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ABSTRACT

This paper addresses the problem of audio source separation from
(possibly under-determined) multichannel convolutive mixtures.
We propose a separation method based on the convolutive trans-
fer function (CTF) in the short-time Fourier transform domain. For
strongly reverberant signals, the CTF is a much more appropri-
ate model than the widely-used multiplicative transfer function ap-
proximation. An Expectation-Maximization (EM) algorithm is pro-
posed to jointly estimate the model parameters, including the CTF
coefficients of the mixing filters, and infer the sources. Experiments
show that the proposed method provides very satisfactory perfor-
mance on highly reverberant speech mixtures.

Index Terms— Audio source separation, convolutive transfer
function, EM algorithm.

1. INTRODUCTION

In this paper we address the problem of multichannel audio source
separation (MASS) from (possibly underdetermined) convolutive
mixtures. Most of MASS techniques are designed in the short time
Fourier transform (STFT) domain where the convolutive process is
generally approximated at each time-frequency (TF) bin by a prod-
uct between a source STFT coefficient and the Fourier transform of
the mixing filter, e.g. [1, 2, 3, 4]. This assumption is here referred
to as the multiplicative transfer function (MTF) approximation [5].
It is theoretically valid only if the length of the mixing filter impulse
response is smaller than the length of the STFT window. Since the
latter is limited to assume signal local stationarity, this is very rarely
the case in practice, even for moderately reverberant environments.
Hence the MTF can be a poor approximation, fundamentally en-
dangering the separation performance. This is even more critical
for strongly reverberant environments.

Yet, the MTF is poorly questioned in the MASS literature, and
only a few studies attempted to tackle its limitations. In [6], the
use of a full-rank spatial covariance matrix for the source images,
instead of the rank-1 matrix corresponding to the MTF model [4],
is claimed to overcome to some extent the limitations of MTF. The
problem is circumvoluted in [7, 8] by estimating the source sig-
nals in the time domain using a Lasso optimization technique. This
achieves quite good source separation performance in reverberant
environments, at the price of a tremendous computation time. Also,
only semi-blind separation with known mixing filters was addressed
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in [7]. A variational Expectation-Maximization (EM) algorithm
was recently proposed in [9] in which the convolutive process is
expressed in the time-domain whereas separation is carried out in
the TF domain. This led to very interesting results, again at the
price of huge computation.

To accurately represent convolution in the STFT domain, cross-
band filters (CBFs) were introduced in [10], as an alternative to
MTF. Using the CBFs, an output STFT coefficient is represented
as a summation over frequency bins of multiple convolutions be-
tween the input STFT coefficients and the TF-domain filter impulse
response, along the frame axis. Considering only the current fre-
quency bin, i.e. a unique convolution along the STFT frame axis,
is a reasonable practical approximation, referred to as the convo-
lutive transfer function (CTF) model [11]. CBFs were considered
for solving the MASS problem in [12], in combination with a high-
resolution non-negative matrix factorization (HR-NMF) model of
the source signal. A variational EM algorithm was proposed to es-
timate the filters and infer the source signals. Unfortunately, due to
the model complexity, this method was observed to perform well
only in an oracle setup where both filters and source parameters
are initialized from the individual source images. In [13], a STFT-
domain convolutive model was used together with an HMM model
on source activity. However, the optimization method used to esti-
mate the parameters and infer the source signal was quite complex.
In our previous work [14], a Lasso-type optimization was applied
for MASS within the CTF framework and led to drastically reduce
the computation time compared to [7]. However, again, this was
done only in a semi-blind setup.

