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Abstract— Looking at the speaker’s face seems useful to better Section Il introduces the BSS problem in convolutive migtur
hear a speech signal and extract it from competing sources Section Ill explains the audiovisual principle to improveet
before identification. In this paper, we present a novel algathm processing of the permutation ambiguity. Section IV prasos

plugging audiovisual coherence of speech signals, estiredt by ical . ts bef USi d .
statistical tools, on audio blind source separation (BSS) lgo- numerical experiments before conclusions and perspeative

rithms in the difficult case of convolutive mixtures. The algrithm ~ Section V.
mainly works in the frequency (transform) domain, where

the convolutive mixture becomes an additive mixture for eak Il. BSS OF CONVOLUTIVE MIXTURES
g;q:ner;%i%hgnsrg'élggﬁﬂﬁ;ﬂcgnzyt:{:qa”u%ri‘g\{i slfgigig?;;ﬁoﬁ Let us consider the case of a stationary convolutive mixture
' i = e T
used to solve the standard source permutation problem at the of N audio SOUI’CG$(m). = [s1(m), ,sn(m)]" to bTe
output of the separation stage, for each frequency. The propsed Separated fron# observations(im) = [1(m), -+, zp(m)]
method is shown to be efficient in the case o x 2 convolutive (? denoting the tranpose):
mixtures.
N 0o
|. INTRODUCTION 2p() = > hpu(m)sn(k—m) 1)

n=1m=-—oo

Looking at the speaker’s face seems useful to better heagr - b h del the i | b
a speech signal and to extract it from competing sourced® ilters {f1p,»(m)}, that model the impulse response be-

before identification [1]. Schwartz edl. [2] attempted to \WEen each source, (k) and thep™ sensor, are entries of
show that vision may enhance audio speech in noise af§ mixing filter matrix{?(m)}. The goal of the BSS is to
therefore provide what they called a “very early” contribat '©COVEr the sources by using a dual filtering process:

to speech intelligibility, different and complementary ttoe P

classical lipreading effect. This suggests to elaborate ne Sn (k) = Z Z Gn.p(m)zy(k —m) 2
speech enhancement or extraction techniques exploitiag th p=1m=—00

audiovisual coherence_ of.speech stimuli. Gir.in _ait [3] ~where {g,,,(m)} are entries of the demixing filter ma-
developed a technological implementation of this idea: st firyjy {G(m)}. These filters are usually estimated such that
system for automatically enhancing audio speech embeddgd components of the output signals vectéfm) =

in white noise by using filters which parameters were parttgl(m) -+, sx(m)]T are as mutually independent as possi-
estimated from the video input. Deligneadt [4] provided an e This problem is generally considered in the dual fregye

extension of this work using more powerful implementatiogomain where the short term Fourier transform of (2) anddasi
tools. Moreover, their system was applied to speech reeogBigebra manipulation leads to [9]:

tion in adverse environment. Girin at. [5] and then Sodoyer

et al. [6] have developed another approach, more general  Si(m,f) = H(f)Ss(m, [YH*(f) 3)
and hopefully more powerful, exploring the link between Ss(m, f) = G(f)Se(m, f)G*(f)
two signal processing streams that were completely segghrat = GUYH(NSs (m, HH (NS (S) (@)

sensor fusion in audiovisual speech processing on the one

hand, and blind source separation (BSS) techniques [7], [8lhereS(m, f), S.(m, ) andS;(m, f) are the time varying

[9] on the other hand. They have proposed to use a statistipalver spectrum density matrices of respectively the saurce

model of audiovisual coherence to estimate the separati(@:), the observations(m) and the outpug(m). H(f) and

matrix in the case of a simple additive mixture. G(f) are the frequency response matrices of the mixing and
The aim of this paper is to present a new principle tdemixing filter matrices*(denoting the conjugated transpose).

solve the permutation problem in the case of convolutive If we assume that the sources are mutually independent (or

mixtures of speech signals. This paper is organized asafsllo at least decorrelatedy;(m, f) is a diagonal matrix and an
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Fig. 2. Marginal recursive scheme

this study, this statistical model is chosen to be a mixtdre o

Gaussian kernels.

g e A L Now, regularizin_g the permuFation problem of frequency
) © domain BSS consists in searching the permutafiif) that

assumesS; 54 (t, f) =~ Si(t, f), whereS; p(y)(t, f) are

Fig. 1.  Audio and video parameters. Fig. 1(a) shows the twdeai the estimated audio coefficients of the real audio parameter

parameters. Fig. 1(b) displays the temporal windowed ignd fig. 1(c) its S (t, f), given by (5) from the BSS algorithm of [10] up to

spectral local characteristics (obtained by the FFT of #mgreent in Fig. 1(b)). the permutation matriSP(f). To estimatéD(f), Wwe propose to

minimize the audiovisual criteriod sy (P(f),t) between the

audio spectrum output on channel 1 and the visual informatio

spectrum (dB)

efficient separation must lead to a diagonal maftixm, f). v
Thus, a basic criterion for BSS is to adjust the mat¥iy’) L - )

so thatS;(m, f) is as diagonal as possible. This can be done P(f) = arg ) Jav(P(f),1) 6)
by the joint diagonalization process described in [10], and ith

the following we used this method. The well-known crucial’ .

