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Estimation of the Direct-Path Relative Transfer
Function for Supervised Sound-Source Localization

Xiaofei Li, Laurent Girin, Radu Horaud, and Sharon Gannot, Senior Member, IEEE

Abstract—This paper addresses the problem of sound-source
localization of a single speech source in noisy and reverberant
environments. For a given binaural microphone setup, the bin-
aural response corresponding to the direct-path propagation of
a single source is a function of the source direction. In practice,
this response is contaminated by noise and reverberations. The
direct-path relative transfer function (DP-RTF) is defined as the
ratio between the direct-path acoustic transfer function of the two
channels. We propose a method to estimate the DP-RTF from the
noisy and reverberant microphone signals in the short-time Fourier
transform (STFT) domain. First, the convolutive transfer function
approximation is adopted to accurately represent the impulse re-
sponse of the sensors in the STFT domain. Second, the DP-RTF
is estimated by using the auto- and cross-power spectral densi-
ties at each frequency and over multiple frames. In the presence
of stationary noise, an interframe spectral subtraction algorithm
is proposed, which enables to achieve the estimation of noise-free
auto- and cross-power spectral densities. Finally, the estimated
DP-RTFs are concatenated across frequencies and used as a fea-
ture vector for the localization of speech source. Experiments with
both simulated and real data show that the proposed localization
method performs well, even under severe adverse acoustic condi-
tions, and outperforms state-of-the-art localization methods under
most of the acoustic conditions.

Index Terms—Direct-path relative transfer function,
inter-frame spectral subtraction, sound source localization.

I. INTRODUCTION

SOUND-SOURCE localization (SSL) is an important task
for many applications, e.g., robot audition, video confer-

encing, hearing aids, to cite just a few. In the framework of
human-inspired binaural hearing, two interaural cues are widely
used for SSL, namely the interaural phase difference (IPD) and
the interaural level difference (ILD) [1]–[7]. In the general case
where the sensor array is not free-field, i.e. the microphones are
placed inside the ears of a dummy head or on a robot head, the
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interaural cues are frequency-dependent due to the effects on
sound propagation induced by the shape of the outer ears, head
and torso [8]. This is true even for anechoic recordings, i.e. in
the absence of reverberations. SSL is then based on the relation-
ship between interaural cues and direction of arrival (DOA) of
the emitting source.

When the short-time Fourier transform (STFT) is used, the
ILD and IPD correspond to the magnitude and argument, re-
spectively, of the relative transfer function (RTF), which is the
ratio between the acoustic transfer functions (ATF) of the two
channels [9]. In a reverberant environment, the RTF contains
both direct-path information, namely the direct wave propaga-
tion path from the source location to the microphone locations,
and information representing early and late reverberations. Ex-
tracting the direct path is of crucial importance for SSL. In
an anechoic and noise-free environment the source direction
can be easily estimated from the RTF. However, in practice,
noise and reverberations are often present and contaminate SSL
estimation.

In the presence of noise, based on the stationarity of the noise
and the non-stationarity of the desired signal, the RTF was esti-
mated in [9] by solving a set of linear equations, and in [10] by
solving a set of nonlinear decorrelation equations. In [10], the
time difference of arrival (TDOA) was estimated based on RTF,
and a TDOA tracking method was also proposed. These methods
have the limitation that a significant amount of noisy frames are
included in the estimation. An RTF identification method based
on the probability of speech presence and on spectral subtrac-
tion was proposed in [11]: this method uses only the frames
which are highly likely to contain speech. The unbiased RTF
estimator proposed in [12] is based on segmental power spectral
density matrix subtraction, which is a more efficient method to
remove noise compared with the approaches just mentioned. The
performance of these spectral subtraction techniques was ana-
lyzed and compared with eigenvalues decomposition techniques
in [13].

The RTF estimators mentioned above assume a multiplicative
transfer function (MTF) approximation [14], i.e., the source-to-
microphone filtering process is assumed to be represented by a
multiplicative process in the STFT domain. Unfortunately, this
is only justified when the length of the filter impulse response
is shorter than the length of the STFT window, which is rarely
the case in practice. Moreover, the RTF is usually estimated
from the ratio between two ATFs that include reverberation,
rather than from the ratio between ATFs that only correspond
to the direct-path sound propagation. Therefore, currently avail-
able RTF estimators are poorly suitable for SSL in reverberant
environments.
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The influence of reverberation on the interaural cues is ana-
lyzed in [15]. The relative early transfer function was introduced
in [16] to suppress reverberation. Several techniques were pro-
posed to extract the RTF that corresponds to the direct-path
sound propagation, e.g., based on detecting time frames with
less reverberations. The precedence effect, e.g., [17], widely
used for SSL, relies on the principle that signal onsets are dom-
inated by the direct path. Based on band-pass filter banks, the
localization cues are extracted only from reliable frames, such
as the onset frames in [18], the frames preceding a notable
maximum [19], the frames weighted by the precedence model
[20], etc. Interaural coherence was proposed in [21] to select
binaural cues not contaminated by reverberations. Based on
Fourier transform, the coherence test [22], and the direct-path
dominance test [23] are proposed to detect the frames domi-
nated by one active source, from which localization cues can
be estimated. However, in practice, there are always reflection
components in the frames selected by these methods, due to an
inaccurate model or an improper decision threshold.

Contributions and Method Overview

In this paper, we propose a direct-path RTF estimator suitable
for the localization of a single speech-source in noisy and rever-
berant environments. We build on the cross-band filter proposed
in [24] for system identification in the STFT domain. This fil-
ter represents the impulse response in the STFT domain by a
cross-band convolutive transfer function (CTF) instead of the
multiplicative (MTF) approximation. In practice we consider
the use of a simplified CTF approximation, as used in [25]. The
first coefficient of the CTF at different frequencies represents
the STFT of the first segment of the channel impulse response,
which is composed of the direct-path impulse response, plus
possibly few early reflections. In particular, if the time delay
between the direct-path wave and the first notable reflection is
large, less reflections are included. Therefore, we refer to the
first coefficient of the CTF as the direct-path ATF, and the ratio
between the coefficients from two channels is referred to as the
direct-path relative transfer function (DP-RTF).

Inspired by [26] and based on the relationship of the CTFs
between the two channels, we use the auto- and cross-power
spectral densities (PSD) estimated over multiple STFT frames,
to construct a set of linear equations in which the DP-RTF is
the unknown variable. Therefore, the DP-RTF can be estimated
via standard least squares. In the presence of noise, an inter-
frame spectral subtraction technique is proposed, extending our
previous work [12]. The auto- and cross-PSD estimated in a
frame with low speech power are subtracted from the PSDs
estimated in a frame with high speech power. After subtraction,
low noise power and high speech power are left due to the
stationarity of the noise and the non-stationarity of the speech
signal. The DP-RTF is estimated using the remaining signal’s
auto- and cross-PSD. This PSD subtraction process does not
require an explicit estimation of the noise PSD, hence it does
not suffer from noise PSD estimation errors.

Finally, the estimated DP-RTFs are concatenated over fre-
quencies and plugged into an SSL method, e.g., [6]. Exper-
iments with simulated and real data were conducted under

various acoustic conditions, e.g., different reverberation times,
source-to-sensor distances, and signal-to-noise ratios. The ex-
perimental results show that the proposed method performs well,
even in adverse acoustic conditions, and outperforms the MTF-
based method [12], the coherence test method [22] and the con-
ventional SRP-PHAT method in most of the tested conditions.

The remainder of this paper is organized as follows. Section II
formulates the sensor signals based on the crossband filter.
Section III presents the DP-RTF estimator in a noise-free en-
vironment. The DP-RTF estimator in the presence of noise is
presented in Section IV. In Section V, the SSL algorithm is de-
scribed. Experimental results are presented in Sections VI and
VII, and Section VIII draws some conclusions.

II. CROSS-BAND FILTER AND CTF

We consider first a non-stationary source signal s(n), e.g.,
speech, emitted in a noise-free environment. The received bin-
aural signals are

x(n) = s(n) ⋆ a(n)

y(n) = s(n) ⋆ b(n), (1)

where ⋆ denotes convolution, and a(n) and b(n) are the binau-
ral room impulse responses (BRIR) from the source to the two
microphones. The BRIRs combine the effects of the room acous-
tics (reverberations) and the effects of the sensor set-up (e.g.,
dummy head/ears). Applying the STFT, (1) is approximated in
the time-frequency (TF) domain as

xp,k = sp,k ak

yp,k = sp,k bk , (2)

where xp,k , yp,k and sp,k are the STFT of the corresponding
signals (p is the time frame index and k is the frequency bin
index), and ak and bk are the ATFs corresponding to the BRIRs.
Let N denote the length of a time frame or, equivalently, the size
of the STFT window. Eq. (2) corresponds to the MTF approx-
imation, which is only valid when the impulse response a(n)
is shorter than the STFT window. In the case of non-stationary
acoustic signals, such as speech, a relatively small value for N
is typically chosen to assume local stationarity, i.e., within a
frame. Therefore, the MTF approximation (2) is questionable
in a reverberant environment, since the room impulse response
could be much longer than the STFT window.

