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Abstract— Looking at the speaker’s face seems useful to better
hear a speech signal and extract it from competing sources
before identification. In this paper, we present a novel algorithm
plugging audiovisual coherence of speech signals, estimated by
statistical tools, on audio blind source separation (BSS) algo-
rithms in the difficult case of convolutive mixtures. The algorithm
mainly works in the frequency (transform) domain, where
the convolutive mixture becomes an additive mixture for each
frequency channel. Frequency by frequency separation is made
by an audio BSS algorithm, and the audiovisual information is
used to solve the standard source permutation problem at the
output of the separation stage, for each frequency. The proposed
method is shown to be efficient in the case of2× 2 convolutive
mixtures.

I. I NTRODUCTION

Looking at the speaker’s face seems useful to better hear
a speech signal and to extract it from competing sources
before identification [1]. Schwartz etal. [2] attempted to
show that vision may enhance audio speech in noise and
therefore provide what they called a “very early” contribution
to speech intelligibility, different and complementary tothe
classical lipreading effect. This suggests to elaborate new
speech enhancement or extraction techniques exploiting the
audiovisual coherence of speech stimuli. Girin etal. [3]
developed a technological implementation of this idea: a first
system for automatically enhancing audio speech embedded
in white noise by using filters which parameters were partly
estimated from the video input. Deligne etal. [4] provided an
extension of this work using more powerful implementation
tools. Moreover, their system was applied to speech recogni-
tion in adverse environment. Girin etal. [5] and then Sodoyer
et al. [6] have developed another approach, more general
and hopefully more powerful, exploring the link between
two signal processing streams that were completely separated:
sensor fusion in audiovisual speech processing on the one
hand, and blind source separation (BSS) techniques [7], [8],
[9] on the other hand. They have proposed to use a statistical
model of audiovisual coherence to estimate the separating
matrix in the case of a simple additive mixture.

The aim of this paper is to present a new principle to
solve the permutation problem in the case of convolutive
mixtures of speech signals. This paper is organized as follows.

Section II introduces the BSS problem in convolutive mixtures.
Section III explains the audiovisual principle to improve the
processing of the permutation ambiguity. Section IV proposes
numerical experiments before conclusions and perspectives in
section V.

II. BSS OF CONVOLUTIVE MIXTURES

Let us consider the case of a stationary convolutive mixture
of N audio sourcess(m) = [s1(m), · · · , sN (m)]T to be
separated fromP observationsx(m) = [x1(m), · · · , xP (m)]T

(T denoting the tranpose):

xp(k) =

N
∑

n=1

∞
∑

m=−∞

hp,n(m)sn(k − m) (1)

The filters {hp,n(m)}, that model the impulse response be-
tween each sourcesn(k) and thepth sensor, are entries of
the mixing filter matrix{H(m)}. The goal of the BSS is to
recover the sources by using a dual filtering process:

ŝn(k) =

P
∑

p=1

∞
∑

m=−∞

gn,p(m)xp(k − m) (2)

where {gn,p(m)} are entries of the demixing filter ma-
trix {G(m)}. These filters are usually estimated such that
the components of the output signals vectorŝ(m) =
[ŝ1(m), · · · , ŝN (m)]T are as mutually independent as possi-
ble. This problem is generally considered in the dual frequency
domain where the short term Fourier transform of (2) and basic
algebra manipulation leads to [9]:

Sx(m, f) = H(f)Ss(m, f)H∗(f) (3)

Sŝ(m, f) = G(f)Sx(m, f)G∗(f)

= G(f)H(f)Ss(m, f)H∗(f)G∗(f) (4)

whereSs(m, f), Sx(m, f) andSŝ(m, f) are the time varying
power spectrum density matrices of respectively the sources
s(m), the observationsx(m) and the output̂s(m). H(f) and
G(f) are the frequency response matrices of the mixing and
demixing filter matrices (∗ denoting the conjugated transpose).

