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Abstract—This paper addresses the problem of multiple-speaker
localization in noisy and reverberant environments, using binaural
recordings of an acoustic scene. A complex-valued Gaussian mix-
ture model (CGMM) is adopted, whose components correspond
to all the possible candidate source locations defined on a grid.
After optimizing the CGMM-based objective function, given an
observed set of complex-valued binaural features, both the num-
ber of sources and their locations are estimated by selecting the
CGMM components with the largest weights. An entropy-based
penalty term is added to the likelihood to impose sparsity over the
set of CGMM component weights. This favors a small number of
detected speakers with respect to the large number of initial candi-
date source locations. In addition, the direct-path relative transfer
function (DP-RTF) is used to build robust binaural features. The
DP-RTF, recently proposed for single-source localization, encodes
interchannel information corresponding to the direct path of sound
propagation and is thus robust to reverberations. In this paper, we
extend the DP-RTF estimation to the case of multiple sources. In
the short-time Fourier transform domain, a consistency test is pro-
posed to check whether a set of consecutive frames is associated
with the same source or not. Reliable DP-RTF features are selected
from the frames that pass the consistency test to be used for source
localization. Experiments carried out using both simulation data
and real data recorded with a robotic head confirm the efficiency
of the proposed multisource localization method.

Index Terms—Candidate-based GMM, direct-path RTF, en-
tropy penalty, multiple-speaker localization.

I. INTRODUCTION

MULTIPLE-SPEAKER localization is an auditory scene
analysis module with many applications in human-

computer and human-robot interaction, video conferencing, etc.
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Alpes, GIPSA-lab, 38400 Saint-Martin-d’Hères, France (e-mail: laurent.girin@
gipsa-lab.grenoble-inp.fr).

S. Gannot is with the Faculty of Engineering, Bar-Ilan University, Ramat Gan
5290002, Israel (e-mail: Sharon.Gannot@biu.ac.il).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASLP.2017.2740001

In this paper we address the multiple-speaker localization prob-
lem in the presence of noise and in reverberant environments.
While we use binaural recordings of the acoustic scene, the
method can be easily generalized to an arbitrary number of
microphones.

Whenever there are more sources than microphones, which is
the case in the present work, the so-called W-disjoint orthogonal-
ity (WDO) of the speech sources [1], [2] is widely employed by
multiple-speaker localization methods. The principle is that in
each small region of the time-frequency (TF) domain, the audio
signal is assumed to be dominated by only one source, because
of the natural sparsity of speech signals in this domain. There-
fore, multiple-speaker localization from binaural recordings can
be decomposed in the following three-step process: (i) binaural
TF-domain localization features are extracted from the binau-
ral signals using the short-time Fourier transform (STFT), or
another TF decomposition; (ii) these features are clustered into
sources, and (iii) the clustered features are mapped to the source
locations.

Traditionally, the binaural features used for localization
are the interaural level difference (ILD) and interaural time
(or phase) difference (ITD or IPD), e.g., [2]–[6]. Complex-
valued features can also be used [7]–[9], as well as the relative
phase ratio [10], [11]. However, these features are not robust to
noise and reverberations. To reduce the noise effects, unbiased
relative transfer function (RTF) estimators were adopted, such as
the ones based on noise stationarity versus the non-stationarity
of the desired signal [12]–[14], on speech presence probability
and spectral subtraction [14]–[16], or on complex t-distribution
[17]. The RTF estimation is generalized to multiple sources in
[18]. To robustly estimate localization features in the presence
of reverberations, the precedence effect [19] can be exploited,
relying on the principle that signal onsets are dominated by the
direct path. In [20], the TF bins dominated by one same source
are grouped together based on the use of monaural features (such
as pitch and onset/offset). Interaural coherence [21], coherence
test [22] and direct-path dominance test [23] were also proposed
to detect the frames dominated by one active source. However, in
practice, significant reverberations often remain in the selected
frames, due to an inaccurate model or to an improper decision
threshold. In [24], [25] it was proposed to use direct-path RTF
(DP-RTF) binaural features, i.e. the ratio between the direct path
of the acoustic transfer function of the left and right channels.
Unlike RPR, RTF and similar features, which are polluted by
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reverberations, the DP-RTF bears mainly the desired localiza-
tion information. The DP-RTF is estimated based on the convo-
lutive transfer function (CTF) approximation [26], [27] in the
STFT domain. The CTF is a convolutive filter on the STFT coef-
ficients of source signal, thus it is a more accurate representation
of the STFT-domain binaural signals than the conventional mul-
tiplicative transfer function (MTF) approximation [28]. In [24],
[25], it was observed that single-source localization using the
DP-RTF features outperformed MTF-based features.

To localize multiple active speakers using binaural features,
many models have been developed. The simplest one, assum-
ing free-field recording with small inter-microphone distance
and low reverberations, rely on frequency-independent ITD
features. Histogram methods [2], [21] and k-means cluster-
ing [7] were then proposed to group these features and local-
ize/separate the sources. When the inter-microphone distance is
larger, the problem becomes more complex since the features
derived from phase measures (IPD and ITD) are generally am-
biguous along frequency due to phase wrapping. In [3], [4],
the ITD ambiguity along frequency is solved by jointly exploit-
ing the ILD. Frequency-wise clustering can be adopted, such
as hierarchical clustering [8] and weighted sequential cluster-
ing [9]. This approach faces the so-called source permutation
problem, i.e. the indexing of clusters can be different from one
frequency to the other. To solve this problem, the speech spec-
trum correlation between adjacent frequencies is exploited in
[9]. A maximum likelihood method is proposed to formulate
the source localization problem in [29]. Based on manifold
learning, two semi-supervised localization methods are pro-
posed in [30], [31]. A probabilistic mixture of linear regres-
sions is used in [32] to map a high-dimensional binaural feature
vector (concatenated across frequencies) onto source location.
In [32], only one source is considered. In [33] the method is
extended to multiple sources relying on the WDO assumption.
In [34] it is also extended to the direct colocalization of two
sources without relying on the WDO assumption and source
clustering.

Often, solving the IPD ambiguity and/or source permutation
problems amounts to ensure the continuity of binaural cues
across frequencies. IPD profiles as a function of frequency can
be unwrapped using the direct-path propagation model. In [35],
[36], permutation alignment is processed by minimizing the cost
function between the observations and the propagation model.
In [20], the azimuth set that has the largest likelihood given
the feature observations is exhaustively searched from all the
potential azimuth sets. Probabilistic models, mostly Gaussian
mixture models (GMMs), were also proposed to both cluster
and map the features onto source location [3], [5], [6], [10]. In
[5] a GMM is used to learn offline the azimuth-dependent am-
biguous ITD space of candidate sources. Then, the most likely
azimuth with respect to the observed ITDs is estimated as the
source direction. In [6] a mixture of warped lines is fitted to
the IPD observation profiles. Each warped line corresponds to a
source direction. In [3] each candidate interchannel time delay
is considered as a GMM component. A mixture of GMMs is
constructed to represent multiple sources. The azimuth of each
source is given by the component that has the highest weight

in the corresponding GMM. A similar approach is proposed
in [10], but with GMM components corresponding to candi-
date 2D source positions thanks to the use of several pairs of
microphones.

Recently, a probabilistic clustering method was proposed in
[11] to localize an unknown number of emitting speech sources
hypothetically located on a regular grid, where each grid point
location is known with respect to several microphone pairs. The
relative phase ratio (RPR) associated with a microphone pair is
predicted from the propagation model for each grid point and for
each frequency. A set of complex-valued Gaussian mixture mod-
els (CGMMs), one mixture model per frequency, is built such
that i) the number of components of each mixture equals the
number of grid points, ii) the mixture components are centered
around the predicted RPRs (which are frequency-dependent),
iii) all mixture components share the same fixed variance which
is frequency-independent, and iv) the mixtures at different fre-
quency bins share the same set of weights. Note that unlike [3]
and [10] that use a separate GMM for each source, a common
CGMM is used for all sources in [11]. Since the mixture means
(predicted RPRs) and the variances are fixed, only the mix-
ture weights have to be estimated, one weight corresponding to
one candidate source location. An EM algorithm alternates be-
tween assigning RPR observations to the mixture components
(expectation) and estimating the weights (maximization). At
convergence, the algorithm yields a weight value for each grid
point and the number and location of active sources is obtained
by applying a threshold to these weight values. Because in the
present multiple-source localization problem the number of ac-
tual sources is expected to be much lower than the number of
candidate source locations on the grid, it makes sense to design
a methodology to ensure the sparsity of the estimated weights,
i.e. to ensure that only a few number of weights have a large
value. Obviously, this is expected to facilitate the selection of
relevant sources.

