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ABSTRACT

In a previous work, we proposed an Informed Source Separation sys-
tem based on Wiener filtering for active listening of music from un-
compressed (16-bit PCM) multichannel mix signals. In the present
work, the system is improved to work with (MPEG-2 AAC) com-
pressed mix signals: quantization noise is estimated from the AAC
bitstream at the decoder and explicitly taken into account in the
source separation process. Also a direct MDCT-to-STFT transform
is used to optimize the computational efficiency of the process in the
STFT domain from AAC-decoded MDCT coefficients.

Index Terms— Informed Source Separation, Wiener Filter, De-
noising, NTF, AAC

1. INTRODUCTION

Active listening of music is a topic of both artistic and technological
interest that consists in modifying the elements and structure of the
music signal during the listening experience. It involves online ad-
vanced remixing processes such as generalized karaoke (the ability
to mute any musical element, hence not limited to voice), respa-
tialization, or application of instrument-specific audio effects (e.g.,
adding distortion to an acoustic guitar). To enable active listening
from compliant 2-channel stereo mix signals, recent technologies
have been proposed. In Spatial Audio Object Coding (SAOC) [1],
standardized by MPEG, the stereo mix signal is enriched with spa-
tial coding parameters at the coder stage, that enable to decode the
multitrack source signals from the downmix signal at the decoder
stage. Recently, this idea was revisited from the source separa-
tion [2] point of view (see [3] and references therein). In particu-
lar, a Wiener-based Informed Source Separation (ISS) system was
proposed in [4], where the side-information is composed of power
spectral density (PSD) models of the source signals plus the mixing
matrix, and separating Wiener filters are used at the decoder.

The new contributions of this paper with respect to previous
works are threefold. First and more importantly, although ISS (and
SAOC) purpose is to reduce the overall bitrate compared to multi-
track coding (in addition to 2-channel stereo compliance with usual
formats), the effects of compressing the mix signal on source signals
decoding/separation is not being taken into account in those state-of-
the-art methods, leading to suboptimal performance. In the present
paper, we present an improved version of the Wiener-based ISS sys-
tem, where the mix signal is compressed, for instance using MPEG-2
Advanced Audio Coding (AAC [5]), and the resulting quantization
noise is explicitly accounted for in the separation process. This en-
ables to significantly reduce the distortion in the separated source
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signals. Moreover, we propose to estimate this quantization noise at
the decoder, so that no additional side-information needs to be trans-
mitted. Second, we use here the spatial Wiener filtering scheme,
as recently introduced in the ISS context in [6], which permits to
fully benefit from the spatial dispersion of the sources within the
mix to improve separation. And finally, the recently developed direct
MDCT-to-STFT conversion technique of [7] is used to enable fast
and efficient STFT-domain processing directly from AAC-decoded
MDCT coefficients.

This paper is organized as follows. First, the proposed separa-
tion technique and system are described in Section 2. Then explicit
handling of the AAC quantization noise is presented in Section 3.
The improved system is shown in Section 4 to provide significantly
better quality compared to when the quantization noise is not taken
into account, for identical side-information rate.

2. SYSTEM OVERVIEW

2.1. Spatial Wiener Filtering

The core source separation module of the proposed ISS system is
based on the so-called spatial Wiener filter, or multichannel MMSE
linear estimator [6, 2]. Let us assume that we have a J-source signals
vector s[n] =

⇥

s1[n] s2[n] · · · sJ [n]
⇤> (n for time sample index,

> for transposition), which is downmixed (I < J) into a I-channel
vector x[n] =

⇥

x1[n] x2[n] · · · xI [n]
⇤> using linear time-invariant

(LTI) filters, i.e. underdetermined convolutive mixing. It is classi-
cal to process the separation problem, i.e. recovering of s from x,
in the frequency domain, where the mixture may be approximated
as instantaneous at each frequency f [8], using Short-Time Fourier
Transform (STFT) (t denotes the frame index):

X(f, t) = A(f)S(f, t) +N(f, t), (1)

where X(f, t) = STFT
�

x[n]

 

, S(f, t) = STFT
�

s[n]

 

