
“Sparsification” of Audio Signals using the
MDCT/IntMDCT and a Psychoacoustic Model
– Application to Informed Audio Source
Separation

Jonathan Pinel1, Laurent Girin1

1Grenoble Laboratory of Images, Speech, Signal and Automation (GIPSA-lab) CNRS UMR 5216 , Grenoble Institute of
Technology, Grenoble, France

Correspondence should be addressed to Laurent Girin (laurent.girin@gipsa-lab.grenoble-inp.fr)

ABSTRACT
Sparse representations have proved a very useful tool in a variety of domain, e.g. speech/music source
separation. As strictly sparse representations (in the sense of `0) are often impossible to achieve, other
ways of studying signals sparsity have been proposed. In this paper, we revisit the irrelevance filtering
analysis-synthesis approach proposed in (Balazs et al., IEEE Trans. ASLP, 18(1), 2010), where the TF
coefficients that are below some masking threshold are set to zero. Instead of using the Gabor transform and
a specific psychoacoustic model, we use tools directly inspired from perceptual audio coding, for instance
MPEG-AAC. We show that significantly better “sparsification performances” are obtained on music signals,
at lower computational cost. We then apply the sparsification process to the informed source separation
(ISS) problem and show that it enables to significantly decrease the computational cost at the ISS decoder.

1. INTRODUCTION
Sparse representations of signals are representations
where most of the signal coefficients are zero (or close
to zero, in the weak sense). They are interesting in signal
processing algorithms because the “useful” information
to be processed is concentrated in a small proportion of
the representation space. Additionally, in some cases,
the coefficients corresponding to different signals can be
disjoint. Sparsity is thus used in a large variety of audio
applications, such as enhancement [1], source separation
[2, 3, 4], or music transcription [5]. Sparsity is also the
core principle of compressed sensing.

Many works have been dedicated to studying sparse rep-
resentations [6, 7, 8]. In the audio case, signals may
sometimes be sparse in the time domain (e.g., with silent
portions and/or Laplacian or Gaussian distribution) but
it is well-known that they are far more sparse in the
Time-Frequency (TF) domain (see Fig.1 for an exam-
ple). When unicity of decomposition is not at stake, it has
been shown that even more sparse representations can be
found using overcomplete bases (e.g., “8∗MDCT" [9]).

The intuitive way of measuring the sparsity of a given
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Fig. 1: Samples distribution in the time (1a) and time-
frequency (1b) domains for a rock music signal (each
distribution is represented on its total support).
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signal representation x is to use the `0 norm:1

‖x‖0 = #
{

j,x j 6= 0
}
. (1)

However, in the strict sense of `0, “real-life” audio sig-
nals are generally not sparse at all: even if some co-
efficients are close to zero they are generally non zero.
To overcome this problem, different measures have been
proposed to study signals sparsity, using tools such as
`p norms/quasinorms, tanh function, kurtosis or Gini in-
dex [10]. However as shown in [11], one must be care-
ful when using those measures as they can lead to quite
wrong assessments in certain circumstances.

In [12], the authors use a different approach: instead of
looking for a representation that is strictly sparse (in the
sense of `0), they use a representation where the audio
signals are sparse in the weak sense (the TF domain us-
ing the Gabor transform2) and they set the lower coeffi-
cients to zero so that the representation becomes strictly
sparse. Then, the “sparsified” time-domain signal in ob-
tained using the inverse TF transform. To ensure preser-
vation of audio quality, their algorithm uses a PsychoA-
coustic Model (PAM) based on simultaneous frequency
masking3 to adjust the selection threshold of what they
call the “irrelevance filter”.

Although different in implementation and destination,
this algorithm is related to Perceptual Audio Coding
(PAC) [14], such as MPEG AAC [15]. PAC uses a PAM
to estimate the maximum noise power that can be intro-
duced by quantization at each frequency, and then adjusts
the allocation of binary resource accordingly: the less
relevant (i.e. more masked) a coefficient is, the coarser
its quantization can be (and some low but non-zero coef-
ficients are actually coded to zero).

