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Abstract

Audio–visual speech source separation consists in mixing visual speech processing techniques (e.g., lip parameters tracking) with
source separation methods to improve the extraction of a speech source of interest from a mixture of acoustic signals. In this paper,
we present a new approach that combines visual information with separation methods based on the sparseness of speech: visual infor-
mation is used as a voice activity detector (VAD) which is combined with a new geometric method of separation. The proposed audio–
visual method is shown to be efficient to extract a real spontaneous speech utterance in the difficult case of convolutive mixtures even if
the competing sources are highly non-stationary. Typical gains of 18–20 dB in signal to interference ratios are obtained for a wide range
of (2 · 2) and (3 · 3) mixtures. Moreover, the overall process is computationally quite simpler than previously proposed audio–visual
separation schemes.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Audio–visual speech source separation (AVSSS) is a
growing field of interest to solve the source separation
problem when speech signals are involved. It consists of
exploiting the bimodal (audio–visual) nature of speech to
improve the performance of acoustic speech signal separa-
tion (Bernstein and Benoı̂t, 1996; Sumby and Pollack,
1954). For instance, pioneer works by Girin et al. (2001)
and then by Sodoyer et al. (2004) have proposed to use a
statistical model between the coherence of audio and visual
speech features to estimate the separating matrix for addi-
tive mixtures. Later, Dansereau (2004) and Rajaram et al.
(2004) respectively plugged the visual information in a 2 · 2
decorrelation system with first-order filters and in the
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Bayesian framework for a 2 · 2 linear mixture. Unfortu-
nately, real audio mixtures are generally more complex
and better described as convolutive mixtures with quite
long filters. Recently, Rivet et al. (2007) have proposed a
new approach to exploit visual speech information in such
convolutive mixtures. Visual parameters were used to reg-
ularize the permutation and the scale factor indetermina-
cies that arise at each frequency bin in frequency-domain
separation methods (Capdevielle et al., 1995; Parra and
Spence, 2000; Dapena et al., 2001; Pham et al., 2003). In
parallel, the audio–visual (AV) coherence maximization
approach was also considered for the estimation of decon-
volution filters in Wang et al. (2005).

In this paper, we propose a simpler and more efficient
approach for the same problem (extracting one speech
source from convolutive mixtures using the visual speech
information). First we propose to use visual speech infor-
mation, for instance lip movements, as a voice activity
detector (VAD): the task is to assess the presence or the
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absence of a given speaker’s speech signal in the mixture,
crucial information to be further used in separation pro-
cesses. Such visual VAD (V-VAD) is characterized by a
major advantage as opposed to usual acoustic VADs: it
is robust to any acoustic environment, whatever the nature
and the number of competing sources (e.g. simultaneous
speaker(s), non-stationary noises, convolutive mixture,
etc.). Note that previous work on VAD based on visual
information can be found in Liu and Wang (2004). The
authors proposed to model the distribution of the visual
information using two exclusive classes (one for speech
non-activity and one for actual speech activity): the deci-
sion is then based on likelihood criterion. However, the
presented approach is completely different since we exploit
the temporal dynamic of lip movements and we do not use
an a priori statistical model (Section 2).

Secondly, we propose a geometric approach for the
extraction process exploiting the sparseness of the speech
signals (Section 3). One of the major drawback of the fre-
quency-domain separation methods is the need for regular-
izing the indeterminacies encountered at each frequency
bin (Cardoso, 1998). Indeed, the separation is generally
done separately at each frequency bin by statistical consid-
erations, and arbitrary permutations between estimated
sources and arbitrary scale factors can occur leading to a
wrong reconstruction of the estimated sources. Several
solutions to the permutation problem were proposed e.g.
exploiting the correlation over frequencies of the recon-
structed sources (Parra and Spence, 2000; Dapena et al.,
2001), exploiting the smoothness of the separating filters
(Pham et al., 2003) or exploiting AV coherence (Rivet
et al., 2007). Alternately, other methods try to exploit the
sparseness of the sources. For instance, Abrard and Deville
(2005) proposed a solution in the case of instantaneous
mixture. They exploit the frequency sparseness of the
sources: in the time–frequency plane, areas where only
one source is present are selected by using an acoustic
VAD, allowing the determination of the separating matrix.
However, their method has two restrictions: (i) it concerns
instantaneous mixtures while real mixtures are often con-
volutive, (ii) it requires time–frequency areas where only
one source is present, which is a very strong assumption
(the number of such areas is very small).1 Recently,
Babaie-Zadeh et al. (2004) proposed a geometric approach
in the case of instantaneous mixtures of sparse sources. The
method is based on the identification of the main directions
of the present sources in the mixtures. Our proposed
method is also geometric but is quite different from their
method, since in our approach (i) only the source to be
extracted has to be sparse, (ii) the indexation of the sections
where the source to be extracted is absent is done thanks to
the proposed V-VAD, (iii) the case of convolutive mixtures
is addressed. Also, in addition to intrinsically solve the per-
1 In the case of N sources, if p is the probability of the source absence,
the probability that only a given source is present is equal to pN�1 (1 � p),
assuming that the presence of the sources is independent.
mutation problem for the reconstructed source, the pro-
posed method is refined by an additional stage to
regularize the scale factor ambiguity.