, A(f) is
the I ⇥ J frequency-dependent downmix matrix, and N(f, t) is the
noise. Here, the sources are assumed to be independent zero-mean
complex Gaussian processes, i.e., S(f, t) ⇠ N (0,RSS(f, t)),
where RSS(f, t), the J ⇥ J covariance matrix of the sources, is
diagonal and the j-th diagonal term is the PSD of source j at TF
bin (f, t). The noise is also assumed to be Gaussian: N(f, t) ⇠
N (0,RNN (f, t)). Let us denote RSX(f, t) ⌘ RSS(f, t)A(f)

>.
Under the above parameters and given the mixture X(f, t), we have
the MMSE estimator bS(f, t) of the source signals vector:

b

S(f, t) = W(f, t)X(f, t), (2)

with

W(f, t) ⌘ RSX(f, t)[A(f)RSX(f, t) +RNN (f, t)]

�1
. (3)
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Fig. 1. Functional representation of the spatial Wiener filter based ISS system: encoder (left) and decoder (right). Here M ! F is for
MDCT-to-STFT conversion, see Section 3.3.

2.2. ISS encoder and decoder

The ISS encoder based on the spatial Wiener filter is schematized in
Fig. 1-left. The inputs to the encoder are the source signals sj [n]

which are both converted to STFT coefficients Sj(f, t) and (convo-
lutively) downmixed into x[n]. A(f) is quantized to be transmitted
to the decoder as part of the side-information. The AAC compres-
sion stage for x[n] is addressed in Section 3. Assuming the sources
are locally stationary Gaussian processes, the maximum likelihood
estimator of PSD is spectrogram |Sj(f, t)|2 [9], so that we rede-
fine RSS(f, t) = diag {|S1(f, t)|2, |S2(f, t)|2, . . . , |SJ(f, t)|2}.
This covariance matrix also has to be transmitted to the decoder for
Wiener filter construction. However, spectrograms generally occupy
a very large amount of side-information, so they must be substan-
tially compressed. This is done using Non-negative Tensor Factor-
ization (NTF) modeling of the spectrograms, arranged as 3D tensors
(frequency ⇥ time ⇥ source), as in [4, 6], and subsequent NTF pa-
rameters quantization.

The ISS decoder side is shown in Fig. 1-right. The NTF models
of spectrograms and mixing matrix are decoded from the side-info
to provide bRSS(f, t) and bA(f) from which the Wiener filter (3)
is built. Filtered source coefficients bS1(f, t),

b

S2(f, t), . . . ,
b

SJ(f, t)

are then obtained from mix coefficients b

X1(f, t), . . . ,
b

XI(f, t), and
synthesized to time-domain signals ŝ1[n], ŝ2[n], . . . , ŝJ [n] using in-
verse STFT with overlap-add. Other processes are described in the
next sections.

3. NOISE VARIANCE ESTIMATION FROM AAC
BITSTREAM

In our previous works [4, 6], 16-bit PCM mix signal x was pro-
cessed at the coder and decoder. Hence it was considered as unquan-
tized and the noise N(f, t) in (1) was assumed to be null1. In the
present work, lossy MPEG-2 AAC compression [5] is applied on the
mix signal, introducing compression noise (mainly due to quantiza-
tion) at each TF bin. Therefore, we propose to specifically model the
degradation of the mixture due to compression as the additive noise
N(f, t) in (1), independent from the sources. Doing so, we allow
for the separation procedure (3) to take it into account to better re-
cover the sources. This noise N(f, t) may be estimated simply at the
coder as the difference between original and compressed mixture,
and its PSD may be encoded and transmitted to the decoder using

1Actually, N(f, t) in (1) can be used to model the mixing model error
(resulting from STFT of convolution into product) when mixing filters are
long, but this is very different and independent from compression noise.

the NTF model. However, this would increase the side-information
bitrate. Instead, we show below how the noise variance can be esti-
mated directly from AAC bitstream.

3.1. Nonlinear Quantization Noise

In AAC, compression is based on the quantization of Modified Dis-
crete Cosine Transform (MDCT) [10] coefficients. A coefficient
Y (k) on the k-th frequency bin (frame index is omitted here for
clarity) within subband b is quantized to an integer value by scaling,
3
4 -power compression, and rounding:

¯

Y (k) = sgn (Y (k))

�

(|Y (k)|/2
1
4 s(b)

)

3
4
+ C

⌫

, (4)

where C ⌘ 1�2

�3/4 and s(b) is the scalefactor for subband b. Now
suppose ¯

Y (k) = q is positive. Then by (4), any MDCT coefficient
Y (k) 2 2

1
4 s(b)

[Tq, Tq+1) will be quantized to q, where Tq ⌘ (q �
C)

4/3 is the lower boundary of the q-th quantization interval. A
similar result can be derived for q  0:

Y (k) 2 2

1
4 s(b) ⇥

8

>

<

>

:

(�T|q|+1,�T|q|], q < 0,

(�T1, T1), q = 0,

[ Tq, Tq+1), q > 0.

