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Log-Rayleigh Distribution: A Simple
and Efficient Statistical Representation

of Log-Spectral Coefficients
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Abstract—In this paper, we study the distribution of the log-mod-
ulus of a Gaussian complex random variable. In the circular case,
it is a Log-Rayleigh (LR) variable, whose probability distribution
function (pdf) depends on only one parameter. In the noncircular
case, the pdf is more complicated, although we show that it can be
adequately modeled by an LR pdf, for which the optimal fitting
parameter is derived. These results can be used in any application
using the log-modulus of discrete Fourier transform coefficients,
e.g., for speech/audio signals, and suggest that a mixture of LR pdf
kernels is preferable to more classical models such as mixtures of
Gaussian kernels, which are more costly and less efficient.

Index Terms—Discrete Fourier transform (DFT), Gaussian com-
plex random variable, Rayleigh distribution, speech processing,
statistical modeling.

I. INTRODUCTION

MANY SIGNAL processing applications (e.g., compres-
sion [1] and speech enhancement [2]) require statistical

knowledge of the signal descriptors. Since the distribution of
the considered coefficients is often intricate, the use of general
models is a widely used solution. In particular, mixtures of
(many) Gaussian kernels are very common models in many
speech processing applications (e.g., voice conversion [3],
speech enhancement [4], and speaker identification [5]). Such a
general model provides a good fit for the data, but at the expense
of a large number of parameters and a high computational cost.

In speech processing, as in many applications, the spectral
domain is often considered, rather than the temporal domain.
In particular, discrete Fourier transform (DFT) coefficients are
widely used, since they provide a sparse and efficient repre-
sentation of the signal. The real and imaginary parts of DFT
coefficients of many frames of long-term continuous speech
(which is nonstationary because it includes silences and all kind
of speech sounds) are characterized by a “peaky” distribution.
Thus, a global model of the signal distribution, such as a Lapla-
cian model [6], can be used. However, this model does not take
into account the fact that the long-term speech signal is a se-
quence of various sounds. Alternately, one may prefer to exploit
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the structure of speech to build a mixture of kernels in which
each speech sound is expected to be modeled by one kernel.
This would provide a more efficient physically based model if
one is interested in retrieving “local” characterizations of spec-
tral information from the complete mixture [3], [7].

In many sound processing applications, it is specifically the
logarithm of the modulus of DFT coefficients that is often used,
since the log-spectrum is related to perceptual properties of the
human ear [8], and the log scale is computationally appropriate
for the scaling of the absolute values of the coefficients. In this
paper, we thus aim to find an efficient multisound model that ex-
ploits the structure of speech (as mentioned above) and whose
kernels are appropriate to the log-modulus DFT coefficients. To
do this, we first consider the basic case of quasi-stationary sig-
nals (i.e., one given speech sound) and we study the statistical
properties of log-modulus DFT coefficients for this case. We
then propose an efficient multisound model, derived from the
single-sound case just mentioned.

More precisely, for quasi-stationary sections of speech, the
DFT coefficients can be assumed to have a zero-mean Gaussian
complex circular distribution [9]. Their log-modulus is therefore
no longer Gaussian. In Section II, we thus address the theoret-
ical issue of characterizing the logarithm of the modulus of a
zero-mean circular Gaussian random variable by what will be
referred to here as the Log-Rayleigh law. In Section III, we
study the theoretical consequences for the pdf if circularity is
not assumed, as is sometimes the case with nonstationary sec-
tions of real speech signals. Then, in Section IV, we exploit the
results of Sections II and III in modeling the long-term speech
log-modulus DFT coefficients using a very efficient model: a
mixture of Log-Rayleigh kernels. This Log-Rayleigh mixture
model (LRMM) is a weighted sum of Log-Rayleigh laws, in the
same way that a Gaussian mixture model (GMM) is a sum of
weighted Gaussian laws. Experiments prove that this approach
provides very accurate modeling with a very low computational
cost compared to GMMs, since 1) the Log-Rayleigh pdf de-
pends on only one parameter, and 2) a single Log-Rayleigh pdf
is able to model the DFT log-modulus of one kind of sound
whereas several Gaussian kernels would be needed for the same
task (since the log-modulus of DFT coefficients for each sound
is no longer Gaussian).