In the present paper we further extend this work on CTF-based
MASS: we plug the CTF model (presented in Section 2) within a
MASS probabilistic framework (Section 3) and we propose an EM
algorithm (Section 4) for joint estimation of CTF coefficients and
source parameters and inference of source STFT coefficients. As
most probabilistic EM-based algorithms, the proposed algorithm is
not truly blind in the sense that it requires a fairly good initialization
to behave efficiently. We show in Section 5 that it provides superior
performance to [1, 3, 6, 9, 14] within a semi-blind set-up where the
filters and sources parameters are initialized “reasonably”. Impor-
tantly, compared to the time-domain convolutive model [7, 8, 9], the
CTF dramatically decreases the data size to be processed. As a re-
sult, the proposed CTF-based methods are much easier to converge,
and needs many fewer iterations.

2. CONVOLUTIVE TRANSFER FUNCTION

In a reverberant and noise-free environment, a source image y(n)

in the time domain is given by the linear convolution between



2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 15-18, 2017, New Paltz, NY

the source signal s(n) and the impulse response of the propagat-
ing filter a(n). This convolution is usually approximated in the
STFT domain as the product y(p, k) = a(k)s(p, k), where y(p, k)

and s(p, k) are the STFT of the corresponding signals, and a(k)

is the discrete Fourier transform of a(n), N is the frame length,
k 2 [0, N � 1] is the frequency bin index, and p 2 [1, P ] is the
frame index. As discussed above, this MTF approximation is only
valid when a(n) is shorter than the STFT window, which is often
questionable. In this paper we therefore use the CTF model, i.e.
y(n) is approximated in the STFT domain by [11]:

y(p, k) = a(p, k) ? s(p, k) =

X

p0

a(p

0
, k)s(p� p

0
, k). (1)

The filter CTF is defined as the TF-domain impulse response
a(p, k). It is related to the time-domain impulse response a(n) by:

a(p, k) = (a(n) ? ⇣k(n))|n=pL, (2)

which represents the convolution with respect to the time index n

evaluated at multiples of the frame step L, with

⇣k(n) = e

j 2⇡
N

kn
+1X

m=�1
!̃a(m) !̃s(n+m),

where !̃a(n) and !̃s(n) denote the STFT analysis and synthesis
windows, respectively. In summary, within the CTF model, the
time-domain convolution is transformed into a TF-domain convo-
lution at every frequency bin k. The corresponding approximation
error is (much) lower than the error resulting from the MTF approx-
imation for the reverberant case.

3. MULTICHANNEL AUDIO SOURCE SEPARATION
BASED ON CTF: MODEL FORMULATIONS

3.1. Basic mixture model formulation and probabilistic model

We consider a convolutive mixture with J sources and I sensors,
possibly underdetermined (i.e. we may have I < J). Based on the
CTF model (1), for all frames p 2 [1, P ], and all frequency bins
k 2 [0, N � 1], the observed signal xi(p, k) at channel i 2 [1, I] is
given in the STFT domain by:

xi(p, k) =

JX

j=1

aij(p, k) ? sj(p, k) + ei(p, k), (3)

where aij(p, k) is the CTF from source j to sensor i, and ei(p, k)

denotes the noise signal.

Probabilistic model As is now classical in many MASS papers,
the source signals sj(p, k) are assumed to be mutually independent,
and individually independent across STFT frames and frequency
bins. Each coefficient sj(p, k) is assumed to follow a zero-mean
complex Gaussian distribution with variance vj(p, k) [4, 6], i.e. its
probability density function (pdf) is:

Nc(sj(p, k); 0, vj(p, k)) =
1

⇡vj(p, k)
exp

�
� |sj(p, k)|2

vj(p, k)

�
.

The noise signal is assumed to be zero-mean complex Gaussian,
stationary, independent to all source signals, and individually in-
dependent across STFT frames and frequency bins. However we

assume possible inter-sensor noise correlation. Defining the noise
vector e(p, k) = [e1(p, k), . . . , eI(p, k)]

> 2 CI⇥1, its pdf is:

Nc(e(p, k); 0,⌃e(k)) =
1

⇡

I |⌃e(k)|
e

�e(p,k)H⌃e(k)
�1

e(p,k)
,

where H denotes complex transpose. In this work, ⌃e(k) is as-
sumed to be known, though it could easily be included in the pa-
rameters to be estimated.