This paper is organized as follows. Section 2 presents the
basis of the proposed V-VAD. Section 3 explains the pro-
posed geometrical separation using the V-VAD first in
the case of instantaneous mixtures and then in the case
of convolutive mixtures. Section 4 presents both the analy-
sis of the V-VAD and the results of the AV separation pro-
cess before conclusions in Section 5.
2. Visual voice activity detection

In this section, we present our visual voice activity detec-
tor (V-VAD) (Sodoyer et al., 2006). For the purpose of
developing and assessing this V-VAD, a dedicated audio–
visual corpus, denoted C1, of 45 min of spontaneous speech
was recorded. Two male French speakers were set in a
spontaneous dialog situation with many speech overlap-
ping and non-speech events. The two speakers were placed
and recorded in a different room to collect separately the
two audio signals. Each speaker had a microphone and a
micro-camera focused on the lip region (Fig. 1a and b).

The visual information consists of the time trajectory of
basic lip contour geometric parameters, namely interola-
bial width w(k) and height h(k), where k represents discrete
time index (Fig. 1c). Indeed, several studies have shown
Fig. 1. Experimental conditions used to record the corpus C1 (a) and (b).
(c) presents the video parameters: internal width w and internal height h.
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that the basic facial lip edge parameters contain most of the
visual information according to both intelligibility criterion
(Le Goff et al., 1995) and statistical analysis (Elisei et al.,
2001). These parameters were automatically extracted by
using a device and an algorithm developed at the ICP (Lal-
louache, 1990). The technique is based on blue make-up,
Chroma-Key system and contour tracking algorithms.
The parameters are extracted every 20 ms (the video sam-
pling frequency is 50 Hz), synchronously with the acoustic
signal which is sampled at 16 kHz. Thus in the following,
an audio–visual signal frame is a 20 ms section of acous-
tic signal associated with a video pair parameters
(w(k), h(k)).

The aim of a voice activity detector (VAD) is to discrim-
inate speech and non-speech sections of the acoustic signal.
However, we prefer to use the distinction between silence

(defined as vocal inactivity) and non-silence sections for a
given speaker because non-speech sections are not bound
to be silence, since many kinds of non-speech sounds can
be produced by the speaker (e.g. laughs, sighs, growls,
moans, etc.). Moreover, the separation system of Section
3 is based on the detection of complete non-activity of
the speaker to be extracted from the mixture (i.e. the detec-
tion of time periods where no sound is produced by the
speaker is used to extract the speech signal produced dur-
ing active periods). To provide an objective reference for
the detection, we first manually identified and labeled
acoustic sections of silence and non-silence. Then, we
defined a normalized video vector as p(k) = [w(k)/
lw,jh(k)/lh]T where j is the coefficient of linear regression
between w(k) and h(k), lw and lh the mean values of w(k)
and h(k) calculated on the complete corpus for each
speaker (T denotes the transpose operator).

As explained in (Sodoyer et al., 2006), a direct VAD
from raw lip parameters cannot lead to satisfactory perfor-
mances because of the intricate relationship between visual
and acoustic speech information. Indeed, Fig. 2 represents
the distribution of the first component p1(k) and the second
component p2(k) of vector p(k) for non-silence frames
(Fig. 2a) and silence frames (Fig. 2b). One can see that
there is no trivial partition between the two classes (silence
Fig. 2. Distribution of the visual parameter p(t) for non-silence frames (a) and
(closed lip-shape) for the (a) and (b) figures respectively. A total (silence and
vs. non-silence): for instance, closed lip-shapes are present
in both distributions and they cannot be systematically
associated with a silence frame. The V-VAD (Sodoyer
et al., 2006) is based on the fact that silence frames can
be better characterized by the lip-shape movements.
Indeed, in silence sections, the lip-shape variations are gen-
erally small, whereas in speech sections these variations are
generally quite stronger. So we proposed the following
dynamical video parameter:

vðkÞ ¼ op1ðkÞ
ok

����
����þ op2ðkÞ

ok

����
����; ð1Þ

where the derivations will be implemented as differences.
The kth input frame is classified as silence if v(k) is lower
than a threshold and it is classified as speech otherwise.
However, direct thresholding of v(k) does not provide opti-
mal performance: for instance, the speaker’s lips may not
move during several frames, while he is actually speaking.
Thus, we smooth v(k) by summation over T consecutive
frames