If we assume that the sources are mutually independent (or
at least decorrelated)Ss(m, f) is a diagonal matrix and an
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Fig. 1. Audio and video parameters. Fig. 1(a) shows the two video
parameters. Fig. 1(b) displays the temporal windowed signal and fig. 1(c) its
spectral local characteristics (obtained by the FFT of the segment in Fig. 1(b)).

efficient separation must lead to a diagonal matrixSŝ(m, f).
Thus, a basic criterion for BSS is to adjust the matrixG(f)
so thatSŝ(m, f) is as diagonal as possible. This can be done
by the joint diagonalization process described in [10], andin
the following we used this method. The well-known crucial
limitation of the BSS problem is that for each frequency
bin, G(f) can only be provided up to a scale factor and a
permutation between the sources, that is:

G(f) = P(f)D(f)Ĥ−1(f) (5)

where P(f) and D(f) are arbitrary permutation and di-
agonal matrices. Pham etal. [11] proposed to reconstruct
the complete frequency response{G(f)} by exploiting the
continuity between consecutive frequency bins. They select
the permutations that assume a smooth reconstruction of the
frequency response.

III. A UDIOVISUAL SOLUTION TO THE PERMUTATION

PROBLEM

In this paper, we propose a novel approach to the per-
mutation problem exploiting the audiovisual coherence of
speech signals. We assume that we want to extract some
particular speech source, says1(m), from the audio mixtures
x(m) and we exploit additional observations, which consist
of a video signalv1(n) extracted from the speaker’s face
and synchronous with the acoustic signals1. This video
signal consists of the trajectory of basic geometric lip shape
parameters. It is now classical to consider that the speaker’s
lip parameters and the local spectral characteristics of the
acoustic signal are related by a complex relationship, and
the relationship can be described in statistical terms (see
e.g. [12]). Hence, we assume that we can build a statistical
model providing the joint probabilitypAV (S1(t, f),v1(t))
of a video vectorv1(t) = [V1,a(t), V1,b(t)]

T containing the
lip internal width and height (Fig 1(a)) and an audio vector
S1(t, f) = [A1(t, f1), · · · , A1(t, fL)]T containing local spec-
tral characteristics (Fig. 1(c)). These video and audio vectors
represent the useful information of a signal frame (Fig. 1).In

v1(t) v1(t)

v1(t)A(t, f1)

A(t, f1) · · ·

· · ·

· · · A(t, fL)

A(t, fL)

A(t, fL/2) A(t, fL/2+1)

Fig. 2. Marginal recursive scheme

this study, this statistical model is chosen to be a mixture of
Gaussian kernels.

Now, regularizing the permutation problem of frequency
domain BSS consists in searching the permutationP̂(f) that
assumesŜ1,P̂(f)(t, f) ≃ S1(t, f), where Ŝ1,P(f)(t, f) are
the estimated audio coefficients of the real audio parameters
S1(t, f), given by (5) from the BSS algorithm of [10] up to
the permutation matrixP(f). To estimateP(f), we propose to
minimize the audiovisual criterionJAV (P(f), t) between the
audio spectrum output on channel 1 and the visual information
v1:

P̂(f) = arg min
P(f)

JAV (P(f), t) (6)

with

JAV (P(f), t) = − log
[

pAV (Ŝ1,P(f)(t, f),v1(t))
]

. (7)

In order to improve the criterion, we introduce the possibil-
ity to cumulate the probabilities over time. For this purpose,
we assume that the values of audio and visual characteristics
at several consecutive time frames are independent from each
other and we define an integrated audiovisual criterion by:

JT
AV (P(f)) =

T−1
∑

t=0

JAV (P(f), t) (8)

Since there are(N !)L possible permutation matrices if the
short term Fourier transform is calculated overL frequencies,
it is not possible to attempt an exhaustive research, because of
huge computational load. So we first simplify the criterion by
using a marginal form (9). Thus, we marginalize the audio-
visual probabilitypAV (S1(t, f),v1(t)) regarding an arbitrary
ensembleF of frequenciesfj :

pFAV (S1(t, f),v1(t)) =

∫

· · ·

∫

pAV (S1(t, f),v1(t)) dfj,j /∈F .

So the marginal form of the criterion (8) is

JT
AV (P(f),F) =

T−1
∑

t=0

JAV (P(f), t,F) (9)

with

JAV (P(f), t,F) = − log
[

pFAV (S1,P(f)(t, f),v1(t))
]

.