All CTF coefficients aij(p, k) are considered as (unknown) pa-
rameters, and we assume for simplicity that all CTFs have the same
length denoted Q+1, with Q ⌧ P . Since the mixture model (3) is
defined independently at each frequency bin k, and since all signals
are assumed independent across frequency bins, the separation pro-
cess is carried out independently at each frequency. Therefore, from
now on, we omit the frequency index k to clarify the presentation.

3.2. Two vector/matrix reformulations

Section 4 will present an EM algorithm for joint estimation of model
parameters and source inference. Before that, we present two refor-
mulations of the above model. Formulation 1 enables us to derive
the M-step of the EM algorithm in a very compact form, and For-
mulation 2 enables us to derive the E-step in a very compact form.
Both formulations are useful since, as will see, the other way round
is not true. Going from the E-step to the M-step and vice-versa will
only necessitate reorganizing the variables and parameters in the
appropriate vector/matrix form.

Formulation 1: Let us define the following vectors, for p 2 [1, P ]:

sj(p) = [sj(p), . . . , sj(p� q), . . . , sj(p�Q)]

> 2 C(Q+1)⇥1
,

s(p) = [s1(p)
>
, . . . , sj(p)

>
, . . . , sJ(p)

>
]

> 2 CJ(Q+1)⇥1
,

where > denotes matrix transpose. If p  q, we set sj(p� q) = 0.
We already defined e(p) 2 CI⇥1. The microphone signal x(p) 2
CI⇥1 can be defined in the same way as e(p), and we have:

x(p) =

JX

j=1

Ajsj(p) + e(p) = As(p) + e(p), (4)

where Aj 2 CI⇥(Q+1) is the matrix with the i-th row being the
CTF of source j to sensor i, and A = [A1, . . . ,Aj , . . . ,AJ ] 2
CI⇥J(Q+1). Note that with Formulation 1, the pdf of the mixture
conditioned on the sources is Nc(x(p);As(p),⌃e).

Formulation 2: Let ˜

sj = [sj(1), . . . , sj(P )]

T , ˜

ei =

[ei(1), . . . , ei(P )]

T and ˜

xi = [xi(1), . . . , xi(P )]

T denote the j-th
source vector and the i-th noise and microphone vectors, all involv-
ing all P frames, hence all in CP⇥1. Let us define the corresponding
filter matrix in CP⇥P :

Aij =

2

66666664

aij(0) 0 · · · · · · · · · 0

...
. . .

. . .
. . .

. . .
...

aij(Q)

. . .
aij(0) 0

. . .
0

...
. . .

. . .
. . .

. . .
...

0 · · · 0 aij(Q) · · · aij(0)

3

77777775

,
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where the flipped filter CTF {aij(p)} is duplicated as the row vec-
tors, with one element shift per row. Then we have:

˜

xi =

JX

j=1

Aij˜sj + ˜

ei = Ai˜s+

˜

ei, (5)

where Ai = [Ai1, . . . ,AiJ ] 2 CP⇥JP , and ˜

s = [

˜

s

>
1 , . . . , ˜s

>
J ]

> 2
CJP⇥1. If we further concatenate these quantities over sensors as
˜

x = [

˜

x

>
1 , . . . , ˜x

>
I ]

> 2 CIP⇥1, ˜e = [

˜

e

>
1 , . . . , ˜e

>
I ]

> 2 CIP⇥1 and
A = [A>

1 , . . . ,A>
I ]

> 2 CIP⇥JP , then we have:

˜

x = A˜

s+

˜

e. (6)

Using Formulation 2, the source vector ˜s follows a zero-mean com-
plex Gaussian distribution with JP ⇥ JP diagonal covariance ma-
trix  s where the P first diagonal entries are v1(1), . . . , v1(P ),
the next P diagonal entries are v2(1), . . . , v2(P ), and so on. The
noise vector ˜e follows a zero-mean complex Gaussian distribution
with IP ⇥ IP covariance matrix  e, with the entries  e((i1 �
1)P + p1, (i2 � 1)P + p2) being equal to ⌃e(i1, i2) if p1 = p2,
and 0 otherwise (here the arguments in parentheses denotes the row
and column index; i1, i2 2 [1, I], p1, p2 2 [1, P ]). The pdf of the
mixture conditioned on the sources is Nc(˜x;A˜

s, e).