To address this problem cross-band filters were introduced
[24] to represent more accurately a linear system with long im-
pulse response in the STFT domain. Let L denote the frame step.
The cross-band filter model consists in representing the STFT
coefficient xp,k in (2) as a summation over multiple convolu-
tions across frequency bins (there is an equivalent expression
for yp,k ):

xp,k =
Qk −1∑

p ′=−C

N −1∑

k ′=0

sp−p ′,k ′ ap ′,k ′,k . (3)

From [24], if L < N , then ap ′,k ′,k is non-causal, with C =
⌈N/L⌉− 1 non-causal coefficients. The number of causal filter
coefficients Qk is related to the reverberation time at the k-th
frequency bin, which will be discussed in detail in Section VI.
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The TF-domain impulse response ap ′,k ′,k is related to the time-
domain impulse response a(n) by:

ap ′,k ′,k = (a(n) ⋆ ζk,k ′(n))|n=p ′L , (4)

which represents the convolution with respect to the time index
n evaluated at frame steps, with

ζk,k ′(n) = ej 2 π
N k ′n

+∞∑

m=−∞
ω(m) ω(n + m) e−j 2 π

N m (k−k ′) , (5)

where ω(n) and ω(n) denote the STFT analysis and synthesis
windows, respectively. A CTF approximation is further intro-
duced and used in [25] to simplify the analysis, i.e., only band-
to-band filters are considered, k = k′. Hence, (3) is rewritten
as

xp,k =
Qk −1∑

p ′=0

sp−p ′,k ap ′,k = sp,k ⋆ ap,k , (6)

where we assumed L ≈ N such that non-causal coefficients are
disregarded. Note that ap ′,k ′,k is replaced with ap ′,k to simplify
the notations. The cross-band filter and CTF formalism will
now be used to extract the impulse response of the direct-path
propagation.

III. DIRECT-PATH RELATIVE TRANSFER FUNCTION

From (4) and (5), with k′ = k and p′ = 0, the first coefficient
of ap ′,k in the CTF approximation (6) can be derived as

a0,k = (a(n) ⋆ ζk,k (n))|n=0 =
T −1∑

t=0

a(t)ζk,k (−t)

=
N −1∑

t=0

a(t)ν(t)e−j 2 π
N kt , (7)

where T is the length of the BRIR and

ν(n) =

⎧
⎪⎨

⎪⎩

N∑

m=0

ω(m)ω(m − n) if 1 − N ≤ n ≤ N − 1,

0, otherwise.

Therefore, a0,k (as well as b0,k ) can be interpreted as the k-th
Fourier coefficient of the impulse response segment a(n)|N −1

n=0
windowed by ν(n)|N −1

n=0 . Without loss of generality, we assume
that the room impulse responses a(n) and b(n) begin with the
impulse responses of the direct-path propagation. If the frame
length N is properly chosen, a(n)|N −1

n=0 and b(n)|N −1
n=0 are com-

posed of the impulse responses of the direct-path and a few
reflections. Particularly, if the initial time delay gap (ITDG),
i.e. the time delay between the direct-path wave and the first no-
table reflection, is large compared to N , a(n)|N −1

n=0 and b(n)|N −1
n=0

mainly contain the direct-path impulse response. Therefore we
refer to a0,k and b0,k as the direct-path ATFs. By definition, the
DP-RTF is given by (we remind that the direct path is relevant
for SSL):

dk =
b0,k

a0,k
. (8)

In summary, the CTF approximation offers a nice framework
to encode the direct-path part of a room impulse response into
the first CTF coefficients. Applying this to each channel of a
BRIR and taking the ratio between the first CTF coefficients of
each channel provides the DP-RTF. Of course, in practice, the
DP-RTF must be estimated from the sensor signals.

A. Direct-Path Estimation

Since both channels are assumed to follow the CTF model,
we can write:

xp,k ⋆ bp,k = sp,k ⋆ ap,k ⋆ bp,k = yp,k ⋆ ap,k . (9)

This relation was proposed in [26], [27] for the time-domain
TDOA estimation and is here extended to the CTF domain. In
vector form (9) can be written as

x⊤
p,kbk = y⊤

p,kak , (10)

where ⊤ denotes vector or matrix transpose, and

xp,k = [xp,k , xp−1,k , . . . , xp−Qk +1,k ]⊤,

yp,k = [yp,k , yp−1,k , . . . , yp−Qk +1,k ]⊤,

bk = [b0,k , b1,k , . . . , bQk −1,k ]⊤,

ak = [a0,k , a1,k , . . . , aQk −1,k ]⊤.

Dividing both sides of (10) by a0,k and reorganizing the terms,
we can write:

yp,k = z⊤p,kgk , (11)

where

zp,k = [xp,k , . . . , xp−Qk +1,k , yp−1,k , . . . , yp−Qk +1,k ]⊤,

gk =
[

b0,k

a0,k
, . . . ,

bQk −1,k

a0,k
,−a1,k

a0,k
, . . . ,−aQk −1,k

a0,k

]⊤
.

We see that the DP-RTF appears as the first entry of gk . Hence,
in the following, we base the estimation of the DP-RTF on
the construction of yp,k and zp,k statistics. More specifically,
multiplying both sides of (11) by y∗

p,k (the complex conjugate
of yp,k ) and taking the expectation, E{·}, we obtain:

φyy (p, k) = φ⊤
zy (p, k) gk , (12)

where φyy (p, k) = E{yp,k y∗
p,k} is the PSD of y(n) at TF bin

(p, k), and

φzy (p, k) = [E{xp,k y∗
p,k}, . . . , E{xp−Qk +1,k y∗

p,k},

E{yp−1,k y∗
p,k}, . . . , E{yp−Qk +1,k y∗

p,k}]⊤

is a vector composed of cross-PSD terms between the elements
of zp,k and yp,k .1 In practice, these auto- and cross-PSD terms
can be estimated by averaging the corresponding auto- and

1More precisely, φz y (p, k) is composed of y PSD ‘cross-terms’, i.e., y taken
at frame p and previous frames, and of x, y cross-PSD terms for y taken at
frame p and x taken at previous frames.
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cross-STFT spectra over D frames:

φ̂yy (p, k) =
1
D

D−1∑

d=0

yp−d,k y∗
p−d,k . (13)

The elements in φzy (p, k) can be estimated by using the same
principle. Consequently, in practice (12) is approximated as

φ̂yy (p, k) = φ̂⊤
zy (p, k) gk . (14)

Let P denote the total number of the STFT frames. Qk is the
minimum index of p to guarantee that the elements in zp,k are
available from the STFT coefficients of the binaural signals. For
PSD estimation, the previous D− 1 frames of the current frame
are utilized as shown in (13). Therefore, pf = Qk + D− 1 is
the minimum index of p to guarantee that all the frames for
computing φ̂zy (p, k) are available from the STFT coefficients
of the binaural signals. By concatenating the frames from pf to
P , (14) can be written in matrix-vector form:

φ̂yy (k) = Φ̂zy (k) gk , (15)

with

φ̂yy (k) = [φ̂yy (pf , k), . . . , φ̂yy (p, k), . . . , φ̂yy (P, k)]⊤,

Φ̂zy (k) = [φ̂zy (pf , k), . . . , φ̂zy (p, k), . . . , φ̂zy (P, k)]⊤.

Note that φ̂yy (k) is a (P − pf + 1)× 1 vector and Φ̂zy (k) is a
(P − pf + 1) × (2Qk − 1) matrix. In principle, an estimate ĝk

of gk can be found be solving this linear equation. However, in
practice, the sensor signals contain noise and thus the estimated
PSD contain noise power. Therefore, we have to remove this
noise power before estimating gk .

IV. DP-RTF ESTIMATION IN THE PRESENCE OF NOISE

Noise always exists in real-world configurations. In the pres-
ence of noise, some frames in (15) are dominated by noise.
Besides, the PSD estimate of speech signals is deteriorated by
noise. In this section, an inter-frame subtraction technique en-
abling to improve the DP-RTF estimation in noise is described,
based on a speech frame selection process.

A. Noisy Signals and PSD Estimates

In the presence of additive noise (1) becomes

x̃(n) = x(n) + u(n) = a(n) ⋆ s(n) + u(n),

ỹ(n) = y(n) + v(n) = b(n) ⋆ s(n) + v(n), (16)

where u(n) and v(n), the noise signals, are assumed to be in-
dividually wide-sense stationary (WSS) and uncorrelated with
s(n). Moreover, u(n) and v(n) are assumed to be either uncor-
related, or correlated but jointly WSS. Applying the STFT to
the binaural signals in (16) leads to

x̃p,k = xp,k + up,k

ỹp,k = yp,k + vp,k ,

in which each quantity is the STFT coefficient of its correspond-
ing time-domain signal. Similarly to zp,k , we define

z̃p,k = [x̃p,k , . . . , x̃p−Qk +1,k , ỹp−1,k , . . . , ỹp−Qk +1,k ]⊤

= zp,k + wp,k

where

wp,k = [up,k , . . . , up−Qk +1,k , vp−1,k , . . . , vp−Qk +1,k ]⊤.