V ðkÞ ¼
XT�1

i¼0

aivðk � iÞ; ð2Þ

where a is a real coefficient between 0 and 1 and T is chosen
large enough so that aT�1 is very small compared to a.
Finally, the kth frame is classified as silence if V(k) is lower
than a threshold d(V(k) < d), and it is classified as speech
otherwise (V(k) P d). Fig. 3 shows that the choice of coef-
ficient a must be considered carefully. A too small value of
a (or no summation) leads to a detection which is very sen-
sitive to local perturbations (Fig. 3a). On the contrary, a
too large a leads to a quite incorrect detection (Fig. 3c).
Fig. 3b shows that the choice of a can largely improve
the separation of silence and non-silence sections. Since
the aim of the V-VAD, as explained in Section 3, is to de-
tect frames where the speaker does not produce sounds, we
propose an additional stage before the decision in order to
decrease the false alarm (silence decision while speech
activity). Only sequences of at least L frames of silence
are actually considered as silences. The value of L is varied
silence frames (b). Note that 10% and 36% of the points are at the origin
non-silence) of about 13,200 20-ms-frames was used.
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Fig. 3. Histograms of the dynamical visual parameter V(k) (on log-scale) for three values of the pair (a,T). (a) Instantaneous case a = 0 and T = 1 (i.e.

V(k) = v(k) since we adopt the classical convention 00 = 1 in (2)). (b) Suitable value of a = 0.82, with T = 50. (c) Too large value of a = 0.99, with
T = 1000. In each case, the histogram plotted in black represents values V(k) associated with silence sections, and the histogram plotted in white represents
values V(k) associated with non-silence sections. A total (silence and non-silence) of about 130,000 20-ms-frames was used for this plot.

2 In this paper, bi,: = [bi,1, . . . ,bi, N], and b:,i = [b1,i, . . . ,bN,i]
T, where bi,j is

the (i,j)th element of matrix B.
3 Such an oracle is provided by the V-VAD of Section 2.
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in the experiments section and the corresponding results
are discussed. Finally, the proposed V-VAD is robust to
any acoustic noise and can be exploited even in difficult
non-stationary environments. The performance of the pro-
posed V-VAD is given in Section 4.1.

3. Speech source separation using visual voice activity

detector

In this section, we present the new geometrical method
to extract one source of interest, say s1(k), from the obser-
vations x(k). The main idea of the proposed method is to
exploit both (i) the ‘‘sparseness’’ property of speech signals:
in real spontaneous speech situations (e.g. dialog), there
exist some periods (denoted ‘‘silence’’) during which each
speaker is silent as discussed in Section 2, (ii) the possibility
to detect these silent sections by using the V-VAD of Sec-
tion 2. Note that the method allows the source with
detected silence sections to be extracted from the mixtures.
If other sources are to be extracted, they should have their
own associated silence detector. We first explain the princi-
ple of the separation process in the simple case of complex
instantaneous mixtures, then we extend it to convolutive
mixtures. We use the complex value for purpose of gener-
ality because in the case of convolutive mixture, complex
spectral values will be considered.

3.1. Case of complex instantaneous mixtures

Let us consider the case of N complex independent cen-
tered sources sðkÞ 2 CN and N complex observations xðkÞ 2
CN obtained by a complex mixing matrix A 2 CN�N:

xðkÞ ¼AsðkÞ; ð3Þ

where s(k) = [s1(k), . . . , sN(k)]T and x(k) = [x1(k), . . . ,
xN(k)]T. We suppose that A is invertible. Thus to extract
the sources s(k), we have to estimate a separating matrix
B 2 CN�N , which is typically an estimate of the inverse of
A. It is a classical property of usual source separation sys-
tems that the separation can only be done up to a permu-
tation and a scaling factor (Cardoso, 1998), that is

B ’ PDA�1; ð4Þ

where P is a permutation matrix and D is a diagonal ma-
trix. We denote C ¼ BA as the global matrix. Thus, to ex-
tract the first source s1(k), only one row of B is necessary,
we arbitrary choose the first one, denoted b1,:

2:

ŝ1ðkÞ ¼ b1;:xðkÞ ¼ b1;:AsðkÞ ’ c1;1s1ðkÞ: ð5Þ

In the following, we propose a novel method to estimate
b1,:. Moreover, we go one step further by regularizing the
scale factor so that the source s1(k) is estimated up to a1,1

instead of c1,1. This corresponds to the situation where
the estimation of the source s1(k) is equal to the signal con-
tained in x1(k) when the other sources vanish (in other
words, s1(k) is estimated up to its mixing matrix ,i.e. chan-
nel + sensor, coefficient a1,1 defined in (3)).