4. EM ALGORITHM FOR MASS WITH CTF

Denote V = {vj(p)}j2[1,J],p2[1,P ] as the set of source variances.
The entire set of parameters of the present problem is ⇥ = {V,A}.
We present an EM algorithm that was derived to jointly obtain the
maximum likelihood estimation of the parameters and the inference
of the STFT coefficients {sj(p)}j,p of the source signals.

4.1. M-step

We use here Formulation 1, and we denote the set of observa-
tions as X = {x(p)}p2[1,P ], and the set of source signals as
S = {s(p)}p2[1,P ]. The complete-data likelihood function is:

p(X, S|⇥) / p(X|S,⇥)p(S|⇥)

=

PY

p=1

Nc(x(p);As(p),⌃e)

JY

j=1

PY

p=1

Nc(sj(p); 0, vj(p)).

Let us denote by ⇥

old the value of ⇥ at previous EM iteration. Let
us denote by ES|X,⇥old [ . ] the expectation in the sense of the poste-
rior distribution p(S|X,⇥

old
). The auxiliary function Q(⇥,⇥

old
) =

ES|X,⇥old [log(p(X, S|⇥))] is given by:

Q(⇥,⇥

old
) =

PX

p=1

⌃e
�1Trace

⇣
Ab
s(p)x(p)

H
+ x(p)

b
s(p)

HAH

�AbRs(p)A
H
⌘
�

JX

j=1

PX

p=1

⇣
log(vj(p)) +

bvj(p)
vj(p)

⌘
+ const,

where b
s(p) = ES|X,⇥old [s(p)], bRs(p) = ES|X,⇥old [s(p)s(p)

H
],

and bvj(p) = ES|X,⇥old [|sj(p)|2] are respectively the posterior mean
and the posterior second-order moment matrix of the source vector,

and the source-wise posterior second-order moment. These quan-
tities are provided by the preceding E-step, with reorganization of
the entries. Note that bvj(p) is the ((j� 1)(Q+1)+1)-th diagonal
entry of bRs(p).

Setting the complex derivative of Q(⇥,⇥

old
) with respect to

A⇤ (⇤ denotes conjugate) and vj(p) equal to zero, the update of A
and vj(p) in the M-step are respectively:

Anew
=

⇣ PX

p=1

x(p)

b
s(p)

H
⌘⇣ PX

p=1

bRs(p)

⌘�1
,

v

new
j (p) = bvj(p). (7)

4.2. E-step

The E-step is efficiently derived using Formulation 2. Using the
current parameter estimates ⇥ (given in the preceding M-step by
(7)), we construct the filter matrix A and  s following Formula-
tion 2. The posterior probability distribution of the source vector ˜s
writes p(˜s|˜x,⇥) / p(

˜

x|˜s,⇥)p(

˜

s|⇥), and we have seen that both
p(

˜

x|˜s,⇥) and p(

˜

s|⇥) are Gaussian. Therefore, p(˜s|˜x,⇥) is Gaus-
sian and the posterior mean b̃

s and covariance matrix b⌃s can be
derived by reorganizing the quadratic and linear forms in ˜

s in the
exponent of the distribution. We obtain:

b⌃s =
�
AH e

�1A+ s
�1��1

,

b̃
s =

b⌃sAH e
�1

˜

x. (8)

Eq. (8) has the classical form of source estimation with Wiener fil-
tering, as obtained with Gaussian models in the MTF framework
[4]. However, b⌃s is here JP ⇥ JP and b̃

s is JP ⇥ 1, hence the
inference is performed jointly on all frames of the whole sequence,
exploiting interframe information in ˜

x, and thus performing sep-
aration through multichannel deconvolution. More precisely, the
structure of A enables to exploit Q+ 1 frames of ˜x in this process.