This idea is connected to sparse finite mixture modeling,
namely to deliberately specify an overfitting mixture model with
too many components and looking for sparse solutions in terms
of the number of components [37]–[39] . Solutions have been
proposed in a Bayesian formulation within either variational in-
ference [40] or sampling strategies [39]. To obtain a sparse solu-
tion an appropriate prior on the weight distribution must be set
and a popular choice is the Dirichlet distribution [39]–[41]. The
choice of the hyper-parameter of this distribution must guarantee
that superfluous components are emptied automatically. While
the use of Dirichlet priors is appealing from a Bayesian perspec-
tive, several problems appear in practice. First, it is not clear how
to learn from the data how much sparsity is needed, i.e. how to
choose the hyper-parameter. The rigorous asymptotic analysis
of [38] suggests that the Dirichlet hyper-parameter should be
smaller than half the dimension of the parameter vector charac-
terizing a mixture component. But in the case of a finite number
of observations, a much smaller value seems appropriate [39],
[40]. Second, one has to remove the emptied components by
checking for small weights, which amounts to thresholding the
Dirichlet posterior distribution. Third, in a multi-source local-
ization model such as the one in [11], the means are constrained
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by the acoustic model, therefore a full Bayesian treatment may
not be justified.

Imposing a spatially sparse solution to multi-source local-
ization has also been investigated in [42] in a source signal
reconstruction framework. The multiple sources are also hy-
pothetically located on a regular grid . The mixing matrix is
composed of the steering vectors to all grid points, which are
given by the free-field sound propagation model under anechoic
assumption. The signal reconstruction is formulated as an ℓ2 fit
between the received signal and the mix of source signals. An
ℓ1 regularization is used to impose that only a few grid points
correspond to active sources. In [43], this method is extended to
the reverberant environment.

In the present paper a new multiple-speaker localization
method is proposed, based on the CGMM of [11] and asso-
ciated likelihood function, combined with the use of direct-path
relative transfer function (DP-RTF) as a binaural feature [24].
This paper has the following contributions.

1) First, it is proposed to minimize the negative log-
likelihood function by adding an entropy-based penalty
which enforces a sparse solution in terms of the free model
parameters, i.e. the component weights. This corresponds
to enforcing the spatial sparsity of sources, in the spirit of
[42] but implemented in a very different manner.

2) Second, it is shown that the minimization of this penalized
objective function can be carried out via a convex-concave
optimization procedure (CCP) [44], [45]: at each iteration,
the concave penalty is approximated by its first-order Tay-
lor expansion, such that the convex-concave problem be-
comes convex. The latter is solved using the primal-dual
interior point method (PDIPM) [46].

3) Third, in the single-speaker configuration of [24], the DP-
RTF was estimated at each frequency by solving a unique
multi-dimensional linear equation built from the statistics
of the binaural signals using all available time frames.
However, for multiple sources, successive time frames at
a given frequency may not belong anymore to a single
source, and one has to enforce the WDO assumption.
At each frequency, the multi-dimensional linear equation
used for estimating the DP-RTF is now constructed from
a frame region (a set of continuous frames) where only
one source is assumed to be active.

4) Fourth, since the above extension is far from being trivial
due to multi-source overlap, a consistency-test algorithm
is proposed to verify whether a frame region is associated
with a single source or not. If so, a local DP-RTF estima-
tion is obtained by solving this local equation, otherwise
this frame region is discarded. Applying this principle
to many different regions over the entire binaural power
spectrogram leads to a set of DP-RTF estimates, each one
assumed to correspond to one of the sources.

Overall, these contributions lead to an efficient multiple-
source localization method in the presence of noise and re-
verberations.

The remainder of the paper is organized as follows. Section II
provides an overview of the method. The CGMM with maxi-
mization of penalized likelihood is described in Section III. The

estimation of DP-RTF from the microphone signals for the case
of multiple speakers is presented in Section IV. Experiments
with both simulated and real data are presented in Section V.
Section VI concludes the paper.

II. METHOD OVERVIEW

In this section, we briefly specify the articulation of the dif-
ferent processing blocks that have been introduced in the intro-
duction, to provide a clear overview of the proposed method.
To this aim, a block diagram of the proposed method is given
in Fig. 1. The process in each block will be detailed in the fol-
lowing parts of the paper (the corresponding subsections are
specified below).

The microphone signals are first transformed into the STFT
domain (Block ⃝1 ). Based on the consistency test, the DP-
RTF features that are respectively associated to one single ac-
tive speaker are estimated from the STFT coefficients (Block
⃝2 and ⃝3 ). These are detailed in Section IV-B and IV-C.
These estimated DP-RTFs are suitable for the CGMM clus-
tering framework presented in Section III: Predicted DP-RTFs
(which are the means of the CGMM) are calculated offline from
a reverberation-free propagation model. In this work, we use
head-related transfer functions (HRTFs) since the recordings
are made from either a dummy-head or a robot head (Block ⃝4 ).
Then, the measured and predicted DP-RTF features are provided
to the CGMM penalized likelihood maximization procedure
(Block ⃝5 and ⃝6 ). This process is detailed in Section III-B.
This procedure outputs the optimized CGMM component
weights for all predefined candidate positions, from which
source localization is finally performed using a peak selection
routine (Block ⃝7 ). The peak selection procedure depends on
the experimental configuration and is thus detailed in Section V.

III. CGMM WITH SPARSITY REGULARIZED

LIKELIHOOD MAXIMIZATION

We consider non-stationary source signals si(n), e.g. speech,
where i ∈ [1, I] denotes the source index. The received binaural
signals are

x̃(n) = x(n) + u(n) =
I∑

i=1

ai(n) ⋆ si(n) + u(n),

ỹ(n) = y(n) + v(n) =
I∑

i=1

bi(n) ⋆ si(n) + v(n), (1)

where x(n) and y(n) are the speech mixtures, u(n) and v(n) are
the microphone noise signals, ai(n) and bi(n) are the binaural
room impulse responses (BRIR) from source to microphone,
and ⋆ denotes convolution. The binaural signals are transformed
into the time-frequency (TF) domain by applying the STFT.
As mentioned above, many types of binaural features can be
extracted in the TF domain. Let cp,k denote the complex-valued
binaural features of interest, where p ∈ [1, P ] is the frame index,
and k ∈ [0,K − 1] is the frequency index. The nature of cp,k ,
namely DP-RTF features and their estimation from binaural
signals are presented in Section IV, more specifically they are
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Fig. 1. Flowchart of the proposed sound source localization method.

computed in (22) . Based on the WDO assumption, a cp,k feature
is associated with a single source. However, in practice, some
of the TF bins are dominated by noise or by several sources, and
hence they should not be considered by the clustering process.
Let Pk denote the set of frame indexes that are associated with a
single source at frequency k. Let C = {{cp,k}p∈Pk }K−1

k=0 denote
the set of features over all frequencies and available frames.
The procedure of selecting “reliable” features (i.e. generating C)
will also be detailed in Section IV. In this section, we exploit
C to perform source localization. The multi-source localization
problem is cast into a probabilistic clustering problem using a
complex-Gaussian mixture model (CGMM).

A. Clustering-Based Localization

In order to group cp,k features into several clusters and
hence to achieve multiple-source localization, we adopt the
complex-Gaussian mixture model (CGMM) formulation pro-
posed in [11]. Each CGMM component corresponds to a candi-
date source position on a predefined grid. Source counting and
localization are based on the selection of those components hav-
ing the highest weights. In [11] several pairs of microphones are
used so that two-dimensional (2D) localization on a 2D regular
grid can be achieved. In this paper, we focus on using a single
microphone pair and thus we can only estimate the sources’ az-
imuths [3]–[5], [20]. The extension to several microphone pairs
is straightforward. We define a set S of S candidate azimuths
regularly placed on a circular grid. In the remainder, s ∈ S de-
notes a candidate azimuth.1 The probability of an observed bin-
aural feature cp,k ∈ C, given that it is emitted by a sound source
located at s, is assumed to be drawn from a complex-Gaussian
distribution with mean cs

k ∈ C and variance σ2 ∈ R:

P (cp,k |s) = Nc(cp,k ; cs
k ,σ2) =

1
πσ2 exp

(
− |cp,k − cs

k |2

σ2

)
.

(2)

The mean cs
k is the predicted binaural feature at frequency k

as provided by a direct-path propagation model. The latter can
be derived from the geometric relationship between the micro-
phones and the source candidate position. If an acoustic dummy

1For convenience s can indifferently denote a source azimuth or an index of
this azimuth within the grid, arbitrarily set from 1 to S .

head is used for the binaural recordings, as will be the case in
our experiments, the head-related transfer function (HRTF) of
the dummy head is used to predict the means cs

k by taking the
HRTF ratio between channels, for each grid point s and for each
frequency k.

We now consider the grid of all possible locations, in which
case the probability of a binaural feature, given the grid loca-
tions, is drawn from a CGMM:

P (cp,k |S) =
S∑

s=1

αsNc(cp,k ; cs
k ,σ2), (3)

where αs ≥ 0 is the prior probability that the binaural feature
is drawn from the s-th component, namely the prior probability
that the source is located at s, with

∑S
s=1 αs = 1. In the present

work, αs is referred to as the component weight. Let us denote
the vector of weights with α = [α1 , ...,αS ]⊤. Since the mixture
means are determined based on the source-sensor geometry,
and the variance is set to an empirical value σ2 common to all
components and all frequencies,2 the components of α are the
only free model parameters.