Despite the more or less clear link between the irrele-
vance filter algorithm and PAC, or maybe because of this
more or less clear link, the authors of [12] have used spe-
cific TF transform and PAM, with specific settings. In
the present paper, we revisit their algorithm using tools
that are much closer to the PAC approach and more ef-
ficient: instead of the Gabor transform, we use either

1Actually `0 is not a norm but the limit of (`p)p when p→ 0 with
`p the usual norms/quasinorms. However this is not important here.

2Basically, the Gabor transform is a discrete Short-Term Fourier
Transform (STFT) with specific conditions for analysis-synthesis sig-
nal reconstruction.

3When two pure tones or narrow-band noises close in frequency
and with significantly different power are produced simultaneously, the
human hear may perceive only the loudest [13]).

a Modified Discrete Cosine Transform (MDCT) or its
integer version (IntMDCT), similar to the one used in
AAC (MPEG-4), and we use a PAM also directly in-
spired from AAC. Using those PAC tools, we show that
a better “sparsification” of audio signals can be obtained
when compared to the results of [12], with a simpler
and more efficient signal decomposition/reconstruction
framework.

Finally, we show that the proposed sparsification process
can be exploited efficiently in the audio informed source
separation (ISS) system proposed in [4]. In this system,
the source signals are assumed to be available and the
(linear instantaneous) mixing process is assumed to be
controlled at the so-called ISS encoder. An a priori in-
formation about those sources and the mixing process
is extracted and embedded within the mixture signal us-
ing a high-capacity data hiding technique [16]. At the
ISS decoder, where only the mix signal is available, the
side-information is extracted and used to help the sepa-
ration process to deliver high-quality separated sources.
We show that the sparsification process can be used as a
pre-processing step for such ISS system to significantly
reduce the computational cost of the separation.

This paper is organized as follows: Section 2 presents
the irrelevance filter algorithm in a general manner. Sec-
tion 3 provides the details of our implementation us-
ing the MDCT and AAC-inspired PAM. Section 4 and
5 present experiments and results, and conclusions are
drawn in Section 6.

2. THE BASIC “IRRELEVANCE FILTER” ALGO-
RITHM

The block diagram of the irrelevance filter/sparsification
algorithm is presented in Fig. 2. A time-frequency repre-
sentation X of the signal x is calculated (block ¬) (using
the Gabor transform in [12] and the (Int)MDCT in the
present study). A masking threshold Mx is derived us-
ing a psychoacoustic model (block ). The signal power
spectral density (PSD) Sx is calculated (as the square
of TF coefficients; block ®) and is compared with the
masking threshold Mx (block ¯). This yields a binary
mask m that is used to set to zero the coefficients of X
that are below the masking threshold (block °):

∀(t, f ), m(t, f ) =

{
0 if Sx(t, f )< M(t, f ),

1 else.
(2)
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Fig. 2: Block diagram of the system.

∀(t, f ), Xs(t, f ) = X(t, f ) ·m(t, f ). (3)

This binary masking process leads to the sparsified rep-
resentation Xs in the TF domain. The signal is finally
transformed back into the time-domain sparsified signal
xs using the inverse TF transform (block ±).

Following the same line as in [12], a parameter α (in dB)
controls an arbitrary translation of the masking thresh-
old Mx. As mentioned by the authors of [12], “this shift
gives a conservative way to deal with uncertainty effects
resulting from removing time-frequency components and
with inaccuracies in the masking model.” The goal is to
experimentally find the α value that provides the sparsest
representation without impairing the audio quality. Dif-
ferent values of α will be tested and discussed in Sec-
tion 4.

3. IRRELEVANCE FILTER REVISITED

3.1. MDCT and IntMDCT

As mentioned before, the Gabor transform was used
as the TF transform in [12]. In the present study, we
propose to use the Modified Discrete Cosine Trans-
form (MDCT) or its integer version (IntMDCT). We
first explain the foundations of this proposition, and
then we provide a very brief technical presentation of
the MDCT/IntMDCT (technical details can be found in
many papers, e.g., the foundation paper [17].)