The PSD of ỹp,k is φỹ ỹ (p, k). We define the PSD vector
φz̃ ỹ (p, k) composed of the auto- and cross-PSDs between the
elements of z̃p,k and ỹp,k . Following (13), these PSDs can be
estimated as φ̂ỹ ỹ (p, k) and φ̂z̃ ỹ (p, k) by averaging the auto- and
cross-STFT spectra of input signals over D frames. Since the
speech and noise signals are uncorrelated, we can write

φ̂ỹ ỹ (p, k) = φ̂yy (p, k) + φ̂vv (p, k),

φ̂z̃ ỹ (p, k) = φ̂zy (p, k) + φ̂wv (p, k), (17)

where φ̂vv (p, k) is an estimation of the PSD of vp,k , and
φ̂wv (p, k) is a vector composed of the estimated auto- or cross-
PSDs between the entries of wp,k and vp,k .

B. Inter-Frame Spectral Subtraction

From (14) and (17), we have for any frame p:

φ̂ỹ ỹ (p, k) − φ̂vv (p, k) = (φ̂z̃ ỹ (p, k) − φ̂wv (p, k))⊤gk , (18)

or alternately:

φ̂ỹ ỹ (p, k) = φ̂z̃ ỹ (p, k)⊤gk + φ̂vv (p, k) − φ̂wv (p, k)⊤gk .
(19)

By subtracting the estimated PSD φ̂ỹ ỹ (p, k) of one frame, e.g.
p2 , from the estimated PSD of another frame, e.g. p1 , we obtain

φ̂s
ỹ ỹ (p1 , k) ! φ̂ỹ ỹ (p1 , k) − φ̂ỹ ỹ (p2 , k)

= φ̂s
yy (p1 , k) + evv (p1 , k) (20)

with

φ̂s
yy (p1 , k) = φ̂yy (p1 , k) − φ̂yy (p2 , k),

evv (p1 , k) = φ̂vv (p1 , k) − φ̂vv (p2 , k).

Applying the same principle to φ̂z̃ ỹ (p, k), we have:

φ̂s
z̃ ỹ (p1 , k) ! φ̂z̃ ỹ (p1 , k) − φ̂z̃ ỹ (p2 , k)

= φ̂s
zy (p1 , k) + ewv (p1 , k), (21)

with

φ̂s
zy (p1 , k) = φ̂zy (p1 , k) − φ̂zy (p2 , k),

ewv (p1 , k) = φ̂wv (p1 , k) − φ̂wv (p2 , k).

Applying (19) to frames p1 and p2 and subtracting the resulting
equations, we obtain:

φ̂s
ỹ ỹ (p1 , k) = φ̂s

z̃ ỹ (p1 , k)⊤gk + e(p1 , k), (22)

where

e(p1 , k) = evv (p1 , k) − ewv (p1 , k)⊤gk . (23)



LI et al.: ESTIMATION OF THE DP-RTF FOR SUPERVISED SSL 2175

Because v(n) is stationary, evv (p1 , k) is small. Conversely, the
fluctuations of speech signals are much larger than the fluc-
tuations of the noise signal because the speech signals are
both non-stationarity and sparse, i.e., speech power spectrum
can vary significantly over frames. Thence, by properly choos-
ing the frame indexes p1 and p2 , for instance in such a way
that the speech power φ̂yy (p1 , k) is high and the speech power
φ̂yy (p2 , k) is low, we have φ̂s

yy (p1 , k) ≫ evv (p1 , k), or equiva-
lently φ̂s

ỹ ỹ (p1 , k) ≫ evv (p1 , k). The same reasoning applies to
ewv (p1 , k), except that the u-v cross-terms of ewv (p1 , k) are
small compared to φ̂s

ỹ ỹ (p1 , k) either if u and v are uncorrelated,
or if u and v are jointly WSS, which are our (quite reasonable)
working assumptions.

The choice of the frame index necessitates to classify the
frames into two sets, P1 and P2 , which have high speech
power and very low speech power, respectively. This is done in
Section IV-D using the minimum and maximum statistics of
noise spectrum. Before that, we finalize the estimation of the
DP-RTF in the noisy case, based on (22).

C. DP-RTF Estimation

Let P1 = |P1 | denote the cardinality of P1 . The PSD subtrac-
tions (20) and (21) are applied to all the frames p1 ∈ P1 using
their corresponding frames p2 ∈ P2 , denoted as p2(p1). In prac-
tice, p2(p1) is the frame in P2 that is nearest to p1 , since the
closer the two frames, the smaller the difference of their noise
PSD and the difference of their transfer function. The resulting
PSDs and cross-PSD vectors are gathered into a P1× 1 vector
and a P1 × (2Qk − 1) matrix, respectively, as:

φ̂s
ỹ ỹ (k) = [φ̂s

ỹ ỹ (1, k), . . . , φ̂s
ỹ ỹ (p1 , k), . . . , φ̂s

ỹ ỹ (P1 , k)]⊤,

Φ̂s
z̃ ỹ (k) = [φ̂s

z̃ ỹ (1, k), . . . , φ̂s
z̃ ỹ (p1 , k), . . . , φ̂s

z̃ ỹ (P1 , k)]⊤.

Let us denote e(k) = [e(1, k), . . . , e(p1 , k), . . . , e(P1 , k)]⊤ the
P1× 1 vector that concatenates the residual noise for the P1
frames. Then, from (22) we obtain the following linear equation,
which is the “noisy version” of (15):

φ̂s
ỹ ỹ (k) = Φ̂s

z̃ ỹ (k)gk + e(k). (24)

Assuming that the sequence of residual noise entries in e(k)
is i.i.d.2 and also assuming P1 ≥ (2Qk − 1), the least square
solution to (24) is given by:

ĝk = (Φ̂s
z̃ ỹ (k)H Φ̂s

z̃ ỹ (k))−1Φ̂s
z̃ ỹ (k)H φ̂s

ỹ ỹ (k), (25)

where H denotes matrix conjugate transpose. Finally, the esti-
mation of the DP-RTF dk defined in (8) is provided by the first
element of ĝk , denoted as ĝ0,k .

Note that if two frames inP1 are close to each other, their cor-
responding elements in vector φ̂s

ỹ ỹ (k) (or corresponding rows in
matrix Φ̂s

z̃ ỹ (k)) will be correlated. This correlation yields some

2This assumption is made to simplify the analysis. In practice, e(p1 , k) may
be a correlated sequence because of the possible correlation of φ̂v v (p, k) (or
φ̂w v (p, k)) across frames. Taking this correlation into account would lead to a
weighted least square solution to (24), involving a weight matrix in (25). This
weight matrix is not easy to estimate, and in practice, (25) delivers a good
estimate of ĝ0 ,k , as assessed in our experiments.

redundancy of the linear equations. However, in practice, we
keep this redundancy to make full use of data and give a more
robust solution to (24).

Still assuming that e(p1 , k) is i.i.d and denoting its variance
by σ2

k , the covariance matrix of ĝk is given by [28]:

cov{ĝk} = σ2
k (Φ̂s

z̃ ỹ (k)H Φ̂s
z̃ ỹ (k))−1 . (26)

The statistical analysis of the auto- and cross-PSD estimates
show that σ2

k is inversely proportional to the number of smooth-
ing frames D [28]. Thence using a large D leads to a small error
variance σ2

k . However, increasing D decreases the fluctuation
of the estimated speech PSD among frames and thus makes the
elements in the matrix Φ̂s

z̃ ỹ (k)H Φ̂s
z̃ ỹ (k) smaller, which results

in a larger variance of ĝk . Therefore, an appropriate value of D
should be chosen to achieve a good tradeoff between smooth-
ing the noise spectrum and preserving the fluctuation of speech
spectrum.

Finally, to improve the robustness of the DP-RTF estimation,
we also calculate (25) after exchanging the roles of the two
channels in the whole process. This delivers an estimate ĝ′0,k of
the inverse of (8), i.e. an estimate of the inverse DP-RFT a0 , k

b0 , k
.

Both ĝ0,k and ĝ′0,k
−1 are estimates of b0 , k

a0 , k
. The final DP-RTF

estimate is given by averaging these two estimates as:

ĉk =
1
2
(
ĝ0,k + ĝ′0,k

−1). (27)

D. Frame Classification

We adopt the minimum-maximum statistics for frame classi-
fication, which was first introduced in [12], and is applied to a
different feature in this paper. Frame classification is based on
the estimation of ỹ PSD, i.e., φ̂ỹ ỹ (p, k). The frame p1 is selected
such that φ̂s

ỹ ỹ (p1 , k) in (22) is large compared to e(p1 , k), and
thus (22) matches well the noise-free case.