Assuming that the observations in C are independent, the
corresponding log-likelihood function (as a function of α) is
given by:

logL(C|α) =
K−1∑

k=0

∑

p∈Pk

log

(
S∑

s=1

αsNc(cp,k ; cs
k ,σ2)

)
. (4)

untitled Multiple-source localization amounts to the maximiza-
tion of the log-likelihood (4). Importantly, the model above
integrates the binaural features of all frequencies by sharing the
weights over frequencies, and considers as many components
as grid points.3 Intuitively, after maximization of (4), an ac-
tive speaker location corresponds to a component with a large
weight. In practice, a plot of the weights as a function of az-
imuth indeed exhibits a quite smooth curve with a few peaks

2This was reported as a relevant choice in [11], and our experiments confirmed
that a constant variance outperforms other mechanisms, such as setting the
variance to be candidate-dependent (i.e. σ2

s ), or frequency-dependent (σ2
k ), or

both (σ2
k ,s ).

3Note that having one common source location candidate per mixture compo-
nent shared across frequencies avoid the source permutation problem mentioned
in the introduction.
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that should correspond to active speakers, see Section V. There-
fore, the detection and localization of active speakers could be
jointly carried out by selecting the components with the largest
weights. A simple strategy would consist of selecting the peaks
that are above a threshold, as done in [11], or of selecting the
Ns largest peaks if the number of active sources Ns is known
in advance. However, spurious peaks often appear, due to, e.g.,
reverberated phantom sources, corrupting the source detection
and localization. In the next subsection we propose a penalized
maximum likelihood estimator, to enforce a sparse solution for
α and remove such spurious peaks.

B. Penalized Maximum Likelihood Estimation

Let C = |C| denote the cardinality of C, namely the number
of binaural observations. We note that (4) can be written as:

logL(C|α) =
C∑

c=1

log

(
S∑

s=1

gcsαs

)
= 1⊤

C log(Gα), (5)

where 1C denotes a vector in RC with all entries set to 1,
G ∈ RC×S is the matrix of probabilities (2) reorganized so that
each row gc of G corresponds to an observation in C and each
column corresponds to a candidate source position, and where
we used the notation:

log(Gα) =
[
log(g1α), . . . , log(gcα), . . . , log(gC α)

]⊤
.

Then, the maximization of the log-likelihood (4) can be written
as the following convex optimization problem:

minimize − 1⊤
C log(Gα)

s.t. − α ≼ 0S , 1⊤
S α = 1, (6)

where 0S denotes a vector in RS with all entries set to zero,
and ≼ denotes entry-wise vector inequality. This convex opti-
mization problem with equality and inequality constraints can
be solved by the primal-dual interior-point method (PDIPM)
[46], which will be described in Section III-C. This optimiza-
tion problem has the same solution as the original problem of
maximizing the log-likelihood (4). However, in the following,
we introduce a regularization term to impose the sparsity of α,
which can be easily added to (6), but cannot be easily added to
(4) within an EM algorithm.

We remind that the parameter αs is the prior probability of
having an active source at location s. In practice, the number
of active speakers is much lower than the number of candidate
locations on the grid. One may consider a grid with tens or
hundreds of source locations, but only a handful of this locations
correspond to actual sources. Therefore, we may seek a sparse
vector α i.e. with only a few nonzero entries. To enforce the
sparsity of α we propose to add a penalty term to the objective
function in (6). The entries of α are probability masses of a
discrete random variable. Generally, the sparser the vector, the
smaller entropy H(α) = −α⊤log(α) is. Therefore, the entropy
may be used as the required penalty. A sparse solution for α can

Algorithm 1: Concave-convex minimization.

Set m = 0, initialize α(0) with the solution of (6).
repeat

1 Set m := m + 1
2 Solve the convex optimization problem:

αopt = argmin
α

{
− 1

C
1⊤

C log(Gα) + γTH (α,α(m−1))
}

s.t. − α ≼ 0S , 1⊤
S α = 1 (8)

3 Set α(m ) := αopt
until Convergence

be obtained by solving the following optimization problem:

minimize − 1
C

1⊤
C log(Gα) − γα⊤log(α)

s.t. − α ≼ 0S , 1⊤
S α = 1 (7)

where 1
C plays the role of a normalization factor, and γ is an

empirical parameter that enables to control the trade-off between
the log-likelihood and the entropy.

The entropy −α⊤log(α) is a concave function. Thence the
problem can be solved via a convex-concave procedure (CCP)
[44]. To solve the CCP, an iterative method is proposed in [45],
[47]. At each iteration, the concave function is approximated by
its first-order Taylor expansion, so that the convex-concave func-
tion becomes a convex function. The derivative of the entropy
w.r.t. α is −(1 + log(α)) and the first-order Taylor expansion
at α̃ is

TH (α, α̃) = −α̃⊤log(α̃) − (α − α̃)⊤(1 + log(α̃)).

The solution to (7) is summarized in Algorithm 1 which is
referred to as EP-MLE (entropy-penalized maximum likelihood
estimator). A convergence proof of this procedure is provided
in [45], [47]. Subproblem (8) is a convex optimization problem
with equality and inequality constraints and, again, it is solved
with PDIPM. The algorithm is stopped when the decrease of the
objective function (7) from one iteration to the next is lower than
a threshold δ. CCP can have (many) local minima, therefore the
initialization is important for searching the global minimum,
just as for EM algorithms. If γ is small, we assume that the
global minimum is in the close proximity of the minimum of
(6). Therefore, the initialization of Algorithm 1 is set as the
solution of (6), obtained with PDIPM.

C. The Primal-Dual Interior-Point Method

We follow [46] to solve for both (6) and (8). [46] provides a
general optimization algorithm for a convex objective function
f0 with a set of inequality constraints of the form f ≼ 0 and an
affine equality constraint. Here f0(α) is the objective function in
(6) or (8), and f(α) = −α. It is obvious that there exist feasible
points for the convex problem (6) and (8), namely the Slater’s
constraint qualification is satisfied. Therefore, the strong duality
holds for the present problems, in other words, the optimal
duality gap is 0.
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PDIPM makes the inequality constraints implicit in the ob-
jective function by applying the logarithmic barrier function. As
for an inequality constraint f ≤ 0, the logarithmic barrier

Î (f) = −(1/t)log(−f)

is added to the objective. Î (f) takes the value ∞ for f > 0 to
penalize the objective. The logarithmic barrier is desirable due
to its convexity and differentiability. Here t sets the accuracy
of the logarithmic barrier approximation, the larger t, the better
the approximation.

The optimization can be expressed as solving the Karush-
Kuhn-Tucker (KKT) conditions:

rt(α,λ, ν) =

⎡

⎣
∇f0(α) − λ + ν1S

diag(λ)α − (1/t)1S

1⊤
S α − 1

⎤

⎦ = 0 (9)

where λ ∈ RS and ν ∈ R are auxiliary variables that originate
in the use of the Lagrange multiplier associated with the in-
equality and equality constraints, respectively. The nonlinear
KKT conditions can be solved by Algorithm 2, with the update
rule in Step 4 given by the Newton method :
⎡

⎣
α(n+1)

λ(n+1)

ν(n+1)

⎤

⎦=

⎡

⎣
α(n)

λ(n)

ν(n)

⎤

⎦−

⎡

⎣
∇2f0(α(n)) −I 1S

diag(λ(n)) diag(α(n)) 0S

1⊤
S 0⊤

S 0

⎤

⎦
−1

×

⎡

⎣
∇f0(α(n)) − λ(n) + ν1S

diag(λ(n))α(n) − (1/t(n))1S

1⊤
S α(n) − 1

⎤

⎦× ζ(n) (10)

where (n) denotes the iteration index, I is the identity matrix,
and ζ(n) is the step-length. In the present study, the jth entry of
the derivative vector of f0(α) is given by:

∇f0(α)j =

⎧
⎪⎪⎨

⎪⎪⎩

−
∑C

i=1
g i j∑ S

j = 1 g i j α j
, for (6)

−
∑C

i=1
g i j∑ S

j = 1 g i j α j
−

γ(1 + log(α(m−1)
j )), for (8) (at iteration m)

(11)
where gij is the (i, j)-th entry of G. For both (6) and (8), the
(j1 , j2)-th entry of the Hessian matrix is:

∇2f0(α)j1 j2 =
C∑

i=1

gij1 gij2

(
∑S

j=1 gijαj )2
. (12)

Note that the update rule (10) integrates the fact that the deriva-
tive of the inequality function f(α) is ∇f(α) = −I and that
the Hessian matrix of one inequality function fs(α) = −αs is
∇2fs(α) = 0 for s ∈ [1, S].

In Algorithm 2, the primal variable and dual variables are
simultaneously updated, and the so-called surrogate duality gap
η̂(n) is decreasing with the iterations. Correspondingly, the pa-
rameter t is increased by the factor µ (a positive value of the order
of 10) with respect to η̂(n) . The line search method for setting
the step-length ζ(n) (Step 3) is briefly summarized in Algo-
rithm 3. Basically, the step-length is set as the largest value that
makes the updated variables satisfy the three conditions (i) the
dual variable λ is nonnegative, (ii) the inequality constraint is

Algorithm 2: Primal-dual interior-point.

Set n = 0, Initialize −α(0) ≼ 0, λ(0) ≻ 0, ν(0) .
repeat

1 Compute η̂(n) = {α(n)}⊤λ(n) ,
2 Set t(n) := µS/η̂(n) ,
3 Line search the step-length ζ(n) (Algorithm 3),
4 Update variables with (10).

until η̂(n) ≤ ϵ, ∥ 1⊤
S α(n) − 1 ∥2≤ ϵfeas , and

∥ ∇f0(α(n)) − λ(n) + ν1S ∥2≤ ϵfeas

Algorithm 3: Line search.