limitation of the BSS problem is that for each frequency Jav(P(f),t) = —log pAV(SLp(f)(t,f),vl(t))}. @)
bin, G(f) can only be provided up to a scale factor and a

permutation between the sources, that is: In order to improve the criterion, we introduce the possibil

ity to cumulate the probabilities over time. For this pumpos

G(f) =P(H)DFYH(S) (5) we assume that the values of audio and visual characteristic
at several consecutive time frames are independent from eac

where P(f) and D(f) are arbitrary permutation and di-other and we define an integrated audiovisual criterion by:

agonal matrices. Pham el. [11] proposed to reconstruct o1

the complete frequency respon$g(f)} by exploiting the T _

continuity between consecutive frequency bins. They selec Tav(P(1) = ; Tav(P(1),1) ®

the permutations that assume a smooth reconstruction of th

. NE . : . .
frequency response. %lnce there aré¢ V!)* possible permutation matrices if the

short term Fourier transform is calculated ovefrequencies,
1. AUDIOVISUAL SOLUTION TO THE PERMUTATION it is not possible to attempt an exhaustive research, beazfus
PROBLEM huge computational load. So we first simplify the criterign b
using a marginal form (9). Thus, we marginalize the audio-

In this paper, we propose a novel approach to the Pfigyal probabilityp 4y (S: (¢, f), vi(t)) regarding an arbitrary
mutation problem exploiting the audiovisual coherence @f,sempler of frequenciesf;:

speech signals. We assume that we want to extract some

particular speech source, say(m), from the audio mixtures ;7% (S, (¢, f), vy (t)) :/ e /pAV(Sl(ﬁ, £svit) df e
x(m) and we exploit additional observations, which consist '

of a video signalv,(n) extracted from the speaker’s faceSo the marginal form of the criterion (8) is

and synchronous with the acoustic sigrnal. This video T_1

signal consists of the trajectory of basic geometric lippgha JX(P(f), F) = Z Jav(P(f),t, F) (9)
parameters. It is now classical to consider that the sp&aker =0

lip parameters and the local spectral characteristics ef thiin

acoustic signal are related by a complex relationship, and

the relationship can be described in statistical terms (see Jav(P(f),t,F) = —log [phv(S1.p(p)(t, ), vi(1)] -

e.g. [12]). Hence, we assume that we can build a statisticalgypoiting this simplification, we use the following recur-
model providing the joint probabilitypav (Si1(t, f), vi(t))  sjve scheme (Fig. 2):

of a video vectorv, (1) = [Vi.a(t), V1,5()]" containing the 1) first, test the permutation on all audio paraméters
lip internal width and height (Fig 1(a)) and an audio vector it 7 (T, {1, L}) < JE.(Z,{1,--,L}) do the
Su(t, f) = [Ai(t, /1), -+, Au(t, fr)]" containing local spec- perrﬁﬂtatiian 61‘ ali coefficier?t‘g Y

tral characteristics (Fig. 1(c)). These video and audidorsc '
represent the useful information of a signal frame (Fig.ld). 17 is the unitary anti-diagonal matrisZ is the identity matrix.
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Fig. 3. Joint dichotomic scheme Fig. 4. Percentage of detection errors versus number ajratien frames.
5
2) then sharpen the estimation of the permutation matrix by 8-
testing separately with (9) a permutation on the first half o .
of the audio parameters sét,,, (P(f),{1,---,L/2}) g
and on the second half of the audio parameters set %
JXV(,P(f)v{L/Q""L"' 7L})1 =
3) continue with this dichotomic scheme until I |
Thv(P(f),{2j — 1,25}) for all j = {1, , L/2}. co T SR
This initialization phase gives a good estimation of the- per Fig. 5. Percentage of detection error versus SNR.

mutation matrixP(f) but not the best one. So, we refine

the estimation by applying the joint criterion (8) also with

a dichotomic form (Fig. 3): In the following, we present the results of our audiovisual
based permutation algorithm. For each experimental ciomdit
the simulation is repeated over 40 different speech seesenc
other frequencies;, j # i, Fig. 4 shows the percentage of detection érnarsus the

2) then, test with the same manner all couples of freque'?Hmber of integration frames: the solid line is the mean and
ciesifg- 1y fai) the error bars are the standard deviations. This stresges th

3) continue with this dichotomic scheme untilimportan_ce of frames integration fqr the criteria (8) andl (9
(o fo)hs Indeed, if Fhe_ _numbe( of frames is too small the .num.ber
of errors significantly increases while the computationetim
i ] . _decreases. Meanwhile, if the number of frames increases, th
Thus, two stages are required : the first one using a margifginper of errors decreases towards zero while the compntati
form of the criterion and the second one using the joijine increases. So choosing around 20 frames of integration
criterion. seems to be a good trade-off between computation time and
detection error.
IV. NUMERICAL EXPERIMENTS Fig. 5 displays the percentage of permutation errors versus
the signal to noise ratio (SNRY N R; with 20 integration
&Fames. The definition of the SNR is

1) for all 1 < i < L, test with (8) the permutation matrix
P(f) that only permutes the frequengyleaving all the

4) loop at stage 1 if necessary.