(5)

Due to the 3
4 -power compression, this quantization is nonlinear and

the intervals have increasing lengths as |q| increases. Furthermore,
assuming MDCT coefficients are uniformly distributed on each in-
terval, the noise variance is

�

2
(k) =

(

1
12 (T|q|+1 � T|q|)

2
2

1
2 s(b)

, q 6= 0,

1
12 (2T1)

2
2

1
2 s(b)

, q = 0.

(6)

Thus, after retrieving quantization index q and scalefactor s(b) from
an AAC bitstream, (6) can be used at the decoder to estimate the
variance of the quantization noise for a single channel2.

3.2. Stereo Coding Noise

In AAC, each channel is either encoded independently or paired with
another channel for stereo coding. In the latter case, both redun-
dancy and irrelevancy between the paired channels (left and right)

2Another tool, called Temporal Noise Shaping (TNS [11]), changes noise
distribution. We ignore this tool here for simplicity. Experiments show this
neglect does not noticeably impair sound quality of separated sources.
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are exploited to save bitrate using either the Mid/Side (M/S) [12] or
Intensity Stereo (IS) [13] coding tools. We shall consider these two
tools separately in the following.

M/S coding is noiseless but changes the noise distribution. Sup-
pose that M/S is applied at bin k. The coefficients to be quantized
are the middle and side of the MDCT coefficients YL(k) and YR(k)

from left and right channels: Y0(k) =

1
2 (YL(k) + YR(k)) and

Y1(k) =

1
2 (YL(k) � YR(k)). The middle Y0(k) and side Y1(k)

are quantized by (4) and their quantization noises follow (6). As-
suming the noises are independent, then noise variances of the left
and right channels are

�

2
L(k) = �

2
R(k) = �

2
0(k) + �

2
1(k), (7)

in which �

2
0(k) and �

2
1(k) are the noise variances determined by (6)

for Y0(k) and Y1(k), respectively.
Conversely, IS coding is noisy, introducing noise while chang-

ing noise distribution. Let YS(k) = YL(k) + YR(k) be the sum
channel and denote by IL/S(b) and IL/R(b) the ratios of intensities
(square root of total energy) between the left and the sum channels,
and between the left and the right channels, respectively, for subband
b. In IS encoding, a pair of new left and right channels are built from
the sum channel and the intensity ratios:

Yl(k) = YS(k)IL/S(b), Yr(k) = Yl(k)/IL/R(b). (8)

Suppose within subband b, YL(k) and YR(k) are sufficiently corre-
lated such that YL(k) ⇡ Yl(k) and YR(k) ⇡ Yr(k) (roughly the
point of applying IS). Then, only the new left Yl(k) for each bin k

and the intensity ratio IL/R(b) for the whole subband b are needed
for the decoder, substantially saving bitrate. The new left Yl(k) will
be quantized by (4) with noise variance �

2
l (k) determined by (6).

The intensity ratio IL/R(b) will also be quantized to the so called IS
position p(b) in the logarithmic domain:

p(b) =

⌅

4 log2(IL/R) +
1
2

⇧

= 4 log2(IL/R) + �p(b), (9)

in which �p(b) is the rounding error assumed to be uniformly dis-
tributed on (�0.5, 0.5]. Thus the L/R noise variances can be esti-
mated as

(

�

2
L(k) ⇡ �

2
l (k),

�

2
R(k) ⇡ 2

�p(b)/2
�

2
(k) +B2

�p(b)/2
b

Y

2
l (k),

(10)

in which B = 0.0037 is the variance of 2�p(b), and b

Yl(k) is Yl(k)

after quantization and dequantization.