Exploiting this simplification, we use the following recur-
sive scheme (Fig. 2):

1) first, test the permutation on all audio parameters1:
if JT

AV (J , {1, · · · , L}) < JT
AV (I, {1, · · · , L}) do the

permutation of all coefficients,

1J is the unitary anti-diagonal matrix,I is the identity matrix.
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Fig. 3. Joint dichotomic scheme

2) then sharpen the estimation of the permutation matrix by
testing separately with (9) a permutation on the first half
of the audio parameters setJT

AV (P(f), {1, · · · , L/2})
and on the second half of the audio parameters set
JT

AV (P(f), {L/2 + 1, · · · , L}),
3) continue with this dichotomic scheme until

JT
AV (P(f), {2j − 1, 2j}) for all j = {1, · · · , L/2}.

This initialization phase gives a good estimation of the per-
mutation matrixP(f) but not the best one. So, we refine
the estimation by applying the joint criterion (8) also with
a dichotomic form (Fig. 3):

1) for all 1 ≤ i ≤ L, test with (8) the permutation matrix
P(f) that only permutes the frequencyfi leaving all the
other frequenciesfj , j 6= i,

2) then, test with the same manner all couples of frequen-
cies{f2i−1, f2i},

3) continue with this dichotomic scheme until
{f1, · · · , fL},

4) loop at stage 1 if necessary.

Thus, two stages are required : the first one using a marginal
form of the criterion and the second one using the joint
criterion.

IV. N UMERICAL EXPERIMENTS

In the following, we consider the case of two sources
mixed by 2 × 2 matrices of filters. All mixing filters are
artificial finite impulse response filters up to 64 lags with
3 significant echos. They fit a simplified acoustic model of
a room impulse response. Since we are dealing with time
varying spectrum, the simplest way to calculate the local audio
parametersS1(t, f) is to subdivide the temporal signal into
consecutive blocks and to estimate the spectrum as if the data
inside each block come from stationary processes. Moreover,
we need synchronous video parametersv1(t) and local audio
parametersS1(t, f). Since the video channel is sampled at
50Hz, we choose the length of the temporal block equal to
20ms and the audio signals are sampled at 16kHz. Moreover,
in this study we choose a limited number of audio parameters
so we subdivide the spectrum into 32 consecutive bands of
250Hz and we calculate the energy of the signal in these bands.
Furthermore, the joint statistical model of the audiovisual
information consists in a mixture of 16 Gaussian kernels
estimated during a training phase using the EM algorithm [13].
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Fig. 4. Percentage of detection errors versus number of integration frames.
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Fig. 5. Percentage of detection error versus SNR.

In the following, we present the results of our audiovisual
based permutation algorithm. For each experimental condition,
the simulation is repeated over 40 different speech sentences.

Fig. 4 shows the percentage of detection error2 versus the
number of integration frames: the solid line is the mean and
the error bars are the standard deviations. This stresses the
importance of frames integration for the criteria (8) and (9).
Indeed, if the number of frames is too small the number
of errors significantly increases while the computation time
decreases. Meanwhile, if the number of frames increases, the
number of errors decreases towards zero while the computation
time increases. So choosing around 20 frames of integration
seems to be a good trade-off between computation time and
detection error.

Fig. 5 displays the percentage of permutation errors versus
the signal to noise ratio (SNR)SNR1 with 20 integration
frames. The definition of the SNR is

SNRi(dB) = 10 log
Psi

Pni

(10)

wherePsi =
∑T

t=1 |((GH)ii ∗ si)(t)|
2 represents the power

contribution of the actual sourcesi in the estimated source
ŝi, and Pni =

∑T
t=1

∑

j 6=i |((GH)ij ∗ sj)(t)|
2 for i 6= j

represents the interfering power contribution of all the other
sources. This figure underlines that our criterion is quite robust
to a bad estimation of the separation matrix. The symmetrical
aspect of the curve appears normal. Indeed, when theSNR
becomes lower than0dB, the noise power becomes larger than
the signal power. In the2 × 2 case, this is equivalent to say
that the estimated sourcês1 (resp.ŝ2) looks more like the real
sources2 (resp.s1).

2The permutation errors contain both the unsolved permutations (actual
permutations undetected by our algorithm) and the wrong permutations (bad
decision of the algorithm).
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(g) Global filter for Fig. 6(c)
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Fig. 6. Sources, mixtures, estimated sources and global filters.