To estimate b1,:, we propose a novel geometric method.
The dimension of the spaces Ss and Sx, spanned by the
sources s(k) and the observations x(k) respectively, is N

(Fig. 4a and b for three uniform distributed real sources).
The space spanned by the contribution of source s1 in Sx

is a straight line denoted D1 (Fig. 4c). Now, suppose that
an oracle3 gives us T, a set of time indexes when s1(k) van-
ishes, then the space S0

x (respectively S0
s), spanned by x(k)

(respectively s(k)), with k 2T is a hyper-plane (i.e. space of
dimension N � 1) of Sx (respectively Ss). Moreover, D1 is
a supplementary space of S0

x in Sx:

Sx ¼S0
x �D1: ð6Þ

Note that S0
x and D1 are not necessary orthogonal. More-

over, S0
x is the space spanned by the contribution of

sources {s2(k), . . . , sN(k)} in Sx. Thus to extract s1, we have



Fig. 4. Illustration of the geometric method in the case of three observations obtained by an instantaneous mixture of three uniform sources. (a) Three
independent sources (s1, s2,s3) (dots) with uniform distribution and Ss the space spanned by them. (b) A 3 · 3 instantaneous mixture (x1,x2,x3) (dots) of
these sources and Sx the space spanned by the mixture. (c) S0x and D1 (solid line). (d) S0

x and D01 (solid line).
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to project the observations x(k) on a supplementary space
of S0

x (not necessary D1).
To find this supplementary space, a proposed solution is

to use a principal component analysis (PCA). Indeed, per-
forming an eigenvalue decomposition of the covariance
matrix Cxx = E{x(k)xH(k)} (ÆH denotes the complex conju-
gate transpose) of the observations x(k) with k 2T (the set
of time indexes when s1(k) vanishes) provides N orthogonal
(since Cxx is Hermitian) eigenvectors associated with N

eigenvalues that represent the respective average powers
of the N sources during time slots T. Since s1(k) is absent
for k 2T, the smallest eigenvalue within the eigenvalues
set is to be associated to this source (this smallest eigen-
value should be close to zero). The straight line D01,
spanned by the (row) eigenvector, denoted g = [1,g2, . . . ,
gN] (g1 is arbitrary chosen equal to 1), associated with the
smallest eigenvalue, defines the orthogonal supplementary
space of S0

x in Sx:

Sx ¼S0
x�
?
D01: ð7Þ

Thus, for all time indexes k (now including when source
s1 is active), an estimate of source s1(k) can be extracted
thanks to

ŝ1ðkÞ ¼ gxðkÞ ’ c1;1s1ðkÞ: ð8Þ

This way, b1,: is identified to g (i.e. we set b1,: = g), and
we furthermore have c1,1 = a1,1 + b1,2a2,1 + � � � + b1,NaN,1.
Note that scaling factor c1,1 can be interpreted as an
unchecked distortion since D1 is, a priori, a supplementary
space of S0

x and not necessary the orthogonal supplemen-
tary space of S0
x. As explained below (Section 3.2), in the

convolutive case this distortion can dramatically alter the
estimation of the source.

Now, we address the last issue of fixing the scaling factor
to a1,1 instead of c1,1, i.e. we have to find a complex scalar k
such that sy1ðkÞ ¼ kŝ1ðkÞ ’ a1;1s1ðkÞ: Thus k is given by

k ¼ a1;1

a1;1 þ
P

i>1b1;iai;1
¼ 1

1þ
P

i>1b1;iai;1=a1;1

; ð9Þ

where "i,b1,i were estimated as explained above (by identi-
fying g and b1,:) and the set {ai,1/a1,1}i has to be estimated.
To estimate these coefficients, we propose a procedure
based on the cancellation of the contribution of ŝ1ðkÞ in
the different mixtures xi(k). Thus, let denote
�iðbiÞ ¼ EfjxiðkÞ � biŝ1ðkÞj2g, where E{Æ} denote the statis-
tical expectation operator. Since the sources are indepen-
dent, we have thanks to (3) and (8)

