to-noise ratio (one mixture per speaker in the TIMIT test
set). Note that both speakers and sentences are different than in the
training set.

Baseline methods: Considering that both approaches belong to
the variance modeling framework, we first compare our method with
a semi-supervised NMF baseline as described in Section 2. The
speech NMF dictionary is learned using the training set of the TIMIT
database, and only the speech activation matrix and the noise NMF
model parameters are estimated from the noisy mixture signals. The
speech signal is then recovered by Wiener filtering. We also com-
pare our approach with the fully supervised deep learning method
proposed in [10]. In this work, a deep neural network is trained
to map noisy speech log-power spectrograms to clean speech log-
power spectrograms. The authors showed that their mapping-based
approach outperformed other deep learning techniques that rely on
the estimation of time-frequency masks. Moreover, the authors used
more than 100 different noise types to train their system, which
showed to be quite effective in handling unseen noise types. It is



therefore a very relevant method to compare with. We used the
Python code provided by the authors.1

Parameter settings: The STFT is computed using a 64-ms sine
window (i.e. F = 513) with 75%-overlap. We compare the perfor-
mance of our method with the semi-supervised NMF baseline ac-
cording to the dimension of the latent space L and the rank K

s

of
the NMF speech model. For fair comparison, we set L = K

s

∈{8,16,32,64,128}. The rank of the noise model is arbitrarily fixed
to K

b

= 10. Unsupervised NMF parameters are randomly initial-
ized. For the proposed method, the gain vector g is initialized with
an all-ones vector. The iterative algorithms of those two methods are
stopped if the improvement in terms of objective function is smaller
that 10−4 (for our method we monitored ˜

Q(✓
u

;✓�
u

)). The parame-
ters of our MCEM algorithm are the following ones: At each E-Step
(see Section 4.1), we run 40 iterations of the Metropolis-Hastings
algorithm using ✏

2 = 0.01 for the proposal distribution, and we dis-
card the first 30 samples as the burn-in period. At the first itera-
tion of the MCEM algorithm we need to initialize the Markov chain
of the Metropolis-Hastings algorithm. For that purpose we use the
recognition network considering the mixture signal as input because
the clean speech signal is not observed: for all l ∈ {0, ..., L − 1},
z

(0)
l,n

= µ̃
l

��x
n

�⊙2�. Then, at each new E-Step, we use the last sam-
ple drawn at the previous E-Step to initialize the Markov chain. For
estimating the speech STFT coefficients (see Section 4.3), we run
the Metropolis-Hastings algorithm for 100 iterations and discard the
first 75 samples.

Variational autoencoder: The structure of our variational au-
toencoder is represented in Fig. 1. As in [8], we use hyperbolic tan-
gent (tanh(⋅)) activation functions except for the encoder/decoder
output layers, which use identity activation functions (I

d

(⋅)). The
values of these output layers thus lie in R, which is the reason why
we output logarithm of variances. For learning the parameters ✓

s

and � (see Section 5), we used the Adam optimizer [25] with a step
size of 10−3, exponential decay rates for the first and second moment
estimates of 0.9 and 0.999 respectively, and an epsilon of 10−7 for
preventing division by zero. 20% of the TIMIT training set was kept
as a validation set, and early stopping with a patience of 10 epochs
was used. Weights were initialized using the uniform initializer de-
scribed in [26]. For reproducibility, a Python implementation of our
algorithm is available online.2

Results: We evaluate the enhanced speech signal in terms of
signal-to-distortion ratio (SDR) [27] and perceptual evaluation of
speech quality (PESQ) measure [28]. The SDR is expressed in deci-
bels (dB) and the PESQ score lies between −0.5 and 4.5. We com-
puted the SDR using the mir eval Python library.3 We first illustrate
the interest of having a time-frame dependent gain g

n

as introduced
in (6). Inevitably, the variational autoencoder is trained using ex-
amples with a limited loudness range. If we force g

n

= 1 for all
n ∈ {0, ...,N − 1}, we can therefore expect the speech enhancement
quality to depend on the speech power in the observed noisy mixture
signal. This problem is illustrated in Fig. 2: The SDR indicated by
black dots suddenly drops for a scaling factor of the mixture signal
greater than 12 dB. It indicates that the power of the underlying clean
speech signal in this mixture went out of the power range observed
during the training. One solution to this problem could be to perform
some kind of data augmentation as in [7]. Here we exploited the sta-
tistical modeling framework, by introducing parameters in order to
handle some inherent drawbacks of learning-based approaches. The

1
https://github.com/yongxuUSTC/sednn

2
https://github.com/sleglaive/MLSP-2018

3
https://github.com/craffel/mir_eval
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Fig. 2. SDR according to different scalings of the power of one mix-
ture signal in our test dataset. Grey diamonds represent the perfor-
mance when the vector of time-frame dependent gains g is updated
at the M-Step, and black dots when g is fixed to an all-ones vector.

Fig. 3. Enhancement results, the median is indicated above each box.

gray diamonds in Fig. 2 indeed show that the time-frame-dependent
gains provide a solution to this robustness issue.

The speech enhancement results are presented in Fig. 3. We first
observe that while the NMF baseline requires a sufficiently large
rank K

s

= 64, our method obtains quite stable results for a latent
dimension L greater than or equal to 16. Moreover it always per-
forms better than the NMF baseline in terms of both SDR and PESQ
measures. We also see that it outperforms the fully supervised deep
learning approach [10]. It is indeed difficult for such kind of ap-
proaches to generalize to unseen noises, which strongly justifies the
interest of semi-supervised approaches. Audio examples illustrating
those results are available online.4

We conclude this section with some information about the com-
putational time for enhancing a 2.6 seconds-long mixture, using a
central processing unit at 2.5 GHz. One iteration of the proposed
MCEM algorithm (with L = 64) takes around 2.9 seconds. For the
semi-supervised NMF baseline (with K

s

= 64), one iteration of up-
date rules takes around 4 milliseconds. The fully supervised deep-
learning approach, which is non iterative, takes around 7 seconds.

7. CONCLUSION

In this paper we showed that within the variance modeling frame-
work, variational autoencoders are a suitable alternative to super-

4
https://sleglaive.github.io/demo-mlsp18.html



vised NMF. We proposed a semi-supervised speech enhancement
method based on an MCEM algorithm. Experimental results demon-
strated that it outperforms both a semi-supervised NMF baseline and
a fully supervised deep learning approach. We used a relatively shal-
low architecture for the variational autoencoder, we can therefore ex-
pect even better results by going deeper. Future works include using
variational autoencoders for separating similar sources, e.g. multiple
speakers. This is a much harder problem and we may have to exploit
spatial information provided by multichannel mixtures to address it.
Another interesting perspective would be to introduce a temporal
model for the latent variables of the variational autoencoder.
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