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ABSTRACT

Looking at the speaker’s face seems useful to better hear
a speech signal and extract it from competing sources be-
fore identification. In this paper, we present a novel algo-
rithm plugging audiovisual coherence of speech signals, es-
timated by statistical tools, on audio blind source separation
(BSS) algorithms in the difficult case of convolutive mix-
tures. The algorithm mainly works in the frequency (trans-
form) domain, where the convolutive mixture becomes an
additive mixture for each frequency channel. Frequency by
frequency separation is made by an audio BSS algorithm,
and the audiovisual information is used to solve the stan-
dard source permutation and scale factor problems at the
output of the separation stage, for each frequency. The pro-
posed method is shown to be efficient in the case of 2 × 2
convolutive mixtures.

1. INTRODUCTION

Looking at the speaker’s face seems useful to better hear a
speech signal and to extract it from competing sources be-
fore identification [1]. Schwartz et al. [2] attempted to show
that vision may enhance audio speech in noise and there-
fore provide what they called a “very early” contribution
to speech intelligibility, different and complementary to the
classical lipreading effect. This suggests to elaborate new
speech enhancement or extraction techniques exploiting the
audiovisual coherence of speech stimuli. Girin et al. [3] de-
veloped a technological implementation of this idea: a first
system for automatically enhancing audio speech embedded
in white noise by using filters which parameters were partly
estimated from the video input. Then Sodoyer et al. [4]
have developed an approach exploring the link between two
signal processing streams that were completely separated:
sensor fusion in audiovisual speech processing on the one
hand, and blind source separation (BSS) techniques [5, 6]
on the other hand. They have proposed to use a statistical
model of audiovisual coherence to estimate the separating
matrix in the case of a simple additive mixture.

In this study, we focus on the more complex problem of
convolutive mixtures of speech signals, where the permu-
tation and scale factor indeterminations arise for each fre-
quency bin. In a recent paper [7], we proposed an approach
to the permutation problem based on a statistical model of
the audiovisual coherence of speech signals. In this paper,
we complete and thus improve the estimation of the sources
by a complementary approach to solve the scale permuta-
tion problem exploiting the marginal audio model extracted
from the audiovisual one.

This paper is organized as follows. Section 2 introduces
the BSS problem of convolutive mixtures. Section 3 ex-
plains the audiovisual approach to improve the estimation
of the speech sources. Section 4 proposes numerical exper-
iments before conclusions and perspectives in section 5.

2. BSS OF CONVOLUTIVE MIXTURES

Let us consider the case of a stationary convolutive mixture
of N sources s(m) = [s1(m), · · · , sN (m)]T to be sepa-
rated from P observations x(m) = [x1(m), · · · , xP (m)]T

(T denoting the tranpose):

xp(k) =
N∑

n=1

∞∑

m=−∞

hp,n(m)sn(k − m) (1)

The filters {hp,n(m)}, that model the impulse response be-
tween each source sn(k) and the pth sensor, are entries of
the mixing filter matrix {H(m)}. The goal of the BSS is to
recover the sources by using a dual filtering process:

ŝn(k) =
P∑

p=1

∞∑

m=−∞

gn,p(m)xp(k − m) (2)

where {gn,p(m)} are entries of the demixing filter matrix
{G(m)} which are estimated such that the components of
the output signals vector ŝ(m) = [ŝ1(m), · · · , ŝN (m)]T are
as mutually independent as possible. This problem is gen-
erally considered in the dual frequency domain where the
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Fig. 1. Audio and video parameters. Fig. 1(a) shows the
two video parameters. Fig. 1(b) displays the temporal win-
dowed signal and Fig. 1(c) its spectral local characteristics
(obtained by the FFT of the segment in Fig. 1(b)).

equations (1) and (2) lead to

Sx(m, f) = H(f)Ss(m, f)H∗(f) (3)

Sŝ(m, f) = G(f)Sx(m, f)G∗(f) (4)

where Ss(m, f), Sx(m, f) and Sŝ(m, f) are the time vary-
ing power spectrum density matrices of respectively the
sources s(m), the observations x(m) and the output ŝ(m).
H(f) and G(f) are the frequency response matrices of the
mixing and demixing filter matrices (∗ denoting the conju-
gated transpose).

If we assume that the sources are mutually indepen-
dent (or at least decorrelated) Ss(m, f) is a diagonal ma-
trix and an efficient separation must lead to a diagonal ma-
trix Sŝ(m, f). Thus, a basic criterion for BSS is to adjust
the matrix G(f) so that Sŝ(m, f) is as diagonal as possible.
This can be done by the joint diagonalization process de-
scribed in [8], and in the following we use this method. The
well-known crucial limitation of the BSS problem is that for
each frequency bin, G(f) can only be provided up to a scale
factor and a permutation between the sources:

G(f) = P(f)D(f)Ĥ−1(f) (5)

where P(f) and D(f) are arbitrary permutation and diag-
onal matrices. Pham et al. [9] proposed to reconstruct the
frequency response {G(f)} by exploiting the continuity be-
tween consecutive frequency bins. They select the permuta-
tions that assume a smooth reconstruction of the frequency
response and they do not solve the scale factor problem.

