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This paper presents a quantitative and comprehensive study of the lip movements of a given speaker
in different speech/nonspeech contexts, with a particular focus on silences (i.e., when no sound is
produced by the speaker). The aim is to characterize the relationship between “lip activity” and
“speech activity” and then to use visual speech information as a voice activity detector (VAD). To
this aim, an original audiovisual corpus was recorded with two speakers involved in a face-to-face
spontaneous dialog, although being in separate rooms. Each speaker communicated with the other
using a microphone, a camera, a screen, and headphones. This system was used to capture separate
audio stimuli for each speaker and to synchronously monitor the speaker’s lip movements. A
comprehensive analysis was carried out on the lip shapes and lip movements in either silence or
nonsilence (i.e., speech+nonspeech audible events). A single visual parameter, defined to
characterize the lip movements, was shown to be efficient for the detection of silence sections. This
results in a visual VAD that can be used in any kind of environment noise, including intricate and
highly nonstationary noises, e.g., multiple and/or moving noise sources or competing speech

signals. © 2009 Acoustical Society of America. [DOI: 10.1121/1.3050257]

PACS number(s): 43.72.Ar, 43.72.Kb [KWG]

. INTRODUCTION
A. Context: Audiovisual speech processing

Speech is a bimodal signal, both acoustic and visual.
Many studies have shown that the visual modality improves
the intelligibility of speech in noise when switching from the
“audio only” condition to the “audio+speaker’s face” condi-
tion (Sumby and Pollack, 1954; Erber, 1975; Benoit et al.,
1994; Robert-Ribes et al., 1998). In parallel, McGurk and
McDonald (1976) demonstrated that humans can even inte-
grate conflicting audio and visual speech stimuli to perceive
a “chimeric” speech stimulus. More recently, Grant and Seitz
(2000) showed that viewing the speaker’s face also improves
the detection of speech in noise. Such results have been con-
firmed by Kim and Davis (2004) and Bernstein ez al. (2004).
More specifically, visual information helps pertinent acoustic
features to be better extracted, i.e., “seeing to hear better,”
providing a different and complementary contribution to lip-
reading (Schwartz et al., 2004). Additionally, visual speech
information has been shown to irresistibly attract speaker’s
localization (Bertelson, 1999).

Concerning the nature of visual speech information, two
major questions have been addressed. First, the oral region
including the lips and jaw seems to be the major contributor
to visual speech perception (see, e.g., Summerfield, 1979;
Benoit er al., 1996). Thomas and Jordan (2004) actually
showed that the intelligibility of oral-movement display was
more or less the same as that of whole-face-movement dis-
play. However, extra-oral movements also influence identifi-
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cation of visual and audiovisual speech, mostly due to the
strong correlation between oral and extra-oral movements
(Munhall and Vatikiotis-Bateson, 1998). Orofacial configura-
tions can be basically characterized in terms of lip contours
and specifically by the parameters of inner lip height, inner
lip width, and lip protrusion (Summerfield, 1979; Abry and
Bog, 1986; Benoit et al., 1992, 1996). Second, the question
of static versus dynamic processing of facial configurations
has been largely discussed. Studies using pointlike displays,
which remove fine spatial information, showed that move-
ment seems to be crucial in the perceptual processing of
visual speech in both noisy configurations (Rosenblum ez al.,
1996) and conflicting McGurk stimuli (Rosenblum and
Saldana, 1996). This led Munhall et al. (1996) to suggest that
listeners might use the time-varying properties of visual
speech for perceptual grouping and phonetic perception.
Neurophysiological data seem to confirm the specific role of
the dynamic processing of visual speech (Calvert and Camp-
bell, 2003; Munhall er al., 2002). This is compatible with
Summerfield’s (1987) suggestion that one possible metric for
audiovisual integration is the pattern of changes over time in
articulation, considering that listeners are sensitive to the dy-
namics of vocal tract change. Thereafter, a number of studies
in the audiovisual speech literature have characterized the
correlation between lower-face movement and the produced
acoustic signal (Yehia er al., 1998; Barker and Berthommier,
1999; Jiang et al., 2002; Bailly and Badin, 2002; Goecke and
Millar, 2003).
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Following these considerations on the bimodal aspect of
speech, an important number of technological studies have
been undertaken in the past 20 years to integrate the visual
modality into speech processing systems. The goal is to im-
prove the performance and robustness (in noise) of different
human-to-human telecommunication systems or human-
computer interfaces. Petajan (1984) was the first to integrate
visual speech information in an automatic speech recognition
(