The MDCT is a real-valued time-frequency transform
commonly used in audio signal processing, since it
presents several interesting properties: i) the MDCT is

critically sampled (it has the same overall number of co-
efficients in the time domain and the time-frequency do-
main), while being a lapped transform (with 50% over-
lap), and ii) under simple conditions, the MDCT en-
sures perfect reconstruction of the signal (when the trans-
formed coefficients are not modified); more generally,
even if the coefficients are modified, it has very good ro-
bustness against block effects during signal reconstruc-
tion by inverse MDCT (IMDCT). This property is intrin-
sically exploited in AAC compression to minimize the
effects of MDCT coefficients quantization.

The combination of i) and ii) makes the MDCT a
very interesting transform in the present study, since
it has the potential for a very efficient decomposi-
tion/reconstruction of the signal, while ensuring the au-
dio quality of the reconstructed sparsified signal. Also,
and perhaps more importantly, the MDCT is character-
ized by the time-domain aliasing cancellation (TDAC)
property: if the MDCT coefficients of a given signal are
modified and the time-domain signal is reconstructed,
the time-domain signal is modified as compared to the
original signal, but when reapplying the transform to the
modified signal the same modified coefficients are ex-
actly recovered, despite the overlap process of the recon-
struction. In other words the cross-frame influence of the
overlap cancels out when returning to the transformed
domain. Consequently, going anew to the TF domain
from a sparsified reconstructed signal leads to a strictly
sparse representation, i.e. the coefficients that have been
zeroed by the irrelevance filter remain strictly equal to
zero.

This property is not easily ensured by the Gabor trans-
form: if a window with good frequency resolution is
needed (as is the case here for applying the PAM and
accurate irrelevance filter), a high level of redundancy
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with specific windows is required to ensure perfect re-
construction (which is actually not exactly perfect but
very close to it). In [12] the hop size is set to 1/8
of the analysis window size and therefore, it requires
a quite larger amount of computations compared to the
critically-sampled MDCT.

Finally, the preservation of zeroed coefficient values
when chaining IMDCT and MDCT is verified if the time-
domain signal is not modified. In practice, we deal with
16-bit PCM signals, and the mix signal is generally con-
verted to this format (for storage and transmission; we
assume that we work with uncompressed signals here).
It can be shown that the 16-bit quantization introduces
an additive white Gaussian noise (AWGN) on the MDCT
coefficients, thus the zeroed coefficients can actually be
corrupted by this noise. The use of the integer version
of the MDCT (IntMDCT) can solve this problem. The
IntMDCT is close to the MDCT (and it is also TDAC)
but it is an integer-to-integer transform, so that PCM sig-
nals are transformed into integer MDCT coefficients, and
conversely, integer coefficients are transformed back to
integer PCM values. Therefore, the sparsification pro-
cess directly leads to strictly sparse PCM signals, and we
use this transform when the signals are to be stored in the
.wav format.

Technically, the MDCT coefficients of a given frame t of
N samples (N being even) of the host signal x is given
for each f ∈

[
0, N

2 −1
]

by:

X(t, f ) =
2√
N

N−1

∑
n=0

x(t,n)wa(n)cos
(

2π

N
n′ f ′
)
, (4)

where wa is the analysis window, x(t,n) = x
(
n+ t N

2

)
,

n′ = n+ N
4 + 1

2 , and f ′ = f + 1
2 . The inverse transfor-

mation (IMDCT) of the same frame is given for each
n ∈ [0,N−1] by:

x̃(t,n) =
2√
N

ws(n)

N
2 −1

∑
f=0

X(t, f )cos
(

2π

N
n′ f ′
)
, (5)

with ws the synthesis window. To ensure perfect re-
construction of the signal, wa and ws must satisfy the
Princen-Bradley conditions [17]. When wa = ws = w
(which is often the case), those conditions can be writ-

ten as:

∀n ∈
[

0,
N
2
−1
]w2 (n)+w2

(
n+

N
2

)
= 1

w(n) = w(N−1−n)
(6)

In this paper we use the Kaiser-Bessel Derived window,
commonly used with the MDCT (for example in MPEG-
AAC). The window length N is set to 2048, an usual
choice for 44.1kHz audio signals.