3. SOLVING INDETERMINATION PROBLEMS

In this section, we first present the statistical model of the
audiovisual coherence of speech signals. Then we present
how this model can be used to successively solve the per-
mutation and the scale factor indeterminations.

3.1. Modeling the audiovisual coherence of speech

We assume that we want to extract a particular speech source,
say s1(t), from the audio mixtures x(t) and we exploit ad-
ditional observations, which consist of a video signal v1(t)

extracted from the speaker’s face and synchronous with the
acoustic signal s1(t). This video signal consists of the tra-
jectory of basic geometric lip shape parameters. The spea-
ker’s lip parameters and the local spectral characteristics
of the acoustic signal are related by a complex relation-
ship which can be described in statistical terms. Hence,
we assume that we can build a statistical model provid-
ing the joint probability pAV (A1(t),v1(t)) of a video vec-
tor v1(t) = [V1,a(t), V1,b(t)]T containing the lip internal
width and height (Fig 1(a)) and an audio vector A1(t) =
[A1(t, f1), · · · , A1(t, fL)]T containing local spectral char-
acteristics (Fig. 1(c)). These video and audio vectors repre-
sent the useful information of a signal frame (Fig. 1).

(v1(t),A1(t)) ∼
I∑

i=1

ωi N
(
µAV

i , ΓAV
i

)
(6)

where N (µ,Γ) is the Gaussian distribution of mean vector
µ and covariance matrix Γ. {ωi, µ

AV
i , ΓAV

i } are the param-
eters of the ith Gaussian kernel.

3.2. Permutation ambiguity

Regularizing the permutation problem of frequency domain
BSS consists in searching the permutations set {P̂(f)} that
assume Â1,{P̂(f)}(t) ≃ A1(t), where Â1,{P(f)}(t) are the
estimated audio coefficients of the real audio parameters
A1(t) given by (5) from the BSS algorithm of [9] up to the
permutation matrices {P(f)}. To estimate {P(f)}, we pro-
pose to minimize the audiovisual criterion JAV ({P(f)}, t)
between the audio spectrum output on channel 1 and the
visual information v1:

{P̂(f)} = arg min
{P(f)}

JAV ({P(f)}, t) (7)

with

JAV ({P(f)}, t) = − log
[
pAV

(
Â1,{P(f)}(t),v1(t)

)]
(8)

To improve the criterion, we introduce the possibility to
cumulate the probabilities over time. For this purpose, we
assume that the values of audio and visual characteristics at
several consecutive time frames are independent from each
other and we define an integrated audiovisual criterion by:

JT
AV ({P(f)}) =

T−1∑

t=0

JAV ({P(f)}, t) (9)

Since there are (N !)L possible permutation matrices if the
short term Fourier transform is calculated over L frequen-
cies, it is not possible to attempt an exhaustive research, be-
cause of huge computational load. To overcome this, we
already proposed an original algorithm in two stages [7].
First, we use a dichotomic scheme during which we sim-
plify the criterion (9) by marginalizing the audiovisual prob-
ability pAV (A1(t),v1(t)) regarding sets of frequencies.
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Then, we use the previous estimation of the permutation
matrices as the initialization of the second stage, in which
we exploit the joint criterion (9) using a recursive scheme.

3.3. Scale factor ambiguity

To solve the scale factor problem, we propose a novel pro-
cess exploiting the audio model achieved by marginalizing
the audiovisual model (6) regarding the video parameters.
Resulting from the audiovisual probability, the model of the
audio parameters is also a mixture of Gaussian kernels

A1(t) ∼
I∑

i=1

ωi N
(
µA

i , ΓA
i

)
(10)

Now, regularizing the scale factor ambiguity consists in
searching, for each frequency bin f , the parameter α(f)
which leads to α(f)A†

1(t, f) = A1(t, f) where A†
1(t, f) is

the estimated audio parameter reached after our permutation
cancellation (i.e. A†

1(t, f) = Â1,P̂ (f)(t, f)). To estimate
α(f) we propose to exploit the audio model (10). Indeed,
the variance of α(f)A†

1(t, f) verifies

Var
(
α(f)A†

1(t, f)
)

= Var(A1(t, f)) (11)

where Var(·) is the variance operator. Moreover

Var(A1(t, f)) =
I∑

i=1

ωiγ
A
i (f) +

I∑

i=1

ωi

(
µA

i (f)
)2

· · ·

· · · −

(
I∑

i=1

ωiµ
A
i (f)

)2

(12)

where γA
i (f) is the f th diagonal coefficient of the covari-

ance matrix ΓA
i and µA

i (f) the f th coefficient of the mean
vector µA

i . Thus we propose to estimate α(f) thanks to

α̂(f) =

√√√√
Var (A1(t, f))

Var
(
A†

1(t, f)
) (13)

where Var(A1(t, f)) is defined by (12) and Var(A†
1(t, f))

is estimated by a classical variance estimator.