�iðbiÞ ¼ Efjðai;1 � bic1;1Þs1ðkÞj2g þ
X
j>1

Efjai;jsjðkÞj2g: ð10Þ

Moreover, "bi, �i(bi) is lower bounded byP
j>1Efjai;jsjðkÞj2g and the lower bound is obtained for

bi = ai,1/c1,1. Let us denote b̂i as the optimal estimation
of bi in the minimum mean square error sense. b̂i is classi-
cally given by

b̂i ¼ arg min
bi

�iðbiÞ ¼
Efx�i ðkÞŝ1ðkÞg

Efĵs1ðkÞj2g
; ð11Þ

where � denotes the complex conjugate. In practice, the
expectation is replaced by time averaging and b̂i is given by
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b̂i ¼
PK

k¼1x�i ðkÞŝ1ðkÞPK
k¼1 ĵs1ðkÞj2

: ð12Þ

So, k is given by (9) where ai,1/a1,1 is replaced by b̂i=b̂1.
Note that we use the ratio ai,1/a1,1 rather than ai,1 alone
since bi is equal to ai,1 up to the unknown coefficient c1,1.
Finally, the source s1(k) is estimated by

sy1ðkÞ ¼ kb1;:xðkÞ ’ a1;1s1ðkÞ: ð13Þ
3.2. Case of convolutive mixtures

Let us now consider the case of convolutive mixtures of
N centered sources s(k) = [s1(k), . . . , sN(k)]T to be separated
from N observations x(k) = [x1(k), . . . ,xN(k)]T:

xmðkÞ ¼
XN

n¼1

hm;nðkÞ � snðkÞ: ð14Þ

The filters hm,n(k), which model the impulse response be-
tween the nth source and the mth sensor, are the entries
of the global mixing filter matrix HðkÞ.

The aim of the source separation is to recover the
sources by using a dual filtering process:

synðkÞ ¼
XN

m¼1

gn;mðkÞ � xmðkÞ; ð15Þ

where gn,m(k) are the entries of the global separating filter
matrix GðkÞ that must be estimated. The problem is gener-
ally considered in the frequency domain (Capdevielle et al.,
1995; Parra and Spence, 2000; Dapena et al., 2001; Pham
et al., 2003) where the single convolutive problem becomes
a set of F (the number of frequency bins) simple linear
instantaneous problems with complex entries. For all fre-
quency bins f

X mðk; f Þ ¼
XN

n¼1

H m;nðf ÞSnðk; f Þ; ð16Þ

Synðk; f Þ ¼
XN

m¼1

Gn;mðf ÞX mðk; f Þ; ð17Þ

where Sn(k,f), Xm(k,f) and Synðk; f Þ are the short-term
Fourier transforms (STFT) of sn(k), xp(k) and synðkÞ respec-
tively. Hm,n(f) and Gn,m(f) are the frequency responses of
the mixing Hðf Þ and demixing Gðf Þ filters respectively.
Since the mixing process is assumed to be stationary,
Hðf Þ and Gðf Þ are not time-dependent, although the sig-
nals (i.e. sources, observations) may be non-stationary. In
the frequency domain, the goal of the source separation
is to estimate, at each frequency bin f, the separating filter
Gðf Þ. This can be done thanks to the geometric method
proposed in Section 3.1. Indeed, at each frequency bin f,
(16) and (17) can be seen as a case of an instantaneous
complex mixture problem. Thus, b1,:(f) is the eigenvector
associated with the smallest eigenvalue of the covariance
matrix Cxx(f) = E{X(k,f)XH(k,f)} with k 2T. Then, bi(f)
is a function of frequency f and is estimated thanks to
b̂iðf Þ ¼
PK

k¼1X �i ðk; f ÞbS 1ðk; f ÞPK
k¼1jbS1ðk; f Þj2

: ð18Þ

So k(f) is given by

kðf Þ ¼ 1

1þ
P

i>1b1;iðf Þai;1ðf Þ=a1;1ðf Þ
; ð19Þ

where ai,1(f)/a1,1(f) is replaced by b̂iðf Þ=b̂1ðf Þ. Finally, the
source S1(k,f) is estimated by

Sy1ðk; f Þ ¼ G1;:ðf ÞXðk; f Þ ’ H 1;1ðf ÞS1ðk; f Þ; ð20Þ
where G1,:(f) = k(f)b1,:(f), or

sy1ðkÞ ¼ g1;:ðkÞ � xðkÞ ’ h1;1ðkÞ � s1ðkÞ: ð21Þ

Note that in the convolutive case, if the scale factor regu-
larization k(f) is not ensured, the source s1(k) is estimated
up to an unknown filter which can perceptually alter the
estimation of the source. On the contrary, performing the
scale factor regularization ensures that the first source is
estimated up to the filter h1,1(k) which corresponds to the
‘‘channel + sensor’’ filter of the first observation. The com-
plete method is summarized in the following Algorithm 1.