Compute ζmax = sup{ζ(n) ∈ [0, 1]|λ(n+1) ≽ 0S }, i.e. the
largest ζ value that makes the updated λ value nonnegative.
Set ζ(n) := 0.99ζmax.
repeat

Set ζ(n) := βζ(n)

until −α(n+1) ≼ 0S (i.e. the inequality constraint holds)
and
∥ rt(α,λ, ν)(n+1) ∥2≤ (1 − ηζ(n)) ∥ rt(α,λ, ν)(n) ∥2
(i.e. the overall KKT residual is decreased).

satisfied, and (iii) the overall KKT residual is decreased. In this
work, the backtracking parameters β and η of Algorithm 3 are
set to 0.5 and 0.05, respectively. In the convergence criterion of
Algorithm 2, the surrogate duality gap η̂(n) is compared with
a small threshold ϵ (close to the optimal duality gap, i.e., 0)
to guarantee the optimization. The two other criteria are set to
guarantee the feasibility of the variables (ϵfeas is also a small
arbitrary threshold). For solving (6), a good initialization is to
set α(0) = (1/S)1S , λ(0) to an arbitrary positive vector (10 · 1S

in this paper), and ν(0) to an arbitrary value (0 in this paper).
For solving (8) in Algorithm 1, the initialization is set as the
solution of the previous iteration. Finally, as already mentioned,
Algorithm 1 is initialized by the solution of (6).

IV. DIRECT-PATH ESTIMATION FOR MULTIPLE SPEAKERS

In this section we propose to estimate the direct-path relative
transfer function (DP-RTF) for multiple speakers, which is an
extension of the single-speaker case [24]. The rationale of using
the DP-RTF is twofold. First, it is robust to noise and reverbera-
tions and, second, it is a well-suited binaural feature to be used
within the complex-valued generative model (3). For clarity, we
first briefly present the single-speaker case [24], and then we
move to the multiple-speaker case.

A. DP-RTF Estimation for a Single Speaker

In the case of a single speaker, the noise-free received binaural
signals are

x(n) = s(n) ⋆ a(n), y(n) = s(n) ⋆ b(n). (13)

In the STFT domain, the MTF approximation is only valid when
the impulse responses a(n) and b(n) are short, relative to the
STFT window. To represent a linear filter with long impulse
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response in the STFT domain more accurately, the cross-band
filters were introduced [26], [48], and a CTF approximation is
further introduced and used in [27] to simplify the analysis. Let
N and L denote the size and the shift of the STFT window,
respectively. Following the CTF, x(n) is approximated in the
STFT domain by:

xp,k =
Q−1∑

p ′=0

sp−p ′,k ap ′,k = sp,k ⋆ ap,k , (14)

where xp,k and sp,k are the STFT of x(n) and s(n), respectively,
ap,k is the CTF of the filter, and where the convolution ⋆ is
executed with respect to the frame index p . The number of CTF
coefficients Q is related to the reverberation time. The first CTF
coefficient a0,k can be interpreted as the k-th coefficient of the
Fourier transform of the impulse response segment a(n)|N −1

n=0 .
This holds whatever the actual size of a(n), including if this size
is much larger than the STFT window length N . Without loss
of generality, we assume that the room impulse response a(n)
begins with the impulse response of the direct-path propagation.
If the frame length N is properly chosen, a(n)|N −1

n=0 is thus
composed of the direct-path impulse response and possibly of
a few reflections. Hence we refer to a0,k as the direct-path
acoustic transfer function (ATF). A similar statement holds for
b(n) and its corresponding direct-path ATF b0,k . By definition,
the DP-RTF is given by b0 , k

a0 , k
. We remind that the direct-path

propagation model in general, and the DP-RTF in particular,
have proven to be relevant for sound-source localization.

Based on the cross-relation method [49], using the CTF model
of two channels in the noise-free case we have: xp,k ⋆ bp,k =
yp,k ⋆ ap,k . Dividing both sides by a0,k and reorganizing the
terms in vector form we can write:

yp,k = z⊤p,k gk , (15)

where

zp,k = [xp,k , . . . , xp−Q+1,k , yp−1,k , . . . , yp−Q+1,k ]⊤

gk =
[

b0,k

a0,k
, . . . ,

bQ−1,k

a0,k
,−a1,k

a0,k
, . . . ,−aQ−1,k

a0,k

]⊤
.

We see that the DP-RTF appears as the first entry of the re-
verberation model gk . By multiplying both sides of (15) with
y∗

p,k (the complex conjugate of yp,k ) and by taking the expec-
tation (in practice averaging the corresponding power spectra
over consecutive D frames), we obtain:

φ̂yy(p, k) = φ̂
⊤
zy (p, k) gk , (16)

where φ̂yy(p, k) is the power spectral density (PSD) estimate
of y(n) at TF bin (p, k), and φ̂zy (p, k) is a vector composed of
cross-PSD terms between the elements of zp,k and yp,k .

As for the noisy case, an inter-frame spectral subtraction algo-
rithm can be used for noise suppression, e.g. [24]: The auto- and
cross-PSD of a frame with low speech power are subtracted from
the auto- and cross-PSD of a frame with high speech power. Due
to the stationarity of noise and the non-stationarity of speech,
the resulting power spectra estimates, φ̂s

yy(p, k) and φ̂
s

zy (p, k),

have low noise power and high speech power. Let Ps
k be the

set of frame indices with high-speech power (at frequency k).
After the spectral subtraction, we have:

φ̂s
yy(p, k) = φ̂

s

zy (p, k)⊤gk + e(p, k), p ∈ Ps
k , (17)

with e(p, k) denoting the residual noise of the spectral subtrac-
tion procedure. Using the frames indexed in Ps

k , a set of linear
equations can be built and solved, yielding an estimate ĝk of gk

and its first component is the estimated DP-RTF.

B. DP-RTF Estimation for Multiple Speakers

As just summarized, all the frames in Ps
k can be used to

construct a DP-RTF estimate in the case of a single speaker.
This is no longer valid in the case of multiple speakers, since the
frames in Ps

k do not necessarily correspond to the same source.
Hence the DP-RTF estimation method must be reformulated in
the case of multiple emitting sources. By applying the STFT to
(1), the recorded binaural signals write:

x̃p,k = xp,k + up,k =
I∑

i=1

si
p,k ⋆ ai

p,k + up,k ,

ỹp,k = yp,k + vp,k =
I∑

i=1

si
p,k ⋆ bi

p,k + vp,k . (18)

Without any additional assumption, (17) does not generalize to
multiple sources, and thus we cannot directly estimate the DP-
RTF associated to each source using the statistics of the mixture
signals x(n) and y(n) measured on any arbitrary set of frames.
To exploit the above results, we resort to the WDO assumption,
i.e. we assume that in a small region of the TF plane only one
source is active. Based on this assumption, the DP-RTF in a
given TF bin is assumed to correspond to at most one active
source. In the following, we thus choose to estimate the DP-
RTF for each TF bin. We first formalize this estimate based on
the above results. Then we discuss the assumptions for which
this estimate is valid and we propose a consistency test to either
select the DP-RTF in a given TF bin as a valid estimate for
one of the sources or reject it (i.e. we consider that it is not a
valid DP-RTF estimate of one of the sources). Using the WDO
assumption, and defining:

gi
k =

[
bi
0,k

ai
0,k

, . . . ,
bi
Q−1,k

ai
0,k

,−
ai

1,k

ai
0,k

, . . . ,−
ai

Q−1,k

ai
0,k

]⊤
, i ∈ [1, I],

whose first entry is the DP-RTF of source i, we have a possible
value gp,k ∈ {gi

k}I
i=1 at each STFT bin. In order to estimate

gp,k , an equation of the form (17) has to be constructed for a
set of frames corresponding to a single source. Let us consider
such a set of O consecutive frames to form:

φ̂
s

yy(p, k) = Φ̂
s
zy (p, k)gp,k + e(p, k), gp,k ∈ {gi

k}I
i=1 (19)
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where

φ̂
s

yy(p, k) = [φ̂s
yy(p − O + 1, k), . . . , φ̂s

yy(p, k)]⊤,

Φ̂
s
zy (p, k) = [φ̂

s

zy (p − O + 1, k), . . . , φ̂
s

zy (p, k)]⊤,

e(p, k) = [e(p − O + 1, k), . . . , e(p, k)]⊤,

are O × 1 vector, O × (2Q − 1) matrix and O × 1 vector, re-
spectively. Note that (most of) the frames involved in the con-
struction of φ̂

s

yy(p, k) and Φ̂
s
zy (p, k) should have high-speech

power, i.e. [p − O, p] ⊆ Ps
k . Assume that e(p, k) is stationary

and independent along frames. Then if the matrix Φ̂
s
zy (p, k) is

not underdetermined, i.e. O ≥ 2Q − 1, an optimal estimation
of gp,k is given by the least square solution of (19):

ĝp,k = (Φ̂
s
zy (p, k)H Φ̂

s
zy (p, k))−1Φ̂

s
zy (p, k)H φ̂

s

yy(p, k). (20)

Let σ2
k denote the variance of the residual noise e(p, k). The

covariance matrix of ĝp,k is σ2
k (Φ̂

s
zy (p, k)H Φ̂

s
zy (p, k))−1 [50],

which obviously can be reduced by enlarging the number of
equations, i.e. O.