As shown in (17), the PSD estimation φ̂ỹ ỹ (p, k) is composed
of both speech and noise powers. A minimum statistics formu-
lation was proposed in [29], where the minimum value of the
smoothed periodograms with respect to the index p, multiplied
by a bias correction factor, is used as the estimation of the noise
PSD. Here we introduce an equivalent sequence length for an-
alyzing the minimum and maximum statistics of noise spectra,
and propose to use two classification thresholds (for two classes
P1 and P2) defined from the ratios between the maximum and
minimum statistics. In short, we classify the frames by using the
minimum controlled maximum border.

Formally, the noise power in φ̂ỹ ỹ (p, k) is

ξp,k ! φ̂vv (p, k) =
1
D

D−1∑

d=0

|vp−d,k |2 . (28)

For a stationary Gaussian signal, the probability density function
(PDF) of periodogram |vp,k |2 obeys the exponential distribution
[29]

f(|vp,k |2 ; λ) =
1
λ

e−|vp , k |2 /λ (29)
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where λ = E{|vp,k |2} is the noise PSD. Assume that the se-
quence of |vp,k |2 values at different frames are i.i.d. random
variables. The averaged periodogram ξp,k obeys the Erlang
distribution [30] with scale parameter µ = λ/D and shape
parameter D:

f(ξp,k ;D,µ) =
ξD−1
p,k e−

ξ p , k
µ

µD (D − 1)!
. (30)

We are interested in characterizing and estimating the ratio be-
tween the maximum and minimum statistics of the sequence
ξp,k . Since the maximum and minimum statistics are both lin-
early proportional to µ [29], we assume, without loss of gener-
ality, that µ = 1. Consequently the mean value of ξp,k is equal
to D.

As mentioned in Section III-A, the frame index of the esti-
mated PSDs φ̂yy (p, k) and ξp,k is confined to the range pf to
P . Let R denote the increment of the frame index p of the esti-
mated PSDs. If R is equal to or larger than D, for two adjacent
estimated PSD ξp,k and ξp+R,k , there is no frame overlap. The
sequence ξp,k , p = pf : R : P is then an independent random
sequence. The length of this sequence is P̃ = ⌈P −pf +1

R ⌉. The
PDFs of the minimum and maximum of these P̃ independent
variables are [31]:

fmin(ξ) = P̃ · (1 − F (ξ))P̃ −1 · f(ξ),

fmax(ξ) = P̃ · F (ξ)P̃ −1 · f(ξ), (31)

where F (·) denotes the cumulative distribution function (CDF)
associated with the PDF (30). Conversely, if R < D, ξp,k is a
correlated sequence, and the correlation coefficient is linearly
proportional to the frame overlap. For this case, (31) will not be
valid anymore. Based on a large amount of simulations using
white Gaussian noise (WGN),3 it was found that the following
approximate equivalent sequence length

P̃ ′ =
P̃R

D
·
(

1 + log
(

D

R

))
(32)

can replace P̃ in order to make (31) valid for the correlated
sequence. We observe that the ratio between the number D of
frames used for spectrum averaging and the frame increment R
of PSD estimates, is replaced with its logarithm. Note that this
is an empirical result, for which theoretical foundation remains
to be investigated.

Then, the expectation of the minimum can be approximately
computed as

ξ̄min ≈
∑

ξ i
ξi · fmin(ξi)∑
ξ i

fmin(ξi)
, (33)

3The simulations are done with the following procedure: applying STFT to a
number of WGN signals with identical long duration. For each TF bin, estimate
the PSD by averaging the periodograms of the past D frames. Without loss
of generality, the scale parameter µ of the PSD estimation can be set to 1 by
adjusting the noise PSD λ to D. A sequence of correlated PSD estimates is
generated by picking PSD estimates from the complete sequence, with frame
increment R (with R < D). The length of the correlated sequence is P̃ . The
minimum/maximum values of each correlated sequence are collected at each fre-
quency for all the WGN signals. The PDF and CDF of the minimum/maximum
statistics are simulated by the histograms of these minimum/maximum values.
Fig. 1 shows some examples of this empirical CDF.

Fig. 1. CDF of the minimum and maximum statistics of ξp ,k for D = 12.

where ξi ∈ {0, 0.1D, 0.2D, . . . , 3D} is a grid used to approx-
imate the integral operation, which well covers the support of
the Erlang distribution with shape D and scale 1. Similarly, the
CDF of the maximum can be estimated as

Fmax(ξ) ≈
∑

ξ i

fmax(ξi). (34)

Finally, we define two classification thresholds that are
two specific values of the maximum and minimum ratios,
namely

r1 =
ξFm a x (ξ)=0.95

ξ̄min
, and r2 =

ξFm a x (ξ)=0.5

ξ̄min
, (35)

where ξFm a x (ξ)= 0.95 and ξFm a x (ξ)= 0.5 are the values of ξ
for which the CDF of the maximum is equal to 0.95 and 0.5,
respectively. Classes P1 and P2 are then obtained with

P1 = {p | ξp,k > r1 · min
p
{ξp,k}}, (36)

P2 = {p | ξp,k ≤ r2 · min
p
{ξp,k}}. (37)

These two thresholds are set to ensure that the frames in P1
contain large speech power and the frames in P2 contain negli-
gible speech power. The speech power for the other frames are
probabilistically uncertain, making them unsuitable for either
P1 or P2 . Using two different thresholds evidently separates
speech region and noise-only region. In other words, there is a
low probability to have a frame classified into P1 in the prox-
imity of P2 frames, and vice versa. Therefore, in general, the
PSD of a frame in P1 is estimated using D frames that are not
included in the noise-only region, and vice versa. Note that if
there are no frames with speech content, e.g., during long speech
pauses, class P1 will be empty with a probability of 0.95 due to
threshold r1 .

As an illustration of (32), Fig. 1 shows the CDF for D =
12. The empirical curves are simulated using WGN, and
the analytical curves are computed using the equivalent se-
quence length in (32). The minimum CDF and maximum
CDF of two groups of simulations are shown, for which
the equivalent sequence lengths P̃ ′ are fixed at 20 and 100,
respectively. For each equivalent sequence length P̃ ′, two empir-
ical curves with frame increment R = 1 and R = 6 are simulated
using WGN, whose corresponding original sequence lengths are
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P̃ = 69 and P̃ = 24 for P̃ ′ = 20, and P̃ = 344 and P̃ = 118
for P̃ ′ = 100, respectively. This shows that the equivalent se-
quence length in (32) is accurate for the minimum and maximum
statistics.

V. SSL METHOD

The amplitude and the phase of DP-RTF represent the am-
plitude ratio and phase difference between two source-to-
microphone direct-path ATFs. In other words, in case of two
microphones, the DP-RTF is equivalent to the interaural cues,
ILD and IPD, associated to the direct path. More generally, we
consider here J microphones. This is a slight generalization
that will directly exploit the previous developments, since we
consider these J microphones pair-wise. As in [32], [33], we
consider the normalized version of the DP-RTF estimate (27)
between microphones i and j:

ck,ij =
ĉk ,ij√

1 + |ĉk ,ij |2
. (38)

Compared to the amplitude ratio, the normalized DP-RTF is
more robust. In particular, when the reference transfer function
a0,k is much smaller than b0,k , the amplitude ratio estimation
is sensitive to noise present in the reference channel. By con-
catenating (38) across K frequencies and across (J − 1)J/2
microphone pairs, we obtain a high-dimensional feature vector
c ∈ RJ (J−1)K/2 . Since speech signals have a sparse STFT rep-
resentation, we denote by h ∈ CJ (J−1)K/2 an indicator vector
whose elements are either equal to 1 if the energy at the cor-
responding frequency is significant, or equal to 0 if the energy
is negligible. In practice, the indicator vector entries at a given
frequency k are set to 0 if the corresponding matrix Φ̂s

z̃ ỹ (k) is
underdetermined, i.e. P1 < (2Qk − 1) for that frequency. This
way, we do not use any DP-RTF calculated from (25) for such
“missing frequency” (see below).