In the following, we consider the case of two sourc
mixed by 2 x 2 matrices of filters. All mixing filters are
artificial finite impulse response filters up to 64 lags with SNR;(dB) = 101log Ps, (10)

3 significant echos. They fit a simplified acoustic model of ni

a room impulse response. Since we are dealing with timeh T 9 h

varying spectrum, the simplest way to calculate the locelau V€€ Ps; = 21 [((GH)ii = s:)(t)|" represents the power
parametersS, (, f) is to subdivide the temporal signal imo(A:ontnlzjutlon of theTactuaI sourcg in the est;mfateq sour_ce
consecutive blocks and to estimate the spectrum as if tree d&t 2"d Pn: h: .Zt:fl 2z [((GH)ij * t"’tﬁ)')(?” ?r Ii Zéb J
inside each block come from stationary processes. Moreo\;&presents t € interlering power contr qtlop ofa t_ eot
we need synchronous video parameter§) and local audio SCUrces: This figure underlines that our criterion is quitmist
parametersS, (¢, f). Since the video channel is sampled 4 a bad estimation of the separation matrix. The symmétrica
50Hz, we choose the length of the temporal block equal @PeCt Of the curve appears normal. Indeed, whenSthe?
20ms and the audio signals are sampled at 16kHz. Moreox%:récomes lower thad 3, the noise power becomes larger than
in this study we choose a limited number of audio parameté signal power. In the x 2 case, this is equn/_alent to say
so we subdivide the spectrum into 32 consecutive bands Bt the estimated sourée (resp.s) looks more like the real
250Hz and we calculate the energy of the signal in these bartf&!"c€s2 (resp.s1).

Furthermore, the joint statistical model of the audiovisua , _ _ .

inf tion consists in a mixture of 16 Gaussian kerne The permutation errors contain bpth the unsolved pernuts! ti(actual

n qrma ) o . ) b%rmutatlons undetected by our algorithm) and the wrongptions (bad
estimated during a training phase using the EM algorithri [13iecision of the algorithm).
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(b) Estimated sources without per- (c) Estimated sources with our al-
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(d) Estimated sources with artifi-

mutation cancelation gorithm cial cancelation of interference
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(e) Mixtures (f) Global filter for Fig. 6(b)

(g) Global filter for Fig. 6(c)

(h) Global filter for Fig. 6(d)

Fig. 6. Sources, mixtures, estimated sources and globassfilt

Fig. 6 presents an example of the achieved separatiespeech signal corrupted by any kind of noisy environment.

Fig 6(a) shows the two sources, Fig 6(e) the two mixtur&his point is part of our future works.

and Fig. 6(b) the two estimated sources given by the BSS
algorithm, with a given permutation displayed (Fig. 6(f)) b
the spectrum|G(f)H(f)| of the global filter (G * H)(n).
Fig. 6(c) (resp. 6(g)) displays the estimated sources (ithgp
spectrum of the global filter) after our algorithm. One can]
see that, for all frequencieg, |(GH)12(f)| is much smaller
than |(GH)11(f)| and [(GH)21(f)| is much smaller than
[(GH)22(f)| (care for the axes scale). This first means that
our algorithm found all the permutations and also that the tw
sources are nearly separated. This can be verified with the oA
last figures 6(d) and 6(h) which show the expected sources if
the global filterG(f)H(f) is effectively diagonal. We obtained [5]
this simulated case by forcing to zero the filtésH)12(f)

and (GH)21(f)-

(1]

[6]
V. CONCLUSIONS AND PERSPECTIVES

(7]
The BBS problem of convolutive speech mixtures can be

achieved by using a joint diagonalization process in thetim [
frequency domain [11]. However, this only gives a solution
up to a permutation matrix. In this paper, we proposed a ne]
method to overcome this problem exploiting the audiovisuFilO
coherence of speech. We showed the importance to cumulat
the probabilities on consecutive frames in order to adedyat
exploit this coherence. Moreover, our algorithm is quiteust
regarding the estimation of the separation matrix.

As a further steep, we will also extend this method to ugé?]
directly all the frequency spectrum coefficients insteadaof
limited number of audio parameters. It is important to notgs)
that although the presented results concerned the mixing of
two speech sources, our algorithm can be used to extract a

[11]
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