To estimate the cross-PSD between yp−Q+1,k (or xp−Q+1,k )
and yp,k , the past D − 1 frames before the (p − Q + 1)-th frame
are employed. Therefore, the STFT coefficients in the frame
range [p − Q − D + 2, p] should be associated with a sin-
gle active speaker. When considering O consecutive frames,
the past Q + D − 2 frames before the (p − O + 1)-th frame
are employed to construct the earliest cross-PSD vector in (19),
i.e. φ̂

s

zy (p − O + 1, k). Therefore, for a correct estimation of the
DP-RTF at TF bin (p, k), the STFT coefficients at frequency k in
the frame range [p − O − Q − D + 3, p] should be associated
with a single active speaker. In contrast, if the O + Q + D − 2
consecutive speech frames used in the estimation of a DP-RTF
at TF bin (p, k) are composed of coefficients involving multiple
active speakers, (20) will not deliver a valid estimate of the DP-
RTF, i.e. a DP-RTF estimate that corresponds to one and only
one of the sources. In other words, the present work requires a
stricter WDO assumption than the original one [1], [2], since
at a given frequency bin k, we seek multiple continuous frames
associated to a same single source.

In a scenario with multiple and simultaneous speech sources,
the natural sparsity and the harmonic nature of speech spectra
in the STFT domain make it common that at a given frequency
a set of consecutive speech frames is dominated by a single ac-
tive speaker. However, the amount of speech regions dominated
by a single speaker is decreasing with an increasing number of
sources I and an increasing CTF length Q. Fig. 2(a) shows
an example of two-speaker mixture at one given frequency
(for instance 2 kHz). It can be seen that the magnitude spec-
trum (at the selected frequency) of individual speech signals
exhibits regions with large energy over numerous consecutive
frames. This is expected to correspond to a signal harmonic. We
observe that most regions are dominated by a single speaker,
and as a result, the trajectory of the mixture magnitude coeffi-
cient resembles the sum of the magnitude of the two individual
speech signals. This indicates that the WDO assumption can
be relaxed to a few hundreds of milliseconds. Note that this
mixture is just an example at one given frequency. The overlap

Fig. 2. An example of multispeaker DP-RTF estimate at a given frequency
(2 kHz). Binaural simulations with two speakers at−40◦ and 40◦, SNR = 20 dB,
reverberation time = 0.6 s (see the detailed dataset description in Section V-A4).
Speaker 1 is active from ≈1.5 s to ≈5 s, while Speaker 2 is active all the time.
(a) Magnitude of STFT coefficient versus time. (b) Phase of DP-RTF estimates
(top) and consistency test (bottom), both on the mixture signal. In the top figure,
the dots represent the phase of the DP-RTF estimate, i.e., arg[ĉp ,k ], and the cross
points (+) represent the estimates after exchanging channels, i.e. arg[1/ĉ′p ,k ].
The markers in black and grey indicate that the TF bins pass the consistency
test or not, respectively. The solid line and dashed line denote the predicted
phase computed from the HRTFs of Speaker 1 and Speaker 2, respectively. In
the bottom figure, the solid curve represents the similarity measure in (21), the
dashed line is the threshold set to 0.85. Note that a zero similarity means that
there is not enough frames with high speech power in the corresponding region
to construct (19). (a) Magnitude of STFT coefficient. (b) Phase of DP-RTF
estimate and consistency test.

between different sources could be much more (or less) than
this illustrated example. Taking all the frequency bands into ac-
count, there exist a notable number of speech regions dominated
by a single speaker for cases where i) the reverberation time is
not very long, e.g. not longer than 0.7 s and ii) the number of
sources is not very large, e.g. not larger than three.4 For source
localization, we only need a certain number of speech regions
to be valid, rather than requiring most of the TF-bins to be valid,
as is the case for binary-mask source separation. In the next

4The requirement of O consecutive frames is to guarantee the least square
problem (19) to be not underdetermined. Based on the analysis of the cross-
relation method in [49], for the multichannel case, O would be proportional
to 1

I−1 . Therefore, O could be reduced, namely WDO assumption could be
relaxed, by increasing the number of channels. The case I > 2 is beyond the
scope of this work, and will be investigated in future work.
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subsection, we propose a consistency test method to efficiently
pick out the valid speech regions.

C. Consistency Test

A consistency test is proposed to check whether a continuous
set of (O + Q + D − 2) STFT coefficients at a given frequency
k are associated with a single active speaker or not. The prin-
ciple is based on exchanging the roles of the two channels,
since the DP-RTF between b(n) and a(n) is the inverse of the
DP-RTF between a(n) and b(n). We thus define g′

p,k as the
reverberation model that exchanges the roles of ap,k and bp,k

in gp,k . If the STFT coefficients used to estimate ĝp,k and ĝ′
p,k

are associated with a single speaker, (15) holds and the two
corresponding DP-RTF estimates should be consistent. Con-
versely, if the STFT coefficients are associated with more than
one speaker, or only with reverberations, the estimations gp,k

and g′
p,k are both biased, with inconsistent bias values. As a re-

sult, we should observe a discrepancy between the two estimated
DP-RTF values.

In practice, let us denote by ĉp,k and ĉ′p,k ∈ C the first
entry of ĝp,k and of ĝ′

p,k respectively, i.e. the DP-RTF esti-

mates b0 , k

a0 , k
and a0 , k

b0 , k
. We test the consistency by measuring the

difference between ĉp,k and 1/ĉ′p,k . To achieve a normalized
difference measurement that allows us to easily set a reason-
able test threshold, we define the vectors c1,p,k = [1, ĉp,k ]⊤ and
c2,p,k = [1, 1/ĉ′p,k ]⊤, where the first entry 1 can be interpreted
as the DP-RTF corresponding to a0 , k

a0 , k
. The similarity, i.e. the

cosine of the angle, of the two vectors:

dp,k =
|c⊤1,p,kc2,p,k |√

c⊤1,p,kc1,p,kc⊤2,p,kc2,p,k

(21)

is a value in [0, 1], which is a good difference measurement.
The larger dp,k , the more consistent the reverberation model
is. The consistency decision is made by comparing dp,k with a
threshold dT (e.g. set to 0.85).

An example of consistency test is shown in Fig. 2(b). The test
is applied to the mixture signal in Fig. 2(a). It can be seen that the
phase of ĉp,k and 1/ĉ′p,k are close to each other, and are close
to the predicted phase, for the frames dominated by a single
speaker, e.g. within 0.3–1.5 s for Speaker 1. Correspondingly,
the consistency measures are large (close to 1). For the regions
that involve the two speakers, e.g. around 3.2 s, and the regions
that mainly involve the reverberations, e.g. around 3.7 s, the two
phase measures are far from the predicted phase, and are far from
each other, thus the consistency measures are low. Eventually,
the DP-RTF estimates that pass the consistency test are correctly
selected, as shown by the black markers, which are close to the
predicted value.

Let Pk denote the set of frames indices that pass the consis-
tency test for frequency k. Every DP-RTF estimation in Pk is
first recalculated as (ĉp,k + 1/ĉ′p,k )/2 to improve the estimate
robustness. Finally it is normalized as

cp,k =
(ĉp,k + 1/ĉ′p,k )/2

1 + |(ĉp,k + 1/ĉ′p,k )/2| , (22)

which is a complex number whose module is in the interval [0, 1].
Each cp,k is assumed to be associated with a single speaker. We
thus now have a set of normalized DP-RTF observations that
are ready for clustering among sources.

V. EXPERIMENTS

In this section, we present a series of experiments with sim-
ulated data and real data collected from a robotic head. We
start by describing the experimental setup, and then give the
experimental results and discussions.

A. Experimental Setup

1) Blind and Semiblind Configurations: Two configurations
were tested, blind and semi-blind. In the blind configuration,
the number of active sources I and their locations are simulta-
neously estimated. Note that the term ‘blind’ mainly refers to
the unknown number of sources, and does not mean a complete
blind configuration, for instance the HRTFs and reverberation
time are known. Localization is conducted by selecting the local
maxima in the set of CGMM weights that are above a threshold
αT , i.e. we detect {α|α > αT ,α ∈ [α1 , . . . ,αS ]}. In the semi-
blind configuration, I is assumed to be known and the source
locations are detected by selecting the I largest local maxima
over the weights [α1 , . . . ,αS ]. The source location estimates
are associated to the ground-truth source locations by looking
for the correspondence that provides the overall lower mean
absolute localization error (MAE) averaged across sources. In
general, blind localization is more difficult than semi-blind lo-
calization in terms of peak selection.