The proposed DP-RTF estimation method is suitable for the
most general case of microphone setup where the microphones
are not necessarily placed in free-field. In other words it can
be applied to any microphone pair in any microphone array
setup. For instance, in the present paper, the microphones are
placed in the ears of a dummy head or on the head of a robot. In
these cases, there is no clear (analytical) relationship between
the head-related impulse response (HRIR)/head related transfer
function (HRTF)/DP-RTF and the DOA of the emitting source,
even after removal of the noise and reverberations. In order
to perform SSL based on the feature vector c, we adopt here a
supervised framework: A training set Dc,q of I pairs {ci ,qi}I

i=1
is available, where ci is a DP-RTF feature vector generated
with an anechoic HRIR, and qi is the corresponding source-
direction vector. Then, for an observed (test) feature vector c
that is extracted from the microphone signals, the corresponding
direction is estimated using either (i) nearest-neighbor search in
the training set (considered as a look-up table) or (ii) a regression
whose parameters have been tuned from the training set. Note
that the training set and the observed test features should be
recorded using the same microphone set-up. This way, the HRIR
of the training set (corresponding to an anechoic condition)

Fig. 2. Configurations of room, dummy head, speech sources and noise source
for the BRIR dataset.

corresponds to the direct-path of the BRIR of the test condition
(recorded in reverberant condition).

Nearest-neighbor search corresponds to solving the following
minimization problem (⊙ denotes the Hadamard product, i.e.
entry-wise product):

q̂ = argmin
i∈[1,I ]

∥ h ⊙ (c − ci) ∥ . (39)

As mentioned above, the indicator vector h enables to select the
relevant DP-RTF vector components, i.e. the ones corresponding
to frequencies with (over)determined solution to (24). Because
of the sparse nature of the test feature vectors, not any regression
technique could be used. Indeed, one needs a regression method
that allows training with full-spectrum signals and testing with
sparse-spectrum signals. Moreover, the input DP-RTF vectors
are high dimensional and not any regression method can handle
high-dimensional input data. For these reasons we adopted the
probabilistic piece-wise linear regression technique of [6].

VI. EXPERIMENTS WITH SIMULATED DATA

We report results with experiments carried out in order to
evaluate the performance of the proposed method. We simulated
various experimental conditions in terms of reverberation and
additive noise.

A. The Dataset

The BRIRs are generated with the ROOMSIM simulator
[34] and with the HRTF of a KEMAR dummy head [35]. The
responses are simulated in a rectangular room of dimension
8 m × 5 m × 3 m. The KEMAR dummy head is located at (4,
1, 1.5) m. The sound sources are placed in front of the dummy
head with azimuths varying from −90◦ to 90◦, spaced by 5◦, an
elevation of 0◦, and distances of 1 m, 2 m, and 3 m., see Fig. 2.

The absorption coefficients of the six walls are equal, and ad-
justed to control T60 at 0.22 s, 0.5 s and 0.79 s, respectively. Two
other quantities, i.e. the ITDG and the direct-to-reverberation
ratio (DRR), are also important to measure the intensity of the
reverberation. In general, the larger the source-to-sensors dis-
tance is, the smaller the ITDG and DRR are. For example, when
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T60 is 0.5 s, the DRRs for 1, 2, 3 m are about 1.6, −4.5 and
−8.1 dB, respectively. Speech signals from the TIMIT dataset
[36] are used as the speech source signals, which are convolved
with the simulated BRIRs to generate the sensor signals. Each
BRIR is convolved with 10 different speech signals from TIMIT
to achieve reliable SSL results. Note that the elevation of the
speech sources is always equal to 0◦ in the BRIR dataset, thence
in these simulated-data experiments the source direction corre-
sponds to the azimuth only. The feature vectors in the training
set {ci}I

i=1 are generated with the anechoic HRIRs of the KE-
MAR dummy head from the azimuth range [−90◦ , 90◦], spaced
by 5◦, i.e. I = 37. In this section, the nearest-neighbor search is
adopted for localization.

Two types of noise signals are generated: (i) a “directional
noise” is obtained by convolving a single channel WGN signal
with a BRIR corresponding to position beside the wall with
azimuth of 120◦, elevation of 30◦ and distance of 2.2 m, see
Fig. 2; (ii) an “uncorrelated noise” consists of an independent
WGN signal on each channel. Noise signals are added to the
speech sensor signals with various signal-to-noise ratios.

B. Setting the Parameters

The sampling rate is 16 kHz. Only the frequency band from
0 to 4 kHz is considered for speech source localization. The
setting of all three parameters N , Qk and D is crucial for a good
estimation of the DP-RTF. Intuitively, Qk should correspond
to the value of T60 at the k-th frequency bin. For simplicity,
we set Qk to be the same for all frequencies and denote it as
Q. In the following of this subsection, we present preliminary
SSL experiments that were done in order to tune N , Q and D
to an “optimal tradeoff” setting that would ensure good SSL
performance for a large range of acoustic conditions. Since
considering all possible joint settings of these three parameters
is a hard task, when exploring the setting of one of them, we
may fix the others.

In all the following, the localization error is taken as the
performance metric. It is computed by averaging the absolute
errors between the localized directions and their corresponding
ground truth (in degrees) over the complete test dataset.

Let us first consider the setting of Q. Here we fix N =
256 with 50% overlap, and D = 12. Table I shows the lo-
calization errors for Q values corresponding to CTF length
∈ [0.1T60 , . . . , 0.4T60 ] with T60 = 0.5 s. When the SNR is high
(first four lines; SNR = 10 dB), the influence of noise is small,
and the DRR plays a dominant role. Comparing the localization
errors for source-to-sensors distances between 1 m and 2 m, we
see that small localization errors are obtained with rather small
Q values for 1 m, and with the larger Q values for 2 m. This re-
sult indicates that, for a given T60 , Q should be increased when
the DRR is decreased. The CTF should cover most of the energy
of the room impulse response. By comparing the results for the
uncorrelated noise of 10 dB and −5 dB, source at 2 m (second
and fifth lines), we observe that the smallest localization error
is achieved by a smaller Q for the low SNR case, compared to
the high SNR case. Note that a larger Q corresponds to a greater
model complexity, which needs more reliable (less noisy) data

to be estimated. The intense uncorrelated noise degrades the
data, thence a small Q is preferred. In contrast, for the direc-
tional noise, a large Q is also suitable for the low SNR case
(sixth line). The reason is possibly that the directional noise sig-
nal has a similar convolution structure as the speech signal, and
the noise residual e(k) also has a similar convolution structure.
Thence the data reliability is not degraded much. In conclusion,
the optimal Q varies with the T60 , DRR, noise characteristics,
and noise intensity. In practice, it is difficult to obtain these fea-
tures automatically, thence we assume that T60 is known, and
we set Q to correspond to 0.25 T60 as a tradeoff for different
acoustic conditions.

Let us now consider the setting of D. Here, we set Q to
correspond to 0.25 T60 , and N = 256 with 50% overlap. The
number of frames D is crucial for an efficient spectral subtrac-
tion (see Section IV-B). A large D yields a small noise residual.
However, the remaining speech power after spectral subtrac-
tion may also be small because of the small fluctuations of the
speech PSD estimate between frames when D is large. Table II
shows the localization errors for D ∈ [6, . . . , 20] under differ-
ent conditions. Note that only the results for the low SNR case
(−5 dB) are shown, for which the effect of noise suppression
plays a more important role. It can be seen (first line) that a
large D yields the smallest localization error, which means that
removing noise power is more important than retaining speech
power for this condition. The reason is that the DRR is large
for source-to-sensors distance of 1 m, so that the direct-path
speech power is relatively large. As D increases, the remain-
ing direct-path speech power decreases only slightly, compared
to the decrease of the noise residual. In contrast, a small D
yields the smallest localization error for the directional noise at
2 m (fourth line), which means that retaining speech power is
more important than removing noise power for this condition.
The reasons are that (i) as described above, the data reliability
is not degraded much by the directional noise in the sense of
convolution, and (ii) the direct-path speech power is relatively
small for a source-to-sensors distance of 2 m. The conditions of
the second and third lines fall in between the first line and the
fourth line, and these results do not strongly depend on D. It is
difficult to choose a D value that is optimal for all the acoustic
conditions. In the following, we set D = 12 frames (100 ms) as
a fair tradeoff.

As for the setting of N , let us remind that the reflections
present in a(n)|Nn=0 lead to a biased definition of DP-RTF. In
order to minimize the reflections contained in a(n)|Nn=0 , the
STFT window length N should be as small as possible, while
still capturing the direct-path response. However, in practice, a
small N requires a large Q for the CTF to cover well the room
impulse response, which increases the complexity of the DP-
RTF estimate. We tested the localization performance for three
STFT window sizes: 8 ms (N = 128 samples), 16 ms (N = 256
samples), and 32 ms (N = 512 samples), with 50% overlap.
Again, Q corresponds to 0.25 T60 . For example, with T60 =
0.79 s and with N = 128, 256, 512 respectively, Q is equal to
50, 25, 13 frames respectively. D is set to 100 ms. For N = 128,
256, 512, D is 24, 12, 6 frames, respectively. Table III shows
the localization errors under various acoustic conditions. We
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TABLE I
LOCALIZATION ERRORS (DEGREES) FOR DIFFERENT VALUES OF Q IN DIFFERENT CONDITIONS

Conditions Q/T6 0 (T6 0 = 0.5 s)

Noise type SNR Distance 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Uncorrelated 10 dB 1 m 0.122 0.081 0.077 0.081 0.099 0.108 0.113
Uncorrelated 10 dB 2 m 1.338 0.847 0.716 0.649 0.629 0.608 0.568
Directional 10 dB 1 m 0.135 0.113 0.122 0.131 0.149 0.158 0.162
Directional 10 dB 2 m 1.437 0.869 0.829 0.680 0.644 0.626 0.617
Uncorrelated −5 dB 2 m 7.824 6.833 6.703 6.680 6.802 6.964 7.149
Directional −5 dB 2 m 13.36 12.25 11.90 11.23 10.96 10.52 10.38

T6 0 = 0.5 s. “Distance” stands for source-to-sensors distance. The bold value is the minimum localization
error for each condition.