3.3. MDCT-to-STFT Conversion

Decoding of AAC bitstream is done in the MDCT domain. But the
spatial Wiener filter building and filtering process is to be carried out
in the STFT domain, where time-domain convolutive mixing can be
approximated as instantaneous mixing [14]. Therefore, we propose
to use the direct MDCT-to-STFT conversion technique of [7] to con-
vert both the estimated quantization noise variances and the mix sig-
nal coefficients. Accordingly, the AAC decoder is modified such that
it outputs the quantized MDCT coefficients ˆ

YL/R(f, t) and other
AAC parameters necessary for estimation and conversion (quantiza-
tion indexes, scalefactors, stereo parameters, window shapes and se-
quences), and skip the MDCT-to-time signal conversion. This saves
computational complexity by avoiding full AAC decoding and STFT
analysis.

In [7], STFT coefficient X(f, t) for frame t is obtained from
MDCT coefficients of the previous, current and next frames using a
linear FIR filtering form:

X(f, t) =�(f)

M�1
X

k=0

n

(�1)

k⇥
h0(f�k�1) + h0(f+k)

⇤

Y (k, t)

+

⇥

h�1(f�k�1) + h�1(f+k)

⇤

Y (k, t�1)

+

⇥

h+1(f�k�1) + h+1(f+k)

⇤

Y (k, t+1)

o

(11)

for f = 0, 1, . . . ,M , where M is the MDCT coefficients vector
size, equal to half the STFT framesize, �(f) = exp[� ⇡

2M (1+M)k]

is a pure phase function, and h0(f), h�1(f), and h+1(f) are filter
taps depending on the MDCT and STFT windows. Assuming that
the quantization noises are independent between different frames,
frequencies and channels, the noise variance in the STFT domain is

�

2
(f, t) =

M�1
X

k=0

n

�

�

h0(f�k�1) + h0(f+k)

�

�

2
�

2
Y (k, t)

+

�

�

h�1(f�k�1) + h�1(f+k)

�

�

2
�

2
Y (k, t�1)

+

�

�

h+1(f�k�1) + h+1(f+k)

�

�

2
�

2
Y (k, t+1)

o

. (12)

It is also shown in [7] that h0(f), h�1(f), and h+1(f) all rapidly
tend to 0 as |f | increases. For example, with M = 1024, the KBD
window [15] for the MDCT and the Hanning window for the STFT,
keeping a total of only 20 taps in (11) leads to a conversion SNR
higher than 60 dB. Therefore, we use a similar setup in the experi-
ments.

4. EXPERIMENTS

4.1. Implementation and Experiment Settings

The proposed ISS system has been implemented in Matlab. The
AAC encoder, however, is a binary one from Nero3 known for its
high audio coding quality. The AAC decoder is the open source4

FAAD2 in C, which is modified as mentioned above.
A set of 14 musical excerpts (10s long, sampled at 44.1 kHz, 5

to 10 source signals) from the Quaero database5 is used. For each
excerpt, sources are downmixed to 2-channel stereo using Head Re-
lated Impulse Responses (HRIR) filters collected from the CIPIC
database [16] (with order 200). The corresponding mixing matrix
A(f) is transmitted to the decoder as single-precision floating-point
numbers. Since A(f) does not depend on the length of an excerpt,
the corresponding bitrate is assumed to be negligible for a complete
song, and is not accounted for here.

For each source and each frame, a STFT spectrum may come
from one long window size of 2048 or eight short windows size of
256. In the latter case, STFT coefficients of the short windows are
intertwined from low to high frequency. To save bitrate, a cutoff fre-
quency is set to 16 kHz. The resulting tensor of spectrograms are
compressed by NTF whose parameters are linearly quantized (usu-
ally 8 bits) in the logarithmic domain [17]. NTF compression ratio is
mainly controlled by the number of NTF components [4], and values
of 5, 10, 20, 30, 50, are tested here. The quantized NTF parameters
are entropy coded before transmitting to the decoder, using here the
data compression utility of the ’save’ Matlab function with option

3
http://www.nero.com/enu/technologies-aac-codec.html

4
http://www.audiocoding.com/faad2.html

5
http://www.quaero.org
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Fig. 2. Rate-SDR (top) and Rate-PSM (bottom) curves for the proposed Wiener-based ISS system.

’-V7’ . Resulting NTF side-info bitrate per source ranges from 0.3

to 10 kbps.
The AAC bitrates that were tested for encoding the mix signal

are 32, 96, 128, 192, 256 kbps, covering the most common bitrates
in AAC encoding for stereo (low complexity profile).