II. COMPLEX RANDOM VARIABLES

In this section, we address basic theoretical issues with the
characterization of complex variables that will be used in the
following to model log-modulus DFT coefficients. For the sake
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Fig. 1. Probability density functions of a circular Log-Rayleigh distribution of
localization parameter � = 1 (solid line) and � = 10 (dashed-dotted line).

of simplicity, we will always consider the scalar (i.e., monodi-
mensional) case, as opposed to the vector (i.e., multidimen-
sional) case often developed in the literature [9]–[11]. In the
following, we thus will statistically characterize the different
bins of the log-modulus DFT coefficients separately, since it is
a classic result ([12, ch. 12-4]) that quasi-stationary signals pro-
vide uncorrelated DFT coefficients. In addition, since elemen-
tary speech sounds are considered to be zero-mean signals, the
corresponding DFT coefficients are also zero-mean, and we will
therefore study zero-mean complex variables.

Let denote a zero-mean circular (some authors prefer the
term proper [10]) complex Gaussian random variable [9] with
variance : . The pdf of is given by [9], [10]

(1)

where denotes the modulus. This equation assumes that the
real and imaginary parts of are uncorrelated and of equal
variance.

It is well known [12] that the modulus of is
Rayleigh distributed with parameter : .
The pdf of a Rayleigh distribution of parameter is

if

if .
(2)

The natural logarithm of follows what we call
(see Def. 1) a Log-Rayleigh (LR) distribution of localization
parameter : .

Definition 1: Let denote a circular Log-Rayleigh random
variable of localization parameter : . The
pdf of this variable is given by

(3)

where refers to the circular LR pdf. This distribution is
plotted in Fig. 1.

The circular Log-Rayleigh distribution is characterized by a
typical property: all the centered moments higher than one are
independent of localization parameter . Indeed, if we let
and be two circular Log-Rayleigh random variables of lo-
calization parameters and respectively, then and

verify

(4)

This means that each distribution is deduced from the other with
a translation (see Fig. 1).

Moreover,
• the mean (the only moment which depends on the lo-

calization parameter) is equal to

(5)

where is the Euler constant defined by

(6)

• using the Euler–Mascheroni formula

(7)

we derive the variance

(8)

Note that, since is a zero-mean circular complex Gaussian
random variable, the square of its module, , is related to a
chi-square distribution with two degrees of freedom: [12],
which is a special case of the gamma distribution:
[12]. Thus, , the natural logarithm of , is related to
a log-gamma law [13]. Finally, the law of , the log-modulus
of , can also be deduced from the log-gamma distribution by
a change of variable.

III. CONSEQUENCES OF NONCIRCULARITY

Until now, we have considered the case of a circular complex
Gaussian random variable. However, in some cases, DFT co-
efficients can be noncircular, as illustrated in Fig. 3, where we
can see that the real and imaginary parts of some of the plotted
DFT coefficients are correlated. This may be due to several fac-
tors, notably the fact that the signal is locally quasi-stationary
and not strictly stationary. Therefore, in this section, we study
the consequences of the noncircularity of a zero-mean Gaussian
complex random variable on the pdf of its log-modulus. We then
estimate the closest circular LR law to the noncircular LR law
according to the Kullback–Leibler divergence. To the best of
our knowledge, this specific point has never been reported in
the literature. This point will be useful in validating the general
model proposed in Section II, for the case in which the DFT co-
efficients are not strictly circular, but close to circular.

The second order moments of a zero-mean complex random
variable are the covariance ( denotes the
complex conjugate) and the pseudocovariance
(see [9], [10] where those moments are defined for the more



798 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 3, MARCH 2007

Fig. 2. Consequences of noncircularity. (a) � = �0:4 and � = 0:8, the dashed line represents the noncircular LR pdf (12) and the solid line the optimal circular
Log-Rayleigh pdf of the localization parameter given by (17). (b) Kullback–Leibler divergence between the noncircular LR pdf and the optimal circular LR one
as a function of � and �.

general multi-dimensional case). Thus, in the scalar case, we
have

(9)

and

(10)

where , is the correlation coefficient between the real
and imaginary part of , and and are the variances
of the real and imaginary parts of , respectively.

In the circular case, the pseudocovariance is null ,
which means that both and . Thus, the
noncircularity can be due to different covariances for real and
imaginary parts and/or to some correlation between real and
imaginary parts. For simplification, we denote (9),
and we introduce such that

(11)

In this case, we can show (see Appendix I) that the pdf of the
noncircular LR random variable is equal to

(12)

where is the pdf of a circular Log-Rayleigh random
variable of localization parameter given by (3), and

(13)

where is the modified Bessel function of the first kind:
. Note that in this expres-

sion, the pdf of a noncircular LR random variable is expressed as
the product of a circular LR distribution whose localization pa-
rameter depends only on the covariance and a correction term

, which depends on the covariance and the pseudo-
covariance .