TABLE II
LOCALIZATION ERRORS (DEGREES) FOR DIFFERENT VALUES OF D IN DIFFERENT CONDITIONS

Conditions D frames

Noise type SNR Distance 6 8 10 12 14 16 18 20

Uncorrelated −5 dB 1 m 2.59 2.15 2.09 1.99 1.86 1.81 1.64 1.59
Uncorrelated −5 dB 2 m 7.37 6.03 6.17 6.68 6.08 6.40 6.90 6.50
Directional −5 dB 1 m 3.83 3.42 3.51 3.23 3.70 3.47 2.96 3.45
Directional −5 dB 2 m 9.80 10.28 10.32 11.23 11.60 13.18 13.62 15.35

T6 0 = 0.5s. “Distance” stands for source-to-sensors distance. The bold value is the minimum localization error for
each condition.

TABLE III
LOCALIZATION ERRORS (DEGREES) FOR THREE VALUES OF N

Conditions STFT window length N

SNR Distance T6 0 128 (8 ms) 256 (16 ms) 512 (32 ms)

1 m 0.22 s 0.01 0.01 0.02
10 dB 3 m 0.22 s 0.58 1.19 1.89

3 m 0.79 s 9.60 9.22 9.55
1 m 0.22 s 1.89 1.62 1.49

−5 dB 3 m 0.22 s 8.07 6.30 7.04
3 m 0.79 s 22.66 20.81 17.75

“Distance” is the sensors-to-source distance. The bold value is the minimum
localization Error. In this experiment, the noise signal is generated by summing
the directional noise and uncorrelated noise with identical powers.

first discuss the case of high SNR (first three lines). When the
source-to-sensors distance is small (1 m; first line), the ITDG
is relatively large and we observe that N = 128 and N = 256
(8 ms and 16 ms windows) achieve comparable performance.
This indicates that, if the ITDG is relatively large, there are not
much more reflections in a(n)|Nn=0 for a 16-ms window, com-
pared with an 8-ms window. The next results (second line) show
that, when T60 is small (0.22 s), the localization performance
decreases much more for a 16-ms and a 32-ms window than for
an 8-ms window, as the sensor-to-noise distance increases from
1 m to 3 m. A lower ITDG yields a larger DP-RTF estimation
error due to the presence of more reflections in a(n)|Nn=0 . When
T60 increases to 0.79 s, Q becomes larger, especially for N =
128. It can be seen (third line) that here N = 256 yields a better

performance than other values. This is because the lack of data
leads to a large DP-RTF estimation error for N = 128, and the
reflections in a(n)|Nn=0 bring a large DP-RTF estimation error
for N = 512. When the SNR is low (−5 dB; last three lines),
less reliable data are available due to noise contamination. In
that case, a large N achieves the best performance. Finally, we
set N = 256 (16-ms STFT window) as a good overall tradeoff
between all tested conditions.

C. DP-RTF Estimation

We provide several representative examples showing the in-
fluence of both reverberation and noise on the DP-RTF esti-
mates. The phase and normalized amplitude of the estimated
DP-RTF for three acoustic conditions are shown in Fig. 3. The
SNR is set to 30 dB in the first two examples, hence the noise
is negligible. The difference between the estimated and the
ground-truth phase is referred to as the phase estimation er-
ror. It can be seen that, for most frequency bins, the mean value
(over ten trials) of the phase estimation error is very small (but
nonzero, which indicates that the estimated DP-RTF is biased).
As mentioned above, the bias is brought in by the reflections
in the impulse response segment a(n)|Nn=0 . In addition, if the
DRR gets smaller, a longer CTF is required to cover the room
impulse response. However, for a given T60 , the CTF length Q
is set as a constant, for instance 0.25 T60 . In this example, this
improper value of Q leads to an inaccurate CTF model, which
causes the DP-RTF estimate bias. When the source-to-sensors
distance increases, both the ITDG and DRR become smaller.
Therefore, for both phase and amplitude, the estimation bias of
the second example of Fig. 3 (middle) is larger than the bias of
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Fig. 3. The phase (top) and normalized amplitude (bottom) of the normalized estimated DP-RTF (38) as a function of frequency bins. The source direction is
30◦. T60 = 0.5 s. The continuous curve corresponds to the ground-truth DP-RTF dk computed from the anechoic HRTF. Left: 1 m source-to-sensors distance,
30 dB SNR. Middle: 2 m source-to-sensors distance, 30 dB SNR. Right: 1 m source-to-sensors distance, 0 dB SNR. For each acoustic condition, the BRIR is
convolved with 10 different speech recordings as the sensor signals, whose DP-RTF estimations are all shown. In this experiment, the noise signal is generated by
summing the directional noise and uncorrelated noise with identical powers.

the first example (left). Moreover, the DP-RTF b0 , k

a0 , k
in gk plays

a less important role relative to other elements, with decreasing
DRR, which makes the variance of both the phase and ampli-
tude estimation errors to be larger than in the first example. By
comparing the first and last examples of Fig. 3, it is not surpris-
ing to observe that the estimation error increases as noise power
increases. When the SNR is low, less reliable speech frames are
available in the high frequency band, due to the intense noise.
Therefore, there is no DP-RTF estimation for the frequency bins
satisfying P1 < 2Qk− 1.

D. Baseline Methods

In our previous work [12], the proposed inter-frame spectral
subtraction scheme was applied to RTF estimators (as opposed
to the DP-RTF estimators proposed in the present paper). The
results were compared with the RTF estimators proposed in
[9] and [11] in the presence of WGN or babble noise. The ef-
ficiency of the inter-frame spectral subtraction to remove the
noise was demonstrated. Thence, the focus of the present set
of experiments is mainly aimed at (i) comparing the robust-
ness to reverberation of the proposed DP-RTF feature with re-
spect to other features, in a similar SSL framework, and at (ii)
comparing the proposed SSL method with a conventional SSL
method.

To this aim, we compare our method with three other meth-
ods: (i) An unbiased RTF identification method [12], in which
a spectral subtraction procedure (similar to the one described
in Section IV-B) is used to suppress noise. Since this RTF es-
timator is based on the MTF approximation, we refer to this

method as RTF-MTF. (ii) A method based on a STFT-domain
coherence test (CT) [22].4 We refer to this method as RTF-
CT. The coherence test is used in [22] to search the rank-1 TF
bins which are supposed to be dominated by one active source.
We adopt the coherence test for single speaker localization, in
which one active source denotes the direct-path source signal.
The TF bins that involve notable reflections have low coherence.
We first detect the maximum coherence over all the frames at
each frequency bin, and then set the coherence test threshold for
each frequency bin to 0.9 times its maximum coherence. In our
experiments, this threshold achieves the best performance. The
covariance matrix is estimated by taking a 120 ms (15 adjacent
frames) averaging. The auto- and cross-PSD spectral subtrac-
tion is applied to the frames that have high speech power and a
coherence larger than the threshold, and then are averaged over
frames for RTF estimation. (iii) A classic one-stage algorithm:
the steered-response power (SRP) utilizing the phase transform
(PHAT) [39], [40]. The azimuth directions −90◦ : 5◦ : 90◦ are
taken as the steering directions, and their HRIRs are used as the
steering responses.

Note that for both RTF-MTF and RTF-CT methods, the fea-
tures used in the SSL are obtained after the inter-frame spectral
subtraction procedure. The SSL method presented in Section V
is adopted. The training set used as a look-up table or used for
training the regression is the same as for the DP-RTF.

4Note that [21] introduces a similar technique based on interaural coher-
ence, using features extracted from band-pass filter banks. Also, a binaural
coherent-to-diffuse ratio approach was proposed in [37], [38] and applied to
dereverberation but not to SSL.
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Fig. 4. Localization errors under various reverberation and noise conditions.
Top: T60 = 0.22 s. Middle: T60 = 0.5 s. Bottom: T60 = 0.79 s. The localization
errors are shown as a function of SNR for source-to-sensors distances of 1 m,
2 m and 3 m.