4.2. Results and Discussion

We used two metrics to measure separation performance: Perceptual
Similarity Measure (PSM) of PEMO-Q [18], and Signal to Distor-
tion Ratio (SDR) computed using the BSS Eval toolbox [19]. PSM
provides an assessment of perceived quality of separated sources
against the original sources, ranging from 0 (worst) to 1 (best). Since
the performance heavily depends on excerpts, and to compare per-
formance across all the test excerpts, each excerpt is finally mea-
sured by relative scores: �PSM ⌘ PSM(oracle method) � PSM(test
method); �SDR ⌘ SDR(oracle method) � SDR(test method). The
so called oracle method gives the highest possible performance us-
ing the spatial Wiener filter: Original spectrograms (instead of NTF
compressed ones) are used to construct the separation filter and orig-
inal mixtures (instead of AAC compressed ones) are input to the fil-
ter.

To study the effectiveness of quantization noise variance estima-
tion and noise reduction in the ISS process, we run four configura-
tions (all with NTF-compressed spectrograms and AAC compressed
mixtures): (a) no noise reduction; (b) NTF coding of noise spectro-
grams + noise reduction; (c) noise variance estimation from AAC
bitstream + noise reduction; (d) exact noise variance + noise reduc-
tion. The resulting �SDR and �PSM scores for all the 14 excerpts
are smoothed to a single rate-quality curve by the LOWESS method
[20] and then plotted against side-info rate in Fig. 2, for the five
tested AAC bitrates. Each curve is then understood as a smoothing of
5⇥ 14 points (#NTF compression settings ⇥ #excerpts). Across the
14 excerpts, the mean PSM score of the oracle method is 0.882 (min
0.837, max 0.932), the mean SDR of the oracle method is 11.12 dB
(min 7.10 dB, max 17.94 dB).

It can be seen from Fig. 2 that under all the tested AAC and side-
info bitrates, configuration (c) performs better than configuration (a):
increase of SDR upto 2.1 dB and increase of PSM upto 0.08,which
represents substantial sound quality improvement, also confirmed by
informal listening test. Quality improvement due to noise reduction
generally decreases as AAC bitrate increases. This is because at
higher bitrates, compression noise becomes smaller. Nevertheless,

upto 128 kbps, the improvement in term of PSM is still significant
(0.07). We also observed with noise reduction (configuration (c)),
using bitrates higher than 128 kbps brings very limited quality gain.
Thus we consider 128 kbps a sweet spot bitrate for AAC coding of
the mixture under configuration (c).

Configuration (b) also improves quality over configuration (a),
however, at the cost higher sideinfo rate, up to 4 kbps per source
for the same improvement of configuration (c). Configuration (d)
gives slightly better PSM scores (maximally 0.008 higher) and SDRs
(maximally 0.9 dB higher) than configuration (c). The differences
are generally imperceptible and shrink to 0 as AAC bitrate increases.
This indicates that the estimated noise is accurate enough for the pur-
pose of noise reduction. Obviously, configuration (d) is not realistic
since exact noise is not available at the decoder in a practical system.
Therefore, configuration (c) is always preferred.

This ISS system is efficient. Implemented mainly in Matlab (ex-
cluding AAC encoding and decoding), the system runs 1

3X to 1
2X

real-time at the encoder side and 6X to 10X real-time at the decoder
side (CPU 3.0 GHz). If implemented in C or other compiled lan-
guages, the system can be faster.

5. CONCLUSION

In this paper, we have proposed an informed source separation sys-
tem which permits to handle mixtures compressed with standard
audio coders. This was done through spatial Wiener filtering with
compression noise reduction. Moreover, we showed that for the
noise reduction, all the needed parameters, i.e., noise variance at
each TF bin, can be estimated directly from the compressed mix-
ture bitstream, without transmission of additional side-info. A large
evaluation demonstrated that by taking in account of compression
noise, the proposed system significantly increases perceptual qual-
ity of separated audio sources, at no cost of side-info bitrate, and
the estimated noise variances provided almost identical separation
quality as the exact noise variance. In the further, we shall drop
the assumption that the compression noise is independent from the
sources and consider not just compression noise but modeling errors:
for example, long convolutive mixing (up to seconds) and nonlin-
ear/nonstationary mixing, using the recently proposed coding-based
informed source separation technique.
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