Although much more complicated, this noncircular distribu-
tion is very close to a circular Log-Rayleigh distribution if and

are small compared to 1 (see Fig. 2). Therefore, for this
case, we again propose to model this noncircular LR pdf by a
circular LR distribution that depends on a localization
parameter : . This new localization parameter is
estimated so that the two pdfs are as close as possible according
to the following criterion:

(14)

where is the Kullback–Leibler divergence1

(15)

In the following, the circular Log-Rayleigh distribution of op-
timal localization parameter is referred to as the optimal cir-
cular Log-Rayleigh distribution.

It is easy to show that

(16)

which is equal to (see Appendix II)

(17)

Note that since is the sum of the variances of the real and
imaginary parts of , the optimal localization parameter de-
pends only on [see (9) and (11)]. Thus, this localization param-
eter defines a new circular LR random variable derived from
the noncircular LR random variable by dropping the correction
term. This implies that the new circular LR random variable can
be considered as the log-modulus of a circular Gaussian random
variable derived from a noncircular Gaussian random variable
by cancelling the pseudocovariance and keeping the covariance.
Schreier and Scharf obtain a similar result from derivations con-
ducted directly on the Gaussian complex random variable in
the vectorial case [11]. However, we derived our result on the
log-modulus of the Gaussian random variable and we did so in-
directly.

1Other criteria (e.g., MSE) could be used, but they lead to a more complicated
derivation of optimal the localization parameter (without an analytic formula).
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IV. APPLICATION TO SPEECH PROCESSING

In this section, we apply the theoretical derivations to a real
speech corpus. We first present some results on the modeling of
log-modulus DFT coefficients of a single isolated speech sound
by a single LR kernel, and we then present some results obtained
by the modeling of the log-modulus DFT coefficients of the en-
tire corpus by a mixture of LR kernels.

A. Data

The corpus consists of nonsense utterances of the structure
V1-C-V2-C-V1, where V1 and V2 are vowels from the set

and C is a plosive consonant from the set
or no plosive [#]. The 112 sequences

were pronounced twice by a male native French speaker: the
first series was used for training the model coefficients and the
second series for the test. The signals were sampled at 16 kHz
and the DFT coefficients were calculated with a Hamming
analysis window of 320 lags (20 ms) with 0.75 overlap. About
48 s of speech were used, representing a total of about 9600
spectral vectors , where is the
vector of the short-term Fourier transform coefficients over
bins. This corpus was used because it allowed us to efficiently
test both the modeling of a single isolated sound and that of a
controled number of sounds.

B. Modeling of a Single Speech Sound

First, all frames identified as a section of the vowel [a] (Fig. 3)
were extracted from the database. About 4 s were used (repre-
senting a total of about 800 spectral vectors) to calculate the
optimal localization parameter (17) [Fig. 3(a)] as well as and

, for each frequency bin [Fig. 3(b)]. The localization param-
eter can be interpreted as the spectral envelope of the sound. We
can see in Fig. 3(c) that the estimated Log-Rayleigh distribu-
tion (solid line) closely follows the empirical distribution (esti-
mated by a histogram) of the vowel coefficients. In contrast, at
least two Gaussian kernels would be needed to correctly model
the same data because of the pdf asymmetry [Fig. 3(c)]. Addi-
tionally, accurately modeling the LR pdf itself with Gaussian
mixtures would require more Gaussian kernels (typically four
kernels in our experiments).

C. Modeling of Continuous Speech

In this subsection, we characterize the overall corpus by a
model that is expected to efficiently exploit the structure of
speech: a mixture of optimal Log-Rayleigh kernels (LRMM).
In this case, each kernel is expected to model a single given
speech sound among all possible speech sounds. Moreover,
each kernel is multidimensional with localization
matrix : each kernel gathers all frequency bins. Since
the length of the analysis window is 20 ms, the speech signal
is assumed to be quasi-stationary. The DFT coefficients are
thus assumed to be uncorrelated (and thus independent) at
different frequency bins. This leads us to choose a diagonal
localization matrix for each kernel, with each diagonal entry

Fig. 3. Vowel [a]. (a) Logarithm of the optimal localization parameters versus
the frequency, the dashed-dotted line corresponds to frequency bin 68. (b) Pa-
rameters � and � versus frequency. (c) Histogram at frequency bin 68, the op-
timal Log-Rayleigh distribution (solid line), the approximation by two Gaussian
kernels (dashed line) and the two corresponding Gaussian kernels (dotted line).

corresponding to a given frequency bin. Thus, the multikernel
model is given by

(18)
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where and are the weight and the pdf localization param-
eter of the th Log-Rayleigh kernel, respectively.2 The set of pa-
rameters is estimated using the EM algorithm [14],
where the initialization is done by vector quantization [15].