Fig. 6 presents an example of the achieved separation:
Fig 6(a) shows the two sources, Fig 6(e) the two mixtures
and Fig. 6(b) the two estimated sources given by the BSS
algorithm, with a given permutation displayed (Fig. 6(f)) by
the spectrum|G(f)H(f)| of the global filter (G ∗ H)(n).
Fig. 6(c) (resp. 6(g)) displays the estimated sources (resp. the
spectrum of the global filter) after our algorithm. One can
see that, for all frequenciesf , |(GH)12(f)| is much smaller
than |(GH)11(f)| and |(GH)21(f)| is much smaller than
|(GH)22(f)| (care for the axes scale). This first means that
our algorithm found all the permutations and also that the two
sources are nearly separated. This can be verified with the two
last figures 6(d) and 6(h) which show the expected sources if
the global filterG(f)H(f) is effectively diagonal. We obtained
this simulated case by forcing to zero the filters(GH)12(f)
and (GH)21(f).

V. CONCLUSIONS AND PERSPECTIVES

The BBS problem of convolutive speech mixtures can be
achieved by using a joint diagonalization process in the time-
frequency domain [11]. However, this only gives a solution
up to a permutation matrix. In this paper, we proposed a new
method to overcome this problem exploiting the audiovisual
coherence of speech. We showed the importance to cumulate
the probabilities on consecutive frames in order to adequately
exploit this coherence. Moreover, our algorithm is quite robust
regarding the estimation of the separation matrix.

As a further steep, we will also extend this method to use
directly all the frequency spectrum coefficients instead ofa
limited number of audio parameters. It is important to note
that although the presented results concerned the mixing of
two speech sources, our algorithm can be used to extract a

speech signal corrupted by any kind of noisy environment.
This point is part of our future works.

REFERENCES

[1] K. Grant and P. Seitz, “The use of visible speech cues for improving
auditory detection of spoken sentences.”J. Acoust. Soc. Am., vol. 108,
pp. 1197–1208, 2000.

[2] J.-L. Schwartz, F. Berthommier, and C. Savariaux, “Audio-visual scene
analysis; evidence for a ”very-early” integration processin audio-visual
speech perception.” inProc. ICSLP’2002, 2002, pp. 1937–1940.

[3] L. Girin, J.-L. Schwartz, and G. Feng, “Audio-visual enhancement of
speech in noise,”Journal Accoustical Society of Smerica, vol. 109, no. 6,
pp. 3007–3020, june 2001.

[4] S. Deligne, G. Potamianos, and C. Neti, “Audio-visual speech en-
hancement with AVCDCN (AudioVisual Codebook Dependent Cepstral
Normalization).” inProc. ICSLP’2002, 2002, pp. 1449–1452.

[5] L. Girin, A. Allard, and J.-L. Schwartz, “Speech signalsseparation: a
new approach exploiting the coherence of audio and visual speech,” in
IEEE Int. Workshop on Multimedia Signal Processing (MMSP’2001),
Cannes, France, 2001.

[6] D. Sodoyer, J.-L. Schwartz, L. Girin, J. Klinkisch, and C. Jutten,
“Separation of audio-visual speech sources.” inEurasip JASP, 2002,
pp. 1164–1173.

[7] J.-F. Cardoso, “Blind signal separation : statistical principles,” Proceed-
ings of the IEEE, vol. 86, no. 10, pp. 2009–2025, October 1998.

[8] C. Jutten and A. Taleb, “Source separation : from dusk till dawn,” in
Independant compoment analysis 2000, Helsinki, Finlande, June 2000,
pp. 15–26.

[9] A. Hyvärinen, J. Karhunen, and E. Oja,Independent Component Anal-
ysis. New York: Wiley, 2001.

[10] D.-T. Pham, “Joint approximate diagonalization of positive definite
matrices,”SIAM J. Matrix Anal. And Appl., vol. 22, no. 4, pp. 1136–
1152, 2001.

[11] D.-T. Pham, C. Servière, and H. Boumaraf, “Blind separation of convo-
lutive audio mixtures using nonstationary,” inProceeding of ICA 2003
Conference, Nara, Japan, April 2003.

[12] H. Yehia, P. Rubin, and E. Vatikiotis-Bateson, “Quantitative association
of vocal-tract and facial behavior.”Speech Communication, vol. 26, pp.
23–43, 1998.

[13] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum-likelihood
from incomplete data via the em algorithm,”J. Royal Statist. Soc. Ser.
B., vol. 39, 1977.