As for the IntMDCT, as said earlier this transform is an
integer approximation of the classical MDCT. The tech-
nique to achieve this approximation is called the lifting
scheme and is described in several papers, e.g., [18]. The
basic principle is to decompose the MDCT matrix (and
the windowing process) into a product of matrices com-
posed of 2×2 matrices of the form:

La =

(
1 0
a 1

)
, (7)

with a ∈ R. This matrix La (which inverse is L−a) repre-
sents the linear application:

La :

{
R2 −→ R2

(x,y)−→ (x,y+ax)
(8)

The principle of the lifting scheme is to replace all these
applications by their integer approximation:

intLa :

{
Z2 −→ Z2

(x,y)−→ (x,y+[ax])
(9)

where [.] denotes the integer rounding operation. The
inverse of intLa is intL−a but as the application is an
automorphism of Z2, it is exactly invertible, even with
finite-accuracy computations.

3.2. PAM

The PAM used in our implementation is directly inspired
from the PAM of the MPEG-AAC standard, and simi-
lar to the one that we used in [16]. The calculations are
made in the time-frequency domain, however the trans-
form used for the computations of the PAM is not the
MDCT but the FFT. The main computations consist in
a convolution of the FFT power spectrum of the host
signal with a spreading function that models elementary
frequency masking phenomenons, to obtain a first mask-
ing curve. This curve is then adjusted according to the
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tonality of the signal.4 After that, some pre-echo con-
trol is applied, and finally the threshold is translated by
the “conservative factor” α (in dB), resulting in the final
masking threshold Mx. As mentioned earlier, different
values of α will be tested in Section 4.

4. EXPERIMENTS ON SPARSIFICATION

4.1. Settings

As in [12], the algorithm has been evaluated in a lis-
tening experiment which goal is to find the value of the
threshold translation parameter α . In those experiments,
the MDCT is used; note that the two transforms provide
quite close coefficient values, so that the sparsification
results obtained with those two transforms are similar.
The tested values of α are selected to -3, -4.5 and -6 dB
after preliminary listening experiments. 10 musical ex-
cerpts (of different musical styles) of 5 seconds duration
were used and 8 normal hearing subjects completed the
experiments. The test was a classical ABX test: for each
configuration (one excerpt and one alpha, unknown to the
subject), the listener was presented a reference (the orig-
inal signal) and two other signals in a random order. One
of the signal was the reference and the other the sparsi-
fied signal. The subject had to chose which one was the
original.

4.2. Results

For α = −6 dB, the percentage of correct answer (i.e.
identification of reference signal) is 53.75%; for α =
−4.5 dB, it is 55%; and for α = −3 dB, it is 78.75%.
Therefore, these results show that on average, the spar-
sification is inaudible for α = −6 dB and −4.5 dB,
or at the very least, it is inaudible for most of the ex-
cerpt/subject combinations. However, a difference can
generally clearly be made for α =−3 dB.5

Table 1 shows the average proportion of suppressed co-
efficients and suppressed energy, for an extended set of
α values. It can be seen from this table that α = −6
dB (resp. α =−4.5 dB) corresponds to a suppression of
about 74% of the TF coefficients (resp. 78%), represent-
ing only less than 3% (resp. 4%) of the signal energy.

4The main reason why the PAM of the AAC works with the FFT
and not the MDCT is because the phase information given by the FFT
can be used to estimate the tonality of the signal in a better way than
with the MDCT.

5The PAM is not the same as the one used in [12] so the range of
α values and the inaudibility limit may slightly differ from the one
reported in [12].

α (dB) -3 -4.5 -6 -7.5 -9
Suppressed co-
efficients (%) 82.3 78.6 74.4 69.4 65.4

Suppressed en-
ergy (%) 4.8 3.4 2.4 1.7 1.2

Table 1: Proportion of Suppressed coefficients and sup-
pressed energy for several values of α .
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Fig. 3: PSD (in dB) of a classical music excerpt before
and after sparsification. The higher the amplitude the
brighter the representation.

When analyzing those results, several remarks must be
made:

• 74% of suppressed coefficients may seem a huge
proportion, but it must be mentioned that a quite
large proportion of those suppressed coefficients
were generally already very low before sparsifica-
tion (as they only represent a few percents of the
total energy of the original signal). This is the case
for most high-frequency coefficients for example, as
illustrated by Fig. 3. This clearly illustrates the nat-
ural sparsity of audio signals, in the weak sense.