E. Localization Results

Fig. 4 shows the localization results in terms of localization
error (let us remind that this error is an average absolute error
between the localized directions and their corresponding ground
truth (in degrees) over the complete test dataset). Note that in real

world, directional noise source, e.g. fan, refrigerator, etc., and
diffuse background noise co-exist. Thence in this experiment,
the noise signal was generated by summing the directional noise
and uncorrelated noise with identical powers.

Let us first discuss the localization performance shown in
Fig. 4-top for T60 = 0.22 s. When the DRR is high (1 m source-
to-sensors distance; solid-line), compared with the proposed
method, RTF-MTF has a comparable performance under high
SNR conditions, and a slightly better performance under low
SNR conditions (lower than 0 dB). This indicates that when
the reverberation is low, the MTF approximation is valid. When
less reliable data are available (under low SNR conditions), the
proposed method perform slightly worse than RTF-MTF due
to its greater model complexity. Note that both the RTF-MTF
and the proposed DP-RTF methods achieve very good localiza-
tion performance: The localization error goes from almost 0◦ at
SNR = 10 dB to about 5◦ at SNR = −10 dB. RTF-CT achieves
the worse performance. This indicates that when the direct-path
impulse response is slightly contaminated by the reflections,
employing all the data (as done by RTF-MTF and DP-RTF) ob-
tains a smaller localization error than employing only the data
selected by the coherence test. In general, for mild reverbera-
tions, the performance gap between RTF-MTF, RTF-CT and the
proposed method is small and the noise level plays a decisive
role for good localization.

The SRP-PHAT method achieves comparable performance
measures with the three other methods when the SNR is high
(10 dB). However, the performance measures of SRP-PHAT de-
grades immediately and dramatically when the SNR decreases.
The SRP is severely influenced by intense noise, especially by
the directional noise. This indicates that the inter-frame spectral
subtraction algorithm applied to RTF-MTF, RTF-CT and the
proposed method is efficient to reduce the noise.

When the DRR decreases (2 m source-to-sensors distance,
grey lines; 3 m source-to-sensors distance, dashed lines), the
performance measures of RTF-MTF degrades notably. For
SNR = 10 dB, the localization error of RTF-MTF increases from
0.07◦ to 1.51◦ and to 6.35◦ for source-to-sensors distances of
1 m, 2 m and 3 m, respectively. The direct-path impulse response
is severely contaminated by the reflections. At high SNRs, RTF-
CT performs slightly better than RTF-MTF. Indeed, RTF-CT se-
lects the frames that contain less reverberations for calculating
the RTF estimate, which improves the performance at high SNR
conditions. However, when the noise level increases, the preci-
sion of RTF-CT also degrades. The performance of RTF-CT is
influenced not only by the residual noise but also by the decline
of the coherence test precision, which make it fall even faster
than RTF-MTF with decreasing SNR (it has a larger localization
error at −5 dB and −10 dB).

The proposed method also has a larger localization error when
the source-to-sensors distance increases: the DP-RTF estimation
is possibly influenced by the increased amount of early reflec-
tions in the impulse response segment a(n)|Nn=0 , by the effect of
an improper Q setting, and by the decreased importance of b0 , k

a0 , k

in vector gk . However, the performance of the proposed DP-
RTF method degrades much slower than the ones of RTF-MTF
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when the source distance increases. For an SNR of 10 dB, the
localization error of the proposed method increases from 0.06◦

to 0.16◦ and 1.19◦ as the source-to-sensors distance increases
from 1 m to 2 m and 3 m. It can be seen that the performance
of the proposed method also falls faster than RTF-MTF with
decreasing SNR, since the available data is less reliable. The
localization error of the proposed method is larger than the
MTF error at −10 dB. It is observed that the proposed method
prominently outperforms RTF-CT. It is shown in [23] that the
coherence test is influenced by the coherent reflections (very
early reflections) of the source signal. Moreover, it is difficult to
automatically set a coherence test threshold that could perfectly
select the desired frames. Many frames that have a coherence
larger than the threshold include reflections.

The performance of SRP-PHAT also degrades with the DRR
decrease. It is known that PHAT-based method are quite sensible
to reverberations and noise in general. Briefly, the performance
measures of SRP-PHAT are in between the performance mea-
sures of RTF-MTF and RTF-CT for high SNRs, which indicates
that the PHAT weight could suppress the reverberations only to
a certain extent. Below 5 dB, SRP-PHAT performs worst of the
four methods.

Fig. 4 (bottom) displays the results for T60 = 0.79 s. Obvi-
ously, the performance measures of all four methods degrade as
T60 increases. Indeed, the MTF approximation is not accurate;
there are only a few TF bins with a rank-1 coherence; and a large
value of Q has to be utilized in the proposed method, for which
there may not always be enough reliable data. Here, it can be
seen that RTF-CT performs better than RTF-MTF for any SNR
value and source-to-sensors distance. Even SRP-PHAT per-
forms better than RTF-MTF (for 2 m and 3 m source-to-sensors
distance). This shows that the RTF estimation error brought by
the MTF approximation largely increases as T60 increases. For
1 m source-to-sensors distance, the proposed method performs
slightly better than all other three methods. For 2 m and 3 m
source-to-sensors distance, the proposed method largely out-
performs the other three methods, at all SNRs. For example, at
SNR = 0 dB, the proposed method achieves about 6.5◦ of local-
ization error at 2 m source-to-sensors distance, while RTF-CT
(the best of the three baseline methods) achieves about 15.8◦,
hence the gain for the proposed method over the best baseline is
about 9.3◦. However, the performance of the proposed method
and of RTF-CT still have a faster degradation with decreasing
SNR compared to RTF-MTF.

Finally, we can see from Fig. 4 (middle), that the performance
of the different methods for T60 = 0.5 s falls in between the
other two cases shown on the same figure, and the trends of
performance evolution with T60 is consistent with our comments
above.

In summary, the proposed method outperforms the three other
methods under most acoustic conditions. In a general manner,
the gain over the baseline methods increases as the source-to-
sensors distance increases (or the DRR decreases) and as the
reverberation time increases (but the influence of the noise level
is more intricate). As a result, the proposed method achieves
acceptable localization performance in quite adverse conditions.
For example (among many others), with T60 = 0.5 s, source-to-

TABLE IV
LOCALIZATION ERRORS (IN DEGREES) AS A FUNCTION OF SPEECH DURATION,

FOR T60 = 0.5 S AND A SOURCE-TO-SENSORS DISTANCE OF 2 M

Speech duration (s)

SNR Method 1 2 3 4

Proposed 1.57 0.88 0.79 0.54
10 dB RTF-CT 6.24 4.43 3.86 3.21

RTF-MTF 12.60 12.01 11.25 11.16
Proposed 7.36 4.62 4.05 3.07

0 dB RTF-CT 12.97 11.33 10.04 9.67
RTF-MTF 17.56 15.29 14.94 15.01

sensors distance of 3 m and an SNR of 0 dB, the localization error
is about 9◦, and with T60 = 0.79 s, source-to-sensors distance
of 2 m, and an SNR of 0 dB, the localization error is about 6.5◦.

In all the above results, the duration of the signal used for
localization was not considered with great attention: The lo-
calization errors were averaged over 10 sentences of TIMIT of
possibly quite different duration, from 1 s to 5 s. Yet the number
of available frames that are used to construct (24) depends on
the speech duration, which is crucial for the least square DP-
RTF estimation in (25). Here we complete the simulation results
with a basic test of the influence of the speech duration on lo-
calization performance. To this aim we classified our TIMIT
test sentences according to their duration (closer to 1 s, 2 s, 3 s
or 4 s) and proceeded to localization evaluation for each new
group (of 10 sentences), for a limited set of acoustic conditions
(SNR = 10 dB and 0 dB, T60 = 0.5 s). Table IV shows the
localization errors of the proposed method, the RTF-MTF, and
the RTF-CT method, for the four tested approximate speech du-
rations. We can see that, as expected, all three methods achieve
a smaller localization error when increasing speech duration,
for both tested SNRs. The improvement is more pronounced
for the proposed method and the RTF-CT method compared
to the RTF-MTF method. For example, for SNR = 10 dB, the
localization error is reduced by 66% (from 1.57◦ to 0.54◦) for
the proposed method, and by 49% (from 6.24◦ to 3.21◦) for the
RTF-CT method when the speech duration rises from 1 s to 4 s.
In contrast, the localization error of RTF-MTF is quite larger
and is only reduced by 11% (from 12.60◦ to 11.16◦).

VII. EXPERIMENTS WITH THE NAO ROBOT

In this section we present several experiments that were con-
ducted using the NAO robot (Version 5) in various real-world
environments. NAO is a humanoid companion robot developed
and commercialized by Aldebaran Robotics.5 NAO’s head has
four microphones that are nearly coplanar, see Fig. 5. The
recordings contain ego-noise, i.e. noise produced by the robot.
In particular, it contains a loud fan noise, which is stationary
and partially interchannel correlated [41]. The spectral energy
of the fan noise is notable up to 4 kHz, thence the speech sig-
nals are significantly contaminated. Note that the experiments

5https://www.ald.softbankrobotics.com.