We compare the adequacy between the data and the model
using the test [12]: at each frequency bin , we compute

(19)

where is the number of data points, the number of classes
(i.e., bins) of the histogram used to calculate the empirical dis-
tribution , and the empirical and theoretical proba-
bilities of the th class, respectively. We then count the number
of frequency bins for which (19) is smaller than a 5% confidence
threshold defined by . To demonstrate the advan-
tage of the LRMM over the GMM, we compare the results ob-
tained with the two models (Fig. 4). We see [Fig. 4(a) and (b)]
that when the number of kernels increases, the adequacy be-
tween the models and the data increases faster for the LRMM
case than for the GMM case. Indeed, (19) decreases faster to-
ward zero for the LRMM than for the GMM, as the number of
kernel increases.

Fig. 4(c) shows that, for the same number of kernels ,
the LRMM provides better adequacy than the GMM, except
when is less than 16. Indeed, since the corpus contains
about ten phonemes, a minimum of ten kernels3 is necessary
for the LRMM. Alternately, for the same modeling accuracy,
the LRMM requires a significantly smaller number of kernels
than the GMM. For instance, the results obtained with 64
Gaussian kernels are the same as the results obtained with 16
Log-Rayleigh kernels. As mentioned above, this is because sev-
eral Gaussian kernels are needed to correctly model the data set
modeled by a single Log-Rayleigh kernel: on average, a ratio
of the order of four in the multikernel case is coherent with the
observations in the single kernel case (see the above-mentioned
example of vowel [a]). Finally, since a Gaussian kernel requires
three parameters (weight, mean vector, covariance matrix), and
an LR kernel requires only two parameters (weight, localization
matrix), the LRMM provides a much sparser model than the
GMM for a given fitting performance.

V. CONCLUSION

In this paper, we have characterized the distribution of the
logarithm of the modulus of a zero-mean Gaussian complex
random variable in both circular and noncircular cases. Al-
though the pdf is complicated in the noncircular case, it is close
to—and then can be adequately modeled by—the simpler pdf
obtained in the circular case, namely the Log-Rayleigh pdf.

2For the sake of simplicity, we note LogRay(�) the Log-Rayleigh dis-
tribution, with diagonal localization matrix � = diag( ; . . . ;  ), which
is equal to the product of the monodimensional Log-Rayleigh distributions:
LogRay(�) = LogRay( ).

3Actually, more than ten kernels are necessary since the corpus also contains
transitions between phonemes. These transitions may provide additional speech
sounds to be modeled, which explains that about 30 kernels are necessary to
achieve a score of 90% in � -test.

Fig. 4. Application to real speech signals. (a) [resp. (b)] shows the logarithm of
(19) (sorted by ascending order) at each frequency bin for GMM (resp. LRMM).
The vertical lines show the number of components which verify the � test.
Several number of kernels were tested: 8 (dotted line), 16 (dashed-dotted line),
32 (dashed line), and 64 (solid line). (c) presents the percentage of frequency
bins which satisfy the � test versus the number of kernels for both the GMM
(dashed line) and the LRMM (solid line).

This latter pdf implies a very efficient representation of the
DFT coefficients log-modulus since it provides an optimal or a
quasi-optimal model with only one parameter, avoiding the use
of the more complicated mixture of Gaussian kernels to model
these coefficients. Experiments on speech signals provide a
good illustration of these theoretical results. To conclude, such
a characterization of pdf can be useful for many problems re-
quiring a statistical model of log-modulus spectral coefficients,
e.g., speech/audio spectral perceptual coding, enhancement,
classification, and frequency domain source separation.
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APPENDIX I
NONCIRCULAR LOG-RAYLEIGH DISTRIBUTION

In this Appendix, we derive the distribution of the log-mod-
ulus of a noncircular zero-mean complex random variable.

Let and denote the real and imaginary parts of , re-
spectively. We have

(20)

Let and denote the modulus and the phase of , respec-
tively. We have and , thus

leading to

(21)

so finally, using (20) and (21)

with defined by (13).

APPENDIX II
OPTIMAL LOCALIZATION PARAMETER

In this Appendix, we detail the derivation of the optimal pa-
rameter defined by (14).

From the minimization of the Kullback–Leibler divergence
, where

it is easy to show that the optimal localization parameter is
given by

Substituting by (12), one can show that

with

(22)

where

(23)

and

(24)

Using [16, formula (14.361)], one can show that

(25)

and using [16, formula (14.360)]

(26)

Thus, substituting (25) and (26) in (22), we obtain

(27)

By substituting (23) and (24) in (27), one can see that is
equal to 1.
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