2) Performance Metrics: For both configurations, a source
is then considered to be successfully localized if the difference
between its actual azimuth and the estimated azimuth is not
larger than a predefined threshold, empirically set to 15◦. Then,
a new MAE is calculated for the successfully localized sources,
which is the MAE in the results reported below. To further char-
acterize the unsuccessful localizations in the blind configuration
scenario, we also calculated: (i) the missed detection (MD) rate
defined as the percentage of sources that are present but not
detected out of the total number of present sources; and (ii) the
false alarm (FA) rate defined as the percentage of sources that
are detected although they are not actually present in the scene,
out of the total number of sources. In the semi-blind configu-
ration, we calculated the outlier rate, defined as the percentage
of sources for which the azimuth error is larger than 15◦ out of
the total number of present sources (in short, the percentage of
unsuccessfully localized sources). Note that, on one hand, an
outlier indicates a missed detection of the corresponding true
source, on the other hand, the outlier estimate itself is a false
alarm.

3) Parameters Setting: The signal sampling rate is 16 kHz.
Only the frequency band from 0 to 4 kHz is considered for
speech source localization, since this band concentrates the
largest part of speech signals energy. The setting of the three
parameters N , Q and D is crucial for a good estimation of the
DP-RTF, and is discussed in [24]. In this work, we use the same
parameter setting as in [24], which achieves a good trade-off
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for various acoustic conditions. The STFT frame length is set to
N = 16 ms (256 samples) with frame shift L = 8 ms (128 sam-
ples). The CTF length Q is set to correspond to T60/6. The
number of frames for the PSD estimate is D = 15 (120 ms) .
We set O = 3.5Q as a trade-off for ensuring a small variance
of ĝp,k , and the sparsity of the speech spectrum (one single
active source) on a reasonable number of successive frames.
The threshold for the consistency test is set to dT = 0.85. The
penalty factor γ in (7) is set to 0.2 as a good experimental
trade-off between the log-likelihood and the entropy. The posi-
tive factor µ in Algorithm 2 is set to 20. The thresholds for the
convergence criterion in Algorithms 1 and 2 are set to δ = 10−3

and ϵ = ϵfeas = 10−6 . In the blind localization configuration,
the threshold αT for the local maximum selection correspond-
ing to source detection is set to 0.05, since this value was shown
to provide a good trade-off between MD and FA.

4) Simulated Binaural Data: A set of BRIRs were generated
with the ROOMSIM simulator [51] combined with the head-
related impulse responses (HRIRs) of the KEMAR dummy head
[52]. For the KEMAR dummy head, the pre-measured HRIRs
for a large set of discrete directions (for both azimuth and el-
evation) are available. To simulate the filtering of a reflection
coming from a given direction, the pre-measured HRIR of dis-
crete direction closest to the reflection direction is used as an
approximation of the HRIR of the reflection direction. This pro-
cedure is automatically conducted in the ROOMSIM simulator
[51] . The simulated room is of dimension 5 m × 8 m × 3 m.
The dummy head is located at (1 m, 4 m, 1.5 m). Sound sources
were placed in front of the dummy head with azimuths (relative
to the dummy head center) varying from −90◦ to 90◦, spaced by
5◦ (hence 37 azimuths), and an elevation of 0◦. Five sets of 37
binaural signals were generated by selecting 5 different speech
signals from the TIMIT dataset [53] and convolving each of
these 5 signals with each of the 37 BRIRs.

We set the reverberation time to T60 = 0.6 s, which is quite
notable. Accordingly, we set Q = 12 (96 ms) and O = 42. Two
dummy-head-to-source distances were simulated, namely 1 m
and 2 m, for which the direct-to-reverberant ratio (DRR) is about
0.5 dB and −5.5 dB, respectively. Localization of two and three
speakers is considered. We generated 500 mixtures for each
case, by summing binaural signals randomly selected from the
five groups, ensuring that the source directions are spaced by
at least 15◦. The noise signals were generated by mixing two
types of noise with the same power: (i) directional noise: white
Gaussian noise emitted from the source point with azimuth
of 120◦, elevation of 30◦ and distance-to-head of 2.2 m, and
(ii) spatially uncorrelated white Gaussian noise. The composite
noise signal was added to the speech mixture signals with signal-
to-noise ratio (SNR) of either 30 dB or 5 dB. The duration of
each noisy speech mixture used for localization is of about
3 s. Importantly, in these simulations, the predicted DP-RTF
corresponding to the candidate source locations, i.e. the means
of the CGMM components, are computed by using the anechoic
HRIRs from [52], which ideally corresponds to the direct-path
of the complete simulated propagation model (the BRIRs). The
set of candidate locations S is composed of the 37 azimuth
values within [−90◦, 90◦] taken every 5◦.

Fig. 3. The four-microphone robot head used in this paper.

5) Robotic Head Data: We also report real-world experi-
ments conducted using the head of the NAO humanoid robot
(version 5), equipped with four nearly-coplanar microphones,
see Fig. 3. Elevation localization is here unreliable due to the
coplanar microphone array. We used the two microphone pairs
A-C and B-D to localize the azimuth relative to the NAO head.
The head has built-in fans nearby the microphones, hence the
recorded data contain a notable amount of fan noise (aka ego-
noise), which is stationary and spatially correlated [54].

The data are recorded in an office room with T60 = 0.52 s.
Accordingly, we set here Q = 11 (88 ms) and O = 38. The
test dataset consists of long speech utterances (>3 s) from the
TIMIT dataset, emitted by a loudspeaker. Two data sets are
recorded with a robot-to-source distance of 1.5 m and 2.5 m,
respectively (remember that DRR is related to the microphone-
to-source distance). For each data set, 174 speech utterances
were emitted from directions uniformly distributed in the range
[−120◦, 120◦] for azimuth, and [−15◦, 25◦] for elevation. The
noise of recorded signals mainly corresponds to fan noise, the
SNR is about 10 dB. Two-speaker localization and three-speaker
localization were considered. For each case, 200 mixtures were
generated by summing the sensor signals from two or three
different directions. Note that this mixing procedure sums the
noise signals from each individual recording, which is different
from what would be obtained with a real mixture recording. The
summed noise has statistical property identical to the individ-
ual noises since latter are identically distributed and stationary,
while the SNR is decreased. The mixture signals were truncated
to have a duration of 3 s. The source azimuths are spaced by
a random angle not lower than 15◦. The candidate azimuths
S are here set to values within [−120◦, 120◦] with a 6◦-step,
hence there are 41 candidate azimuths. As for the two micro-
phone pairs, the predicted binaural features (CGMM mean) of
the candidate azimuths were respectively computed by using
the corresponding anechoic HRTFs. The HRTFs and the pre-
dicted features are computed offline from HRIRs measured in
laboratory: white Gaussian noise is emitted from a loudspeaker
placed around NAO’s head from each candidate direction, and
the cross-correlation between the microphone and source sig-
nals yields the BRIR of each direction. In order to obtain ane-
choic HRIRs, the BRIRs are manually truncated before the first
reflection.

The information from the two microphone pairs was inte-
grated into the localization model with the following procedure:
1) binaural features are extracted independently from each of
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the two pairs, 2) the Gaussian probabilities of the binaural fea-
tures are computed using (2) for each pair; note that the CGMM
means cs

k are different for the two pairs, but the weights α are
of course the same, 3) we have an additional summation over
the two pairs of features in the likelihood function (4); this cor-
responds to have the Gaussian probabilities of the two pairs
concatenated into a common matrix G, and finally 4) execute
the optimization procedure.

B. Baseline Methods

The results of the proposed method are compared with the
results obtained with the four following baseline methods.

1) Basic-CGMM: To test the relevance and efficiency of the
entropy penalty, the results obtained with the same CGMM
model, but solving the basic optimization problem (6), i.e. with-
out the entropy penalty, are compared. The same proposed DP-
RTF feature is used here, and the peak counting threshold of
the blind configuration is empirically set to 0.15 to adjust the
trade-off between MD and FA.

2) RTF-CT-CGMM: To test the efficiency of the proposed
DP-RTF feature, the binaural RTFs with normalized amplitude
of [22] are tested for comparison. Here, a coherence test is used
to search the TF bins which are supposed to be dominated by one
active source. Note that the direct-path source and its reflections
are considered as different sources, thence, the TF bins that
pass the coherence test are supposed to be dominated by the
direct-path signal of one active source. The TF bins that have a
coherence larger than a threshold (here set to 0.9) are selected to
provide RTF features. The proposed CGMM localization model
is used. For the blind configuration, the peak counting threshold
is set to 0.15 as a good trade-off between MD and FA. Note that,
only the TF bins that have a high speech power are considered
for the coherence test. The inter-frame spectral subtraction is
applied to the TF bins that pass the coherence test. Therefore the
selected RTF features are supposed to have the same robustness
to noise as the proposed DP-RTF features.

3) The Model-Based EM Source Separation and Localization
Method (MESSL) [3]: This method is based on a GMM-like
joint model of ILD and IPD distribution. MESSL is a semi-
blind method, i.e. the number of speakers on a given analyzed
sound sequence is assumed to be known. We used the imple-
mentation provided by the authors.5 The default setup is used
for the parameter initialization and tying scheme, namely the
GMM weights are initialized using a cross-correlation method
while the other parameters are initialized in a non-informative
way, and the parameters are not tied at all. A pilot comparison
was conducted to test the three different configurations: i) de-
fault, with ILD but not garbage source, ii) without both ILD and
garbage source, and iii) with both ILD and garbage source. The
third configuration slightly outperformed the other two, thus
it was adopted in the following experiments. For the binaural
dataset, the set of candidate delays corresponds to the azimuth
grid used for the proposed method, and they are computed from
the corresponding HRIRs. For the multichannel robotic head

5https://github.com/mim/messl

data, the multichannel MESSL proposed in [55] is used. The
set of candidate delays is uniformly distributed in the possible
maximum range. Source localization is made by comparing the
output multichannel delays and the delay templates correspond-
ing to the azimuth grid used for the proposed method.