LI et al.: ESTIMATION OF THE DP-RTF FOR SUPERVISED SSL 2183

Fig. 5. NAO’s head has four microphones and one camera.

Fig. 6. The audio-visual training dataset (left) is obtained by moving a loud-
speaker in front of a microphone/camera setup. Sounds are emitted by a loud-
speaker. A LED placed on the loudspeaker enables to associate each sound
direction with an image location (a blue circle). The data contain pairs of acous-
tic recordings and sound directions. A typical localization scenario with the
NAO robot (right).

reported in this section adopt the parameter settings discussed
in Section VI-B.

A. The Datasets

The data are recorded in three environments: laboratory, of-
fice, e.g., Fig. 6-(right), and cafeteria, with reverberation times
(T60) that are approximately 0.52 s, 0.47 s and 0.24 s, respec-
tively. Two test datasets are recorded in these environments:

1) The audio-only dataset: In the laboratory, speech utterances
from the TIMIT dataset [36] are emitted by a loudspeaker in
front of NAO. Two groups of data are recorded with a source-to-
robot distance of 1.1 m and 2.1 m, respectively. For each group,
174 sounds are emitted from directions uniformly distributed
in azimuth and elevation, in the range [−120◦, 120◦] (azimuth),
and [−15◦, 25◦] (elevation).

2) The audio-visual dataset: Sounds are emitted by a loud-
speaker lying in the field of view of NAO’s camera. The image
resolution is of 640 × 480 pixels, corresponding to approxi-
mately 60◦ (−30◦ to 30◦) azimuth range and to approximately
48◦ (−24◦ to 24◦) elevation range, so 1◦ of azimuth/elevation
corresponds to approximately 10.5 horizontal/vertical pixels. A
LED placed on the loudspeaker enables to estimate the loud-
speaker location in the image, hence ground-truth localization
data are available with the audio-visual dataset. Three sets of
audio-visual data are recorded in three different rooms. For each
set, sounds are emitted from about 230 directions uniformly
distributed in the camera field-of-view. Fig. 6-(left) shows the

source positions shown as blue dots in the image plane. The
source-to-robot distance is about 1.5 m in this dataset.

In both datasets, ambient noise is much lower than fan noise,
hence the noise of recorded signals mainly corresponds to fan
noise. In the case of the audio-only dataset, the SNR is 14 dB
and 11 dB for source-to-robot distances of 1.1 m and 2.1 m,
respectively. For the audio-visual dataset the SNR is 2 dB.

The training dataset for the audio-only localization exper-
iments is generated with the NAO head HRIRs of 1, 002 di-
rections uniformly distributed over the same azimuth-elevation
range as the test dataset. The training dataset for audio-visual
experiments is generated with the NAO head HRIR of 378 di-
rections uniformly distributed over the camera field-of-view.
HRIRs are measured in the laboratory: WGN is emitted from
each direction, and the cross-correlation between the micro-
phone and source signals yields the BRIR of each direction. In
order to obtain anechoic HRIRs, the BRIRs are manually trun-
cated before the first reflection. The regression method of [6],
outlined in Section V, is used for supervised localization. The
SRP-PHAT method takes the source directions in the training
set as the steering directions.

B. Localization Results for the Audio-Only Dataset

Experiments with the audio-only dataset first show that el-
evation estimation in the range [−15◦ 25◦] is unreliable for all
the four methods. This can be explained by the fact that the
four microphones are coplanar. Therefore we only present the
azimuth estimation results in the following.

The azimuth estimation results for the audio-only dataset are
given in Fig. 7. The results are quite consistent across the two
conditions, i.e. source-to-robot distance of 1.1 m (see Fig. 7-top)
and 2.1 m (see Fig. 7-bottom). Globally, for the azimuth range
[−50◦, 50◦] all four methods provide good localization, i.e. they
follow the ground-truth line quite well, for both source-to-robot
distances. In this range, the proposed method achieves slightly
better results than the RTF-MTF and RTF-CT methods. The
performance of all methods drops significantly for directions
out of this range, but globally, the proposed method remains
the closest to the ground-truth. In more details, in the approx-
imate range [−120◦,−50◦] and [50◦, 120◦] it can be seen that
SRP-PHAT and RTF-MTF have the largest localization error
and many localization outliers caused by reverberations (SRP-
PHAT performs slightly better than RTF-MTF in the zones just
after−50◦ and 50◦, possibly due to PHAT weighting). By select-
ing frames that involve less reverberations, RTF-CT performs
slightly better than RTF-MTF. The proposed method outper-
forms the others by extracting the binaural cues associated with
the direct-path propagation. Importantly, in the extremities of
the range, the proposed method does not generate major out-
liers nor large deviation from the ground-truth, as opposed to
the other methods.

C. Localization Results for the Audio-Visual Dataset

The azimuth and elevation in the audio-visual dataset are
limited to a small range around 0◦ azimuth. As a consequence,
both the azimuth and elevation localization results of this
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Fig. 7. Azimuth estimation for the audio-only dataset. Source-to-robot dis-
tance is 1.1 m (top) and 2.1 m (bottom).

TABLE V
LOCALIZATION ERROR (IN DEGREES) FOR THE AUDIO-VISUAL DATASET

Cafeteria Office Laboratory

Method Azim. Elev. Azim. Elev. Azim. Elev.

RTF-MTF 0.47 1.58 0.62 2.14 1.46 2.30
RTF-CT 0.43 1.49 0.68 2.30 1.59 2.40
SRP-PHAT 0.77 1.95 1.03 2.80 1.41 3.33
Proposed 0.48 1.46 0.55 1.86 0.84 1.84

The best results are shown in bold.

dataset are better than the results of audio-only dataset in
average. Table V shows the localization errors for azimuth
(Azim.) and elevation (Elev.) for the audio-visual dataset. The
elevation errors are always larger than the azimuth errors,
due to the low elevation resolution of the microphone array
that we already mentioned (the microphone are coplanar and
the microphone plane is horizontal). The cafeteria has the

smaller reverberation time, T60 = 0.24 s. Consequently, the
RTF-MTF and RTF-CT methods yields performance measures
that are comparable with the proposed method. The office and
laboratory have larger reverberation times, 0.47 s and 0.52 s,
respectively, so the MTF approximation is no more accurate. A
bit surprisingly RTF-MTF performs better than RTF-CT for the
office (though the errors are quite close), this is probably due
to the fact that the coherence test does not work well under low
SNR conditions (let us remind that the SNR of the audio-visual
dataset is around 2 dB). Globally, SRP-PHAT performs the
worst, due to the intense noise. As a result of the presence
of notable reverberations, the proposed method performs here
significantly better than the three other methods. For example,
in the laboratory environment, the proposed method provides
0.84◦ azimuth error and 1.84◦ elevation error, vs. 1.41◦ azimuth
error and 2.30◦ elevation error for the best baseline methods
(for instance SRP-PHAT and RTF-MTF respectively).

VIII. CONCLUSION

We proposed a method for the estimation of the DP-RTF.
Compared with the conventional RTF, the DP-RTF is defined
as the ratio between two direct-path ATFs. Therefore, the DP-
RTF definition and estimation implies the removal of the re-
verberations, and it provides a more reliable feature, in partic-
ular for SSL. To estimate the DP-RTF, we adopted the CTF
model instead of the MTF approximation. By doing this, the
DP-RTF can be estimated by solving a set of linear equations
constructed from the reverberant sensor signals. Moreover, an
inter-frame spectral subtraction method was proposed to remove
noise power. This spectral subtraction process does not require
explicit estimation of the noise PSD, hence it does not suffer
from noise PSD estimation errors.

Based on the DP-RTF we proposed a supervised SSL algo-
rithm. The latter relies on a training dataset that is composed of
pairs of DP-RTF feature vectors and their associated sound di-
rections. The training dataset is pre-processed in such a way that
it only contains anechoic HRIR. Hence the training dataset does
not depend on the particular acoustic properties of the record-
ing environment. Only the sensors set-up must be consistent
between training and testing (e.g. using the same dummy/robot
head). In practice we implemented two supervised methods,
namely a nearest-neighbor search and a mixture of linear re-
gressions. Experiments with both simulated data and real data
recorded with four microphones embedded in a robot head,
showed that the proposed method outperforms an MTF-based
method and a method based on a coherence test, as well as a
conventional SRP-PHAT method, in reverberant environments.

In the presented experiments the model parameters Q, D and
N (see Section VI-B) were set to constant values which were
chosen as a tradeoff yielding good results in a variety of acoustic
conditions. In the future, to improve the robustness of DP-RTF,
we plan to estimate the acoustic conditions using the microphone
signals, such that an optimal set of parameters can be adaptively
adjusted. We also plan to extend the DP-RTF estimator and
its use in SSL to the more complex case of multiple sound
sources.
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