Reformulation (for the next M-step): Let the subscript {j,p}
denote “the j-th source at p-th frame” within a vector, or within a
row or a column of a matrix. Using Formulation 2, the index of
b̃
s{j,p} is {(j � 1)P + p}, and this is also valid for the column and
row index of b⌃s. Using Formulation 1, the index of bs(p){j,p�q} is
{(j� 1)(Q+1)+ q+1} (q 2 [0, Q]), and this is also valid for the
column and row index of bRs(p). In the next M-step, bs(p){j,p�q}

is given by b̃
s{j,p�q} from the previous E-step, and the entries of

bRs(p) are computed from b̃
s and b⌃s from the previous E-step by:

bRs(p){j1,p�q1},{j2,p�q2} =

b̃
s{j1,p�q1}

b̃
s

⇤
{j2,p�q2}+

b⌃s{j1,p�q1},{j2,p�q2}. (9)

5. EXPERIMENTS

Simulation set-up: To test the efficiency of the proposed source
separation method, experiments were conducted with simulated
binaural signals, under various acoustic conditions. Binaural room
impulse responses (BRIR) were generated with the ROOMSIM
simulator [15] and with the head related impulse response (HRIR)
of a KEMAR dummy head [16]. 16-kHz Speech signals from the
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TIMIT dataset [17] were convolved with the simulated BRIRs to
generate sensor signals. The duration of each sensor signal was 3s.
The speech sources were located with azimuth directions varying
from �90

� to 90

�, spaced by 5�, and an elevation of 0�. The ane-
choic case and three reverberation times, T60 = 0.22 s, 0.5 s and
0.79 s, were tested. A set of underdetermined mixtures with 3, 4 and
5 sources were processed. For each experiment, 20 mixtures were
generated. The STFT window was a Hamming window of 1,024
samples (64 ms), with 75% overlap. The noise covariance matrix
⌃e(k) is set as an isotropic diagonal matrix for all frequencies, with
1% of the power of microphone signals.

EM initialization: As is usual with EM algorithms, the initial-
ization of our EM is critical, and can be conducted by initializing ei-
ther the E-step or the M-step. In this study, we consider a semi-blind
set-up, where the CTFs are computed by (2) from the known time-
domain filters. The CTF-based Lasso-type method (CTF-Lasso)
proposed in [14] is then applied to obtain a first source vector esti-
mate. Briefly stated, it solves the following optimization problem:

min
s

k A˜

s� ˜

x k22 +� k ˜

s k1,

(see [14] for details). Then the magnitude square of each source
coefficient estimate is taken as the initialization of source variance.
The number of iteration is empirically set to a constant in this work,
i.e. 7 (convergence criteria will be investigated in future work).

Baseline methods: For comparison, we tested six baseline
methods, all set in the same semi-blind configuration as the pro-
posed EM method (i.e. with known mixing filters): i) the CTF-
Lasso used for initialization1, ii) DUET [1], iii) the `1-MIN method
of [3], iv) the full-rank spatial covariance matrix (FR-SCM) method
[6], v) the wideband Lasso (W-Lasso) method [7] with a sparsity
regularization factor of 10

�5, and vi) the variational EM method
of [9] (VEM). For the latter, the NMF parameters were initialized
using the output of CTF-Lasso. DUET and `1-MIN are based on
the MTF approximation. Since the BRIRs are longer than the STFT
window, they have to be truncated to generate the TF-domain mix-
ing matrix. However we obtained better results using the Fourier
transform of the HRIRs. For FR-SCM, the SCMs were individually
estimated using each separate source image, and kept fixed during
the EM, following the line of the semi-oracle experiments in [6].