• Most of the test subjects were untrained listeners,
hence even if the test seems to show that for α =−6
dB, the sparsification is inaudible, this result is an
average result valid for naive ears. The sparsifica-
tion at α = −6 dB may sometimes be audible for
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“good” listeners after a few training period and sev-
eral listenings. For example one of the author that
is familiar with the test signals and sparsification ef-
fects can hear differences for α up to −7.5 dB for
some excerpts. In particular, some specific effects
on specific instruments can be detected after careful
listening, e.g. typical musical noise on cymbals.

• However, even the “best” listeners (including the
authors) could not find any difference for α = −9
dB and lower. In this case an average proportion of
about 65% of the coefficients are suppressed (rep-
resenting 1.2% of the energy), which remains quite
impressive.

• In [12], a proportion of 32% of suppressed Gabor
coefficients, representing less than 2% of signal en-
ergy, is reported (however, quite surprisingly, 16-
kHz music signals were considered in [12], leading
to a lower amount of high-frequency low-energy co-
efficients). Therefore, our PAC-inspired modifica-
tion of the irrelevance filter algorithm using MDCT
and PAM seems to lead to a significant improve-
ment in signal sparsification, whereas the analy-
sis/synthesis process is much more efficient.

5. APPLICATION TO THE INFORMED SOURCE
SEPARATION PROBLEM

5.1. Informed Source Separation of linear in-
stantaneous mixtures

In previous papers [4, 19], we presented an Informed
Source Separation (ISS) system that is able to separate
I > 2 sources from stereo linear instantaneous mixtures.
This system is designed with a specific coder-decoder
configuration. At the coder, source signals are assumed
to be available and the mixing process is assumed to be
controlled. In each time-frequency (TF) bin, the mixture
signal is assumed to be composed of at most two predom-
inant sources, and the coder looks for the two sources
that provide the best separation results by local 2×2 ma-
trix inversion applied to MDCT coefficients (the other
separated sources are set to zero). The side-information
transmitted to the decoder is the index of those two pre-
dominant sources for each TF bin (and the mixing matrix
parameters). In [4, 19] the side-information is embedded
in the mix signal using a high-capacity data-hiding tech-
nique similar to the one presented in In previous papers

[16]. At the decoder, where the original source signals
are unknown, the extraction of this side-information en-
ables to invert the (embedded) mixture in each TF bin to
recover the source signals. This system is summarized in
the diagram of Fig. 4. With such informed approach, it
has been shown in [4, 19] that 5 instruments and singing
voice signals can be efficiently separated from 2-channel
stereo musical mixtures, with a quality that significantly
overcomes the quality obtained by a semi-blind reference
method and that enables separate manipulation of the
source signals during stereo music restitution (i.e. remix-
ing).

5.2. Sparsification as a pre-process for ISS

In the ISS system of [4, 19], the separation is made by lo-
cal matrix inversion applied to the MDCT coefficients of
the mixture signal, since the linear instantaneous mixture
in the time-domain results in an identical linear instanta-
neous mixture on the source MDCT coefficients. There-
fore, if the sparsification process of Section 3 is first ap-
plied to the signals involved in the separation process,
this can lead to a reduced number of non-zero MDCT
coefficients and a significant simplification of this sepa-
ration process. Here, we propose to apply the sparsifi-
cation process independently to each source signal at the
coder level before the mixing process. This sparsifica-
tion is assumed to have no consequence on the quality of
each source signal taken separately, and it is very likely
to have no (or not much) consequence on the quality of
the resulting mix. For each TF bin, we can thus mention
the following cases:

Case 1: The MDCT coefficient of each source has been
zeroed by the sparsification process; this results in
a zero-coefficient for each channel of the mixture;
in such case, the separation process by matrix in-
version is unnecessary, all separated sources can be
directly set to zero.