4. NUMERICAL EXPERIMENTS

In the following, we consider the case of two sources mixed
by 2 × 2 matrices of filters. All mixing filters are artificial
finite impulse response filters up to 64 lags with 3 signifi-
cant echos. They fit a simplified acoustic model of a room
impulse response. The local audio parameters A1(t) are
obtained by the short term Fourier transform. Moreover,
we need synchronous video parameters v1(t) and local au-
dio parameters A1(t). Since the video channel is sampled
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Fig. 2. Percentage of detection errors versus number of in-
tegration frames.

at 50Hz, we choose the length of the temporal block equal
to 20ms and the audio signals are sampled at 16kHz. In
this study we choose a limited number of audio parameters
to the permutation cancellation so we subdivide the spec-
trum into 32 consecutive bands of 250Hz and we calculate
the energy of the signal in these bands. Furthermore, the
joint statistical model of the audiovisual information con-
sists in a mixture of 16 Gaussian kernels estimated during a
training phase using the EM algorithm [10]. The corpus
consisted in 110 phonetically well-balanced sentences in
French. The audiovisual model was trained by using the 80
first sentences, representing about 7000 audiovisual vectors
for each speaker (different male and female speakers were
tested with one audiovisual model for each one of them).
The overall process was tested with the 30 sentences not
used for training.

Fig. 2 shows the percentage of detection error1 versus
the number of integration frames: the solid line is the mean
and the error bars are the standard deviations (this simula-
tion is repeated over 40 different speech sentences). This
stresses the importance of frames integration for the crite-
ria. Choosing around 20 frames of integration seems to be
a good trade-off between computation time and detection
error.

Fig. 3 presents an example of the achieved separation:
Fig 3(a) shows the two sources, Fig 3(e) the mixtures and
Fig. 3(b) the estimated sources given by the BSS algorithm,
without permutation cancellation. Fig. 3(f) shows the spec-
trum |G(f)H(f)| of the global filter (G ∗H)(n). Fig. 3(c)
(resp. Fig. 3(g)) displays the estimated sources (resp. the
spectrum of the global filter) after our permutation cancella-
tion algorithm (cf. 3.2). One can see that, for all frequencies
f , |(GH)12(f)| (resp. |(GH)21(f)|) is much smaller than
|(GH)11(f)| (resp.|(GH)22(f)|). This first means that our
algorithm found all the permutations and also that the two
sources are nearly separated. However we can see that the
diagonal terms of the global filter are not equal to the iden-
tity. Thus, the estimated sources are the original sources
modified by these filters. Using our estimation of the scale
factor (cf 3.3), we achieve the source estimation as shown
Fig. 3(h): this global filter is closer to the identity than the

1The permutation errors contain both the unsolved permutations (actual
permutations undetected by our algorithm) and the wrong permutations
(bad decision of the algorithm).
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(c) Estimated sources with our can-
cellation permutation algorithm
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(d) Estimated sources with our
scale factor estimation
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(f) Global filter for Fig. 3(b)
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(g) Global filter for Fig. 3(c)
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(h) Global filter for Fig. 3(d)

Fig. 3. Sources, mixtures, estimated sources and global filters magnitude spectrum.

Fig. 3(g) one. So the estimated sources (Fig. 3(d)) are much
closer to the original sources.

5. CONCLUSIONS AND PERSPECTIVES

The BBS problem of convolutive speech mixtures can be
achieved by using a joint diagonalization process in the time-
frequency domain [9]. However, this only gives a solution
up to a permutation and a scale factor. In this paper, we pro-
posed a new method to overcome these problems exploiting
the audiovisual coherence of speech and the audio model
resulting from it. We also showed the importance to cu-
mulate the probabilities on consecutive frames in order to
adequately exploit this coherence.

As a further step, we will also extend the permutation
cancellation to use directly all the frequency spectrum coef-
ficients instead of a limited number of audio parameters. It
is important to note that although the presented results con-
cerned the mixing of two speech sources, our algorithm can
be used to extract a speech signal corrupted by any kind of
noisy environment. This point is part of our future works.
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