4) The Steered-Response Power Using the PHAse Transform
(SRP-PHAT) [56], [57]: This is a classic one-stage algorithm.
The candidate azimuth directions of the proposed method are
taken as the steering directions, and the corresponding HRIRs
are used as the steering responses. The number of sources and
their locations can be detected by selecting the peaks with
steered response power above a threshold. However, the steered
response power for different acoustic conditions, such as dif-
ferent number of sources, SNRs, or reverberation times, can
significantly vary, which makes the threshold setting difficult.
Thence, in the following experiments, we use SRP-PHAT in a
semi-blind mode.

C. Results of Experiments With Simulated Data

In this subsection, we first present an example of result ob-
tained on simulated data to illustrate the behavior of the local-
ization methods, and then we provide more general quantitative
results. We remind that the proposed method is referred to as
EP-MLE.

1) An Example of Sound Source Localization: Fig. 4 shows a
source localization example obtained with the proposed method
and with the baseline methods. For DRR = 0.5 dB (left column),
all methods (except for SRP-PHAT) have two (and only two)
prominent peaks at the correct source azimuths. The SRP-PHAT
profile is more cluttered than the other profiles but the two
highest peaks are nevertheless at the correct source azimuth. The
results for the proposed EP-MLE and the Basic-CGMM method
are quite similar, hence the entropy penalty has no significant
influence in these conditions.

For DRR = −5.5 dB (right column), the source at −40◦ still
has a prominent peak for the first four methods (though the
maximum of the peak is slightly shifted at −45◦ for EP-MLE
and Basic-CGMM). Even the SRP-PHAT profile, though made
very cluttered by the intense reverberations, keeps its maximum
at −40◦. However, the source at 40◦ does not have a very large
peak for RTF-CT-CGMM, whereas there is a much higher peak
at 10◦. One possible reason for this is that a high amount of re-
verberations decreases the number of TF bins dominated by the
direct-path propagation of a single source, hence a lower num-
ber of TF bins can be selected by the coherence test. In addition,
an improper threshold can make the detected TF bins involve
reflections. MESSL fails to detect the source at 40◦ as well:
there are still two prominent peaks but the second one is clearly
misslocated at −15◦. The reason for this is that the ILD/IPD
features are heavily contaminated by strong reverberations. Fi-
nally, the very cluttered profile of SRP-PHAT does not allow
the detection of the second source. In contrast, it can be seen
that the proposed EP-MLE and Basic-CGMM methods provide
second-prominent peaks at the correct source location (actually
at 35◦ for EP-MLE). This again shows that, compared with the
MTF-based RTF feature, the proposed DP-RTF feature is more
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Fig. 4. An example of source localization obtained with the proposed method
and with the four baseline methods. Two speakers located at azimuths −40◦
and 40◦. SNR is 30 dB. (a) EP-MLE, DRR = 0.5 dB. (b) EP-MLE, DRR =
−5.5 dB. (c) Basic-CGMM, DRR = 0.5 dB. (d) Basic-CGMM, DRR =−5.5 dB.
(e) RTF-CT-CGMM, DRR = 0.5 dB. (f) RTF-CT-CGMM, DRR = −5.5 dB.
(g) MESSL, DRR = 0.5 dB. (h) MESSL, DRR = −5.5 dB. (i) SRP-PHAT,
DRR = 0.5 dB. (j) SRP-PHAT, DRR = −5.5 dB.

reliable for multi-source localization in highly reverberant envi-
ronments. In addition to the peaks at the correct azimuths, there
are also a few other spurious peaks in the case of the Basic-
CGMM method. The use of the entropy penalty in EP-MLE
successfully suppresses the spurious peaks and strengthen the
true peaks. This illustrates well the sparsity-enforcing property
of the entropy penalty term. For the semi-blind configuration,
correct localization is obtained by both EP-MLE and Basic-

CGMM, in this example. But in the blind configuration, the
selection threshold is very difficult to set automatically for the
Basic-CGMM method, due to amplitude similarity of the cor-
rect peak at 40◦ and of the spurious peak at −80◦. This may
easily lead to either miss detection or false alarm. In contrast,
the EP-MLE method enables a large range of threshold values
that lead to correct detection in this example. Note that there is
a larger risk of errors for Basic-CGMM even in the semi-blind
configuration: a slightly larger spurious peak at −80◦ would
lead to a wrong localization.

2) Semiblind Localization Results: Table I shows the semi-
blind localization results obtained for various acoustic condi-
tions, averaged over the 500 above-mentioned test mixtures. We
first compare the two-speaker localization results of the pro-
posed method with the results of MESSL and SRP-PHAT. For
SNR = 30 dB and DRR = 0.5 dB, all three methods achieve
satisfactory and comparable performance. When only the DRR
decreases (to −5.5 dB), the outlier rate of MESSL and SRP-
PHAT dramatically increases, whereas the outlier rate of the
proposed method increases only slightly. This indicates that the
ILD/ITD features and the steered response power are less ro-
bust to reverberations than the proposed DP-RTF features. For
MESSL, the garbage source is not able to collect the colored
interfering features caused by the intense reverberations. When
only the SNR decreases (to 5 dB), the performance measures
of all the three methods degrade, as expected. For EP-MLE,
the noise residual after spectral subtraction is larger for the low
SNR case. Moreover, more frames with low speech power are
highly corrupted by noise, which decreases the number of valid
TF bins used for DP-RTF estimation. For MESSL, the estimated
ILD/ITD features are severely corrupted by the noise, especially
by the directional (spatially correlated) noise. In addition, the
ILD/ITD extracted from the TF bins dominated by the direc-
tional noise will lead to a spurious peak in the noise direction.
For these reasons, MESSL performs the worst out of the three
methods (at SNR = 5 dB). For SRP-PHAT, the directional noise
also contaminates the steered response power, possibly lead-
ing to a spurious peak. SRP-PHAT outperforms MESSL, and is
comparable with the proposed method, possibly due to the effi-
ciency of PHAT weight. When both SNR and DRR are low (5 dB
and −5.5 dB, respectively), the proposed method prominently
outperforms the two other methods in terms of outlier rate.

We then analyze the three-speaker localization results. Com-
pared to the two-speaker case, the localization performances of
all methods degrade, as expected. Indeed, the WDO assumption
is less valid as the number of sources increases, i.e. the number of
TF regions that are dominated by a single source decreases. For
the proposed method, this leads to a lower number of DP-RTF
observations and worse localization performance. For MESSL,
this leads to estimated ILD/ITD features that are less reliable,
which also leads to a worse localization performance. For SRP-
PHAT, the multiple sources can be mutually considered as noise
signals, so more sources will make the steered response power
of the actual source directions less significant. Overall, the pro-
posed method globally outperforms MESSL and SRP-PHAT,
except for DRR = 0.5 dB and SNR = 5 dB, for which SRP-
PHAT performs the best.
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TABLE I
SEMIBLIND LOCALIZATION RESULTS FOR SIMULATION DATA UNDER VARIOUS ACOUSTIC CONDITIONS

SNR DRR EP-MLE (prop.) Basic-CGMM RTF-CT-CGMM MESSL [3] SRP-PHAT [57]

(dB) (dB) Out(%) MAE(◦) Out(%) MAE(◦) Out(%) MAE(◦) Out(%) MAE(◦) Out(%) MAE(◦)

30 0.5 0.9 0.15 0.2 0.18 5.6 1.91 0.4 0.14 2.0 0.42
Two 30 −5.5 2.3 2.06 3.6 2.03 26.4 4.71 27.7 2.06 34.8 2.81
speakers 5 0.5 6.2 1.94 5.4 1.94 11.5 4.53 17.4 2.75 6.1 1.75

5 −5.5 15.1 5.12 18.9 5.05 30.1 6.31 36.8 5.13 35.7 4.30
30 0.5 3.4 0.58 1.5 0.64 15.5 2.76 2.1 0.46 5.5 0.98

Three 30 −5.5 12.9 2.93 16.1 2.91 29.9 5.54 35.7 2.55 35.6 3.18
speakers 5 0.5 18.7 3.05 17.2 3.08 19.7 5.29 24.1 3.29 13.4 2.52

5 −5.5 23.1 5.53 25.6 5.49 33.7 6.64 37.5 5.10 34.7 5.03

The lowest outlier rate among five methods for each acoustic condition is shown in bold.

One can see from Table I that the proposed method outper-
forms the RTF-CT-CGMM method for all acoustic conditions.
Therefore, it is confirmed that the proposed CTF-based DP-RTF
feature combined with the proposed consistency test provides
more reliable features than the usual MTF-based RTF combined
with the coherence test. As for Basic-CGMM, the DP-RTF es-
timation error for DRR = −5.5 dB will lead to noticeable spu-
rious peaks, as was illustrated in Fig. 4. By suppressing the
spurious peaks and/or strengthening the correct peaks, thanks to
the entropy penalty, the proposed EP-MLE method achieves a
significantly smaller outlier rate than Basic-CGMM, for a sim-
ilar MAE. However, for DRR = 0.5 dB, there are much less
spurious peaks, or they are much lower than the correct peaks.
Thence, the proposed entropy penalty term is here less helpful
compared with the low DRR case.