Algorithm 1 (Geometric separation in the convolutive case).

Estimate index silence frames T using V-VAD (Section
2)
Perform STFT on the audio observations xm(k) to
obtain Xm(k, f)
for all frequency bins f do
{Estimation of b1,:(f)}
Compute Cxx(f) = E{X(k, f)XH(k, f)} with k 2T
Perform eigenvalue decomposition of Cxx(f)
Select g(f) the eigenvector associated with the
smallest eigenvalue
b1,:(f)( g(f)

{Estimation of k(f) to fix the scaling factor}
Estimate bi(f) with (18)
k(f) is given by (19) where ai,1(f)/a1,1(f) is replaced

by b̂iðf Þ=b̂1ðf Þ
{Estimation of the demixing filter}
G1,:(f)( k(f)b1,:(f)

end for
Perform inverse Fourier transform of G1,:(f) to obtain
G1,:(k)
Estimate source s1(k) thanks to (15)
4. Numerical experiments

In this section, we first present the results about the V-
VAD and next the results of the geometric separation.
All these experiments were performed using real speech/
acoustic signals. The audio–visual corpus denoted C1 used
for the source to be extracted, say s1(k), consists of sponta-
neous male speech recorded in dialog condition (Section 2).
Two others corpus, denoted C2 and C3 respectively, consist
of phonetically well-balanced sentences in French of a
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different male speaker and of acoustic noise recorded in a
train, respectively.
4 Note that the FFT length is here adapted to the size of the mixing
filters. Because of potential cyclic convolution effects, longer mixing filters
may require a refined processing: e.g. in future work, the FFT-size can be
increased according to the length of detected silences.
4.1. Visual voice activity detector results

We tested the proposed V-VAD on about 13200 20 ms-
frames extracted from corpus C1, representing about
4.4 min of spontaneous speech. First of all, Fig. 5 illustrates
the different possible relations between visual and acoustic
data: (i) movement of the lips in non-silence (e.g. for time
index k 2 [3s, 4s]), (ii) movement of the lips in silence (e.g.
for time index k 2 [2s, 2.3s]), (iii) non-movement of the lips
in silence (e.g. for time index k 2 [1.5s, 2s]), (iv) non-move-
ment of the lips in non-silence (e.g. for time index
k 2 [0.9s, 1.1s]).

The detection results of the proposed V-VAD are
presented as receiver operating characteristics (ROC)
(Fig. 6). These curves present the percentage of silence
detection (i.e. ratio between the number of actual silence
frames detected as silence frames and the number of actual
silence frames) versus the percentage of false silence detec-
tion (i.e. ratio between the number of actual non-silence
frames detected as silence frames and the number of actual
silence frames). Fig. 6a highlights the importance of the
summation by a low-pass filter of the video parameter
v(k) (1). Indeed, by lessening the influence of short move-
ment of the lips in silence and the influence of the short sta-
tic lips in speech, the summation (2) improves the
performance of the V-VAD: the false silence detection sig-
nificantly decreases for a given silence detection percentage
(e.g. for 80% of correct silence detection, the false silence
detection decreases from 20% to 5% with a correct integra-
tion). Furthermore, Fig. 6b shows the effect of the post-
processing for the unfiltered version of the video parameter
v(k). The ROC curves show that a too large duration
(L = 200 frames corresponding to 4 s) leads to a dramatical
decrease in the silence detection ratio. On the contrary, a
reasonable duration (L = 20 frames corresponding to
400 ms) allows the false silence detection ratio to be
reduced without decreasing the silence detection ratio in
comparison to the case of no post-processing (i.e. L = 1
frame). The gain due to post-processing is similar to the
gain due to the summation. Eventually, combination of
both summation and post-processing leads to a quite
robust and reliable V-VAD.
4.2. Separation results

In this subsection, we consider the case of sources mixed
by matrices of filters. These filters are finite impulse
response (FIR) filters of 320 lags with three significant ech-
oes. They are truncated versions of measured impulse
responses recorded in a real room (Pham et al., 2003).
All the acoustic signals are sampled at 16 kHz, while the
video signal is sampled (synchronously) at 50 Hz. Different
configurations of mixing matrices were tested in the case of
N sources and N observations denoted (N · N): (2 · 2) and
(3 · 3). The three corpuses C1, C2 and C3 are used as s1(k),
s2(k) and s3(k) respectively.