Case 2: The MDCT coefficient of at least one source has
not been zeroed; in that case, the matrix inversion is
needed, but we can distinguish the following sub-
cases:

Case 2.1: If the MDCT coefficient of only one or
two sources are non-zero, then the separation
leads to the exact reconstruction of the MDCT
coefficient of every (sparsified) sources (as op-
posed to the original system in [4, 19], where
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Fig. 4: Block diagram of the ISS system.

the weakest but non-zero sources can corrupt
the inversion process).

Case 2.2: If the MDCT coefficient of more than
two sources are non-zero, then the inversion
of the two predominant sources can be dis-
turbed by the other non-zeroed sources, as in
[4, 19], but also as in [4, 19], those non-zero
sources are assumed to be small compared to
the two predominant sources and their influ-
ence on the separation process is assumed to
be reasonable.

Note that after sparsification of the sources, the mix-
ing process is carried out in the TF domain. Because
the mixture coefficients are generally not integer (usu-
ally between 0 and 1), the resulting mixed TF coefficients
are first rounded and then the mix signal is transformed
back in the time-domain. This ensures the preservation
of the values zeroed by the sparsification process (case
1 above), as mentioned in Section 3.1. The rounding er-
ror on non-zero coefficients is assumed to be negligible
compared to their dynamics.

In the next subsection, we lead some experiments that

measure the occurrence of each of those cases on realistic
musical mixtures, and thus provide a first estimation of
the computational gain that can be obtained at the ISS
decoder

5.3. Experiments on sparsified ISS

The experiments were performed using 4 real music
tracks of different styles (pop-rock, new-wave, funk,
electro-jazz; duration 3, 4, 5 and 6 min) of 5 sources
each (among guitar, bass, drums, lead vocals, saxophone,
synthesizer, percussions). Table 2 shows the effect of the
pre-mix source sparsification on the overlapping of the
sources in the mix. It can be seen that on the average:

• Approx. 32% of the mix coefficients are zero (Case
1), leading directly to 32% of computational cost
saving for the 2× 2 matrix inversion of the sep-
aration process. Since approx. 65% of the co-
efficients are zeroed by the sparsification for each
source taken separately, it can be deduced that ap-
prox. half of these sparsified coefficients are zeroed
simultaneously for the 5 sources of the mix signal.

• Approx. 43% of the mix coefficients contain only 1
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Number of non-zero
sources 3 4 5

Average % of energy
in the 2 predominant
sources

97.92 96.53 95.70

Table 3: Sources overlapping in the mix after sparsifica-
tion of each source.

or 2 sources (Case 2.1), meaning that the separation
in those TF bin will be perfect (exact reconstruction
of the sparsified sources).

To further complement those results, Table 3 shows that
even in the case of more than 2 non-zero sources, the en-
ergy of the 2 most energetic sources represents on aver-
age more than 95% of the energy of all the sources (con-
firming the similar results presented in [19]). This con-
firms the two-predominant sources assumption on which
the ISS method is based. In fact, as also shown in Ta-
ble 2, the perfect reconstruction cases (Case 1 and Case
2.1) represent only about 10% of the total energy of
the mix signal. Therefore, the sparsification as a pre-
process for informed source separation yields only few
improvements in separation quality. Its main interest in
the present case lies in the very significant computational
gain (32% on the average).

6. CONCLUSIONS AND PERSPECTIVES

The present study shows that it is possible to largely
sparsify musical signals in the TF domain (in the strict
sense of `0, and in a conservative manner, i.e. with sev-
eral back-and-forth transformations from time domain to
TF domain), with more than 65% of zeroed coefficients
without impairing audio quality. This is made possible
by the use of PAC tools (MDCT and PAM), here bor-
rowed from MPEG, which seem to be more efficient than
the Gabor transform and specific PAM used in the previ-
ous inspiring study [12].

The sparsification as a pre-process has been applied
within the informed source separation system presented
in [4, 19]. The sparsification of instrument/voice signals
before making the mix leads to approx. 1/3rd compu-
tational cost saving at the ISS decoder where the separa-
tion is processed (for 5 sources). In addition, this process
contributes to reduce the overlapping of the source sig-
nals in the TF domain, and thus enables sparsity-based

source separation algorithms to yield better results than
when applied on normal mix.
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