Results: The signal-to-distortion ratio (SDR) [18] in decibels
(dB), averaged over 20 mixtures for each condition, is used as the
separation performance metric. Fig. 1(left) plots the SDR obtained
for 3-source mixtures and for the 4 reverberation times. It can be
seen in these plots that all seven methods achieve high SDR in the
anechoic case. As T60 increases, the SDR of DUET and `1-MIN
dramatically decreases, since the MTF approximation is no longer
suitable when the filter impulse response is (much) longer than the
STFT window. FR-SCM mitigates the problem to a quite limited
extend. In contrast to these three methods, W-Lasso, VEM, CTF-
Lasso and the proposed method achieve remarkable performances:
the SDR actually increases with T60, which is a bit surprising at
first sight. The reason is possibly that given a good fit of the mix-
ture model, the longer the filter, the more information is available to
discriminate and separate different sources. For the 3-source mix-
tures, W-Lasso performs the best. Due to the CTF approximation

1To avoid the frequency aliasing caused by the decimation of STFT, and
to reduce the CTF length, the STFT for CTF-lasso uses a window of 1024
samples with 75% overlap in this work, rather than 512 samples with 50%
overlap in [14], which leads to the different results from [14].

Figure 1: Source separation performance (SDR) left for 3-source
mixtures as a function of reverberation time, and right for reverber-
ation time of 0.5 s as a function of number of sources.

error, CTF-Lasso is below W-Lasso by 4 to 5 dB. Taking the out-
put of CTF-Lasso as an initial point, VEM improves the SDR by
⇡ 1 dB for low T60, while reducing the SDR a bit for high T60.
In contrast, the proposed EM algorithm refines the source estimate
and improves the SDR by 3 to 4 dB over CTF-Lasso for every
T60. Possible reasons are i) VEM is the combination of an exact
model (time-domain convolution) with an approximate algorithm
(variational EM) while the proposed method is a combination of an
approximate model (CTF) with an exact EM algorithm, hence the
“loss in the model” may be lower than the “loss in the algorithm”,
and ii) the source variance is modeled by NMF in VEM, which may
not be sufficiently accurate for speech signals, while the proposed
method keeps a free source variance parameter for each TF bin.

Fig. 1(right) plots the SDR for various number of sources, for
T60 = 0.5 s. As expected, the SDR of all methods degrades when
the number of sources increases. The time-domain signals (and fil-
ters) have a much larger data size than the STFT-domain signals
(and filters). Thence W-Lasso and VEM have more difficulties
to converge. For example, in this experiment, W-Lasso, VEM ,
CTF-Lasso and the proposed method respectively ran 20,000, 100,
⇡ 50 and 7 iterations. As a result, when the number of sources in-
crease, the convergence of W-Lasso and VEM becomes more diffi-
cult, and the SDR scores have a larger degradation with the number
of sources compared to the CTF-based methods. The proposed EM
algorithm achieves an SDR improvement of about 3 dB and 2 dB
over CTF-Lasso for the case of 4 sources and 5 sources, respec-
tively. In these settings, it performs the best of all methods (though
W-Lasso was best for 3 sources).

6. CONCLUSION

In this paper, an EM algorithm was proposed for MASS based on
CTF. Two convolution formulations were used to respectively de-
rive the M-step and E-step in a compact form. Overall, the pro-
posed method, VEM and the two Lasso methods perform promi-
nently better than the MTF-based methods by circumventing the
narrowband approximation. The proposed EM algorithm is efficient
to refine the source estimate and improve the performance mea-
sures starting with the output of CTF-Lasso. This scheme achieves
the best performance for the cases of 4 sources and 5 sources, and
achieves close performance to the best, i.e. W-Lasso, for the case
of 3 sources, with a much lower number of iterations.
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