3) Blind Localization Results: Table II shows the blind lo-
calization results for the EP-MLE, Basic-CGMM and RTF-CT-
CGMM methods. It can be seen that, for all three methods, the
average of the MD rate and FA rate is generally larger than the
outlier rate in the semi-blind configuration, which verifies that
the blind configuration is more difficult than the semi-blind one.
Also, for all methods and in a very general manner, both MD
and FA increase when either the SNR or the DRR decreases,
and when the number of speaker goes from two to three, which
was expected. For the proposed EP-MLE method in particular,
a larger DP-RTF estimation error is caused by more intense re-
verberations, which lead to more spurious peaks and peak shifts.
For a given DRR, MD increases with the decrease of the SNR
or with the increase of the number of speakers, since, as men-
tioned above, the method may suffer from a lack of sufficient
number of DP-RTF observations. When the acoustic conditions
get worse in terms of SNR or DRR, MAE increases due to the
larger DP-RTF estimation error.

In general, MD, FA and MAE are considerably smaller for
the proposed EP-MLE method (and for Basic-CGMM) com-
pared to the RTF-CT-CGMM method, which is consistent with
the results obtained for the semi-blind configuration. Unlike
the semi-blind configuration, it can be seen that MD and FA
are both smaller for EP-MLE than for Basic-CGMM, while the
MAE are comparable, for almost all acoustic conditions (all ex-
cept for MD at SNR = 30 dB, DRR = 0.5 dB, 2 speakers). This
confirms the importance of the penalty term in the blind config-

uration. The semi-blind configuration inherently limits the FA
score, and at the same time it can “force” the detection of low
peaks, ensuring correct MD scores. In contrast, the setting of
the threshold in the blind configuration favours either the MD or
the FA. Therefore, in the blind configuration, it is more crucial
to reduce the spurious peaks and enhance the correct peaks to
facilitate the thresholding operation, which is exactly what is
done by the entropy penalty term. By reducing the entropy to
a proper extent, usually, the CGMM component weights cor-
responding to interfering directions are significantly decreased,
while the weights of the true source directions are enhanced. As
a result, MD and FA are both decreased by the entropy penalty
term.

D. Results of Experiments With NAO Head Data

Tables III and IV show the source localization results ob-
tained with NAO head data, in the semi-blind and blind con-
figuration, respectively. From Table III, it can be seen that the
proposed method achieves the lowest outlier rate for all condi-
tions, which verifies the effectiveness of the proposed entropy
penalty and DP-RTF feature in such realistic scenarios. Over-
all, the multichannel MESSL method performs the worst. On
the one hand, the spatially correlated noise and intense rever-
beration influence the performance as for the binaural case.
On the other hand, the multichannel MESSL coordinates the
microphone pairs through TF masks, rather than the usually
used microphone calibration information. The time delay of
each microphone pair is estimated using the results of source
separation. This is advantageous for source separation that does
not require information on microphone configuration. However,
the known microphone configuration is necessary for source
localization to specify the spatial relation between physical po-
sitions, namely to calibrate the time delays. In these experi-
ments, the microphone calibration information is only used for
source localization by comparing the calibrated time delays and
the estimated time delays of MESSL, which leads to unsatis-
factory localization performance. SRP-PHAT also has a high
outlier rate due to the spatially correlated noise and real world
reverberations.

In general, the performance measures reported in Table IV
are consistent with the results obtained on the simulated data.
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TABLE II
BLIND LOCALIZATION RESULTS FOR SIMULATION DATA UNDER VARIOUS ACOUSTIC CONDITIONS

SNR DRR EP-MLE (prop.) Basic-CGMM RTF-CT-CGMM

(dB) (dB) MD(%) FA(%) MAE(◦) MD(%) FA(%) MAE(◦) MD(%) FA(%) MAE(◦)

30 0.5 6.2 0 0.15 1.8 1.5 0.17 11.9 12.0 1.81
Two 30 −5.5 4.1 6.6 1.75 9.1 6.7 1.75 28.3 37.7 5.03
speakers 5 0.5 13.4 0.3 1.68 17.4 1.2 1.70 14.4 17.3 4.45

5 −5.5 16.1 15.7 4.88 21.7 17.3 4.79 30.5 37.4 6.68
30 0.5 17.9 0.2 0.53 18.5 0.5 0.48 27.1 10.0 2.57

Three 30 −5.5 19.9 9.3 2.61 22.4 12.4 2.74 40.6 20.7 5.30
speakers 5 0.5 29.2 2.3 2.80 31.2 4.6 2.83 29.7 15.1 5.38

5 −5.5 31.9 15.3 5.41 33.8 18.3 5.85 42.2 22.1 6.78

The lowest MD and FA among three methods for each acoustic condition are shown in bold.

TABLE III
SEMIBLIND LOCALIZATION RESULTS FOR NAO DATA UNDER VARIOUS ACOUSTIC CONDITIONS

robot-to-source EP-MLE (prop.) Basic-CGMM RTF-CT-CGMM MC-MESSL [55] SRP-PHAT [57]

distance Out(%) MAE(◦) Out(%) MAE(◦) Out(%) MAE(◦) Out(%) MAE(◦) Out(%) MAE(◦)

Two 1.5 m 8.5 3.71 12.5 3.86 28.0 3.84 42.7 4.23 39.8 3.14
speakers 2.5 m 15.3 4.93 21.0 5.20 24.5 5.81 44.8 4.65 36.3 4.68
Three 1.5 m 14.5 5.21 17.3 4.46 34.7 4.66 46.1 4.77 44.2 3.58
speakers 2.5 m 18.7 5.35 22.3 5.59 22.3 5.90 52.4 5.89 47.5 5.27

Here MC-MESSL denotes multichannel MESSL method. The lowest MD and FA among three blind methods for each acoustic condition are shown in bold.

TABLE IV
BLIND LOCALIZATION RESULTS FOR NAO DATA UNDER VARIOUS ACOUSTIC CONDITIONS

robot-to-source EP-MLE (prop.) Basic-CGMM RTF-CT-CGMM

distance MD(%) FA(%) MAE(◦) MD(%) FA(%) MAE(◦) MD(%) FA(%) MAE(◦)

Two 1.5 m 8.0 14.3 3.79 15.5 13.5 3.80 33.5 22.0 4.36
speakers 2.5 m 12.8 18.0 5.60 14.0 30.5 5.38 25.0 20.5 5.06
Three 1.5 m 17.8 15.3 4.24 24.8 15.2 4.17 46.8 21.7 4.23
speakers 2.5 m 20.8 17.7 5.37 21.8 24.3 5.45 37.2 10.7 5.23

The lowest MD and FA among three blind methods for each acoustic condition are shown in bold.

Compared to Basic-CGMM, EP-MLE has smaller MD under
all conditions, smaller FA under two conditions out of four (and
for the other two conditions, the FA values for both methods
are very close), and a comparable MAE. Also, the proposed
method significantly outperforms the RTF-CT-CGMM method,
since, again, the quantity and the quality of the observations
are both higher for the proposed DP-RTF features than the RTF
features based on the coherence test.

VI. CONCLUSION

In this paper, we presented a method for multiple-source lo-
calization in reverberant and noisy environments. The method
is based on the model of [11] with the following original con-
tributions: (i) the use of an entropy-based penalty term which
enforces sparsity for the estimation of the model parameters,
implemented via a convex-concave optimization procedure that
is more efficient than an EM algorithm, (ii) the use of DP-
RTF features, providing localization that is robust to both
noise (thanks to the inter-frame power spectral subtraction) and

reverberations, and (iii) the proposed consistency test algorithm
that ensures that DP-RTF features are estimated from frame re-
gions associated to a single active speaker, thus making possible
to use these features for multiple-speaker localization. Over-
all, experiments conducted on both simulated and real-world
data show that (i) the proposed DP-RTF features are more re-
liable than classical MTF-based features, for instance RTF fea-
tures, (ii) the proposed CGMM model with DP-RTF features
provides a better source localization compared to three base-
line methods (RTF-based, MESSL, SRP-PHAT) in a semi-blind
configuration, and (iii) the entropy penalty term used in the pro-
posed localization technique makes it able to better localize the
sources compared to the basic version of the same method (i.e.
without the entropy penalty term); this is especially true in a
blind configuration where the proposed method is efficient in
jointly counting and localizing the sources. The experiments
showed that the entropy-based penalty significantly improves
the localization performance in terms of missed detections and
false alarms.
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In this study, the entropy-based penalty weighting coefficient
γ was set to an empirical fixed value leading to good over-
all performance for all tested conditions. In future work, a
principled setting of γ could be investigated, considering the
noise level of the DP-RTF observations. Also, the DP-RTF fea-
tures are more robust than MTF-based features at the cost of
the need for more reliable data. An improved DP-RTF estima-
tion process requiring less data will be investigated in the near
future.
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