To compute the STFT, the signals are subdivided into
blocks of 320 samples4 (i.e. 20 ms frames). Then, a fast
Fourier transform is applied on each block using the
zero-padding up to 2048 samples. The length of the sepa-
rating filters is thus 2048 samples. The blocks are over-
lapped about 0.85 of the block size.

To evaluate the performance of the proposed geomet-
ric method, we use different indexes. Since we are only
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Fig. 6. ROC silence detection curves. (a) ROC curves with two summation coefficients of the visual parameter V(k): instantaneous (a = 0, solid line) and
suitable summation (a = 0.82, dashed line). (b) ROC curves with L consecutive silence frames, in solid line L = 1 (i.e. instantaneous), in dashed line L = 20
frames (400 ms) and in dotted line L = 200 frames (4 s).
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interested in extracting s1(k), we define first the perfor-
mance index r1(f) for the source s1(k) as

r1ðf Þ ¼
XN

j¼1

jGH1;jðf Þj
jGH1;1ðf Þj

� 1; ð22Þ

where GHðf Þ ¼ Gðf ÞHðf Þ is the global system. This index
quantifies the quality of the estimated separating matrices
Gðf Þ for the source of interest. For a good separation, this
index should be close to zero.

We now define the contribution of a signal y(k) in
another signal z(k). In a general way, we can decompose
z(k) such that z(k) = f(y(k)) + n(k), where f(Æ) is a function.
In the following (y—z)(k) denotes the contribution of y(k)
in z(k): (y—z)(k) = f(y(k)). Moreover, let denote Py ¼
1
K

PK
k¼1jyðkÞj

2 the average power of signal y(k).
Thus, the signal to interference ratio (SIR) for the first

source is defined as

SIRðs1jsy1Þ
¼

Pðs1jsy1ÞP
sj 6¼s1

Pðsjjsy1Þ
: ð23Þ

Note that ðsjjsy1ÞðkÞ ¼
PN

i¼1g1;iðkÞ � hi;jðkÞ � sjðkÞ. This clas-
sical index in source separation quantifies the quality of the
estimated source sy1ðkÞ. For a good estimation of the source
(i.e. 8j > 1; ðsjjsy1ÞðkÞ ’ 0), this index should be close to
infinity. Finally, we define the gain of the first source due
to the separation process as

G1 ¼
SIRðs1jsy1Þ

maxlSIRðs1jxlÞ
¼ min

l

SIRðs1jsy1Þ

SIRðs1jxlÞ
ð24Þ

with SIR(ÆjÆ) defined by (23) and (sjjxl)(k) = hl,j(k) * sj(k).
This gain allows the improvement in SIR before and after
the separation process to be quantified. (The reference be-
fore separation being taken in the mixture where the contri-
bution of s1(k) is the strongest.)

Fig. 7 presents a typical result of the separation process
in the case of two sources and two sensors (2 · 2) with an
approximate SIR for source s1(k) equal to 0 dB for both
sensors. The two speech sources are plotted in Fig. 7a
and b. One can see in Fig. 7c lnV1(k), the natural logarithm
of video parameter V(k) (continuous line) and lnd the nat-
ural logarithm of the threshold d = 0.015 (dash–dot line)
used to estimate the silence frames (Section 2). In this
example, and after the results of Section 2, the smoothing
coefficient a is set to 0.82 and the minimal number of con-
secutive silence frames L is chosen equal to 20 (i.e. the min-
imum length of a detected silence is 400 ms). The results of
the V-VAD can be seen on Fig. 7a: the frames manually
indexed as silence are represented by the dash–dot line
and the detected frames as silence (which define the estima-
tion of T) are represented by the dashed line. In this exam-
ple 154 frames (i.e. 3.08 s) were detected as silence
representing 63.2% of silence detection while the false
detection rate is only 1.3%. The two mixtures obtained
from the two sources are plotted in Fig. 7d and f. The result
sy1ðkÞ of the extraction of source s1(k) by the proposed
method is shown in Fig. 7g. As a reference, the best possi-
ble estimation of the first source (h1,1(k) * s1(k)) is plotted
in Fig. 7e. In this example, the gain G1 is equal to
17.4 dB, while SIRðs1jsy1Þ

¼ 18:4 dB. One can see that the
extraction of the first source is quite well performed. This
is confirmed by the index performance r1(f) (Fig. 7h): most
values are close to zero.

Beyond this typical example, we processed extensive
simulation tests. For each simulation, only 20 s of signals
were used. Each configuration of the mixing matrices
(N · N) and of the SIRin (where SIRin is the mean of the
SIRs for each mixtures: SIRin ¼ 1=N �

P
lSIRðs1jxlÞ) was

run 50 times and the presented results are given on average.
To synthesize different source signals, each speech/acoustic
signal is shifted randomly in time. Fig. 8 presents the gain
G1 versus the SIRin in both (2 · 2) and (3 · 3) cases. One
can see that in both cases, the shape of the gains is the
same: from low SIRin (�20 dB) to high SIRin (20 dB), the
gains are almost constant at a high value, demonstrating
the efficiency of the proposed method: we obtain gains of
about 19 dB in the (2 · 2) case and about 18 dB in the
(3 · 3) case. Then, the gains decrease to 11 dB in the
(2 · 2) case and to 8 dB in the (3 · 3) case for higher SIRin.



Fig. 7. Example of separation in the (2 · 2) case. (a) and (b) Sources s1(k) and s2(k) respectively. (c) Natural logarithm ln V1(k) of the video parameter
associated with the first source s1(k). (d) and (f) Mixtures x1(k) and x2(k) respectively. (e) First source s1(k) up to the filter h1,1(k) (i.e. h1,1(k) * s1(k)); tjis
signal is used as a reference for the estimation of source s1(k) by our method. (g) Estimation sy1ðkÞ of source s1(k) given by (21). (h) Performance index r1(f)
(truncated at 1).
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It is interesting to note that the gain can happen to be
negative for the highest SIRin (e.g. (2 · 2) with SIRin =
20 dB). However, this is a rare situation since it happens only
for isolated high ratio FA/BD (e.g. FA/BD > 15%), i.e. when
the set T of detected silence frames contains too many
frames for which s1(k) is active. Indeed in this case, a deeper
analysis shows us that, since the average power of s1(k) is lar-
ger than the average power of the other source(s) for high
SIRin, the smallest eigenvalue of the covariance matrix esti-
mated using this set T is not necessary associated with the
first source. On the contrary, even if the ratio FA/BD is high
while the SIRin is low, the influence of interfering s1(k) values
occurred during false alarms remains poor because these
values are small compared to the other source(s). Alto-
gether, the method is efficient and reliable for a large range
of SIRin values (note that despite the previous remark, the
smallest gain obtained at SIRin = 20 dB for (2 · 2) mixture
is about 11 dB on the average).
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Fig. 8. Expected gain G1 versus SIRin in the (2 · 2) (a) and (3 · 3) (b) cases, respectively. The curves show the mean and the standard deviation of G1 in
dB.
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5. Conclusion

In this paper, we proposed an efficient method which
exploits the complementarity of the bi-modality (audio/
visual) of the speech signal. The visual modality is used
as a V-VAD, while the audio modality is used to estimate
the separation filter matrices exploiting detected silences
of the source to be extracted. The proposed V-VAD has
a major interest compared to audio only VAD: it is robust
in any acoustic noise environment (e.g. in very low signal to
noise ratio cases, in highly non-stationary environments
with possibly multiple interfering sources, etc.). Moreover,
the proposed geometric separation process is based on the
sparseness of the speech signal: when the source to be
extracted is vanishing (i.e. during the silence frames given
by the proposed V-VAD), the power of the corresponding
estimated source is minimized thanks to the separating fil-
ters. The proposed method can be easily extended to
extract other/any sparse sources, using associated vanish-
ing oracle. Note that results were presented for (2 · 2)
and (3 · 3) mixtures but the method can be applied to
any arbitrary (N · N) mixture with N > 3. Also, compared
to other frequency separation methods (Rivet et al., 2007;
Capdevielle et al., 1995; Parra and Spence, 2000; Dapena
et al., 2001; Pham et al., 2003), the method has the strong
advantage to intrinsically regularize the permutation prob-
lem: this regularization is an inherent byproduct of the
‘‘smallest eigenvalue’’ search. Finally, we can conclude by
underlining the low complexity of the method and low
associated computation cost, the video parameter extrac-
tion being set apart: compared to the methods based on
joint diagonalization of several matrices (Rivet et al.,
2007; Pham et al., 2003), the proposed method requires
the simple diagonalization of one single covariance matrix.

Future works will mainly focus on the extraction of use-
ful visual speech information in more natural conditions
(e.g. lips without make-up, moving speaker). Also, we
intend to develop an on-line version of the geometric algo-
rithm. These points are expected to allow the implementa-
tion of the proposed method for real environment and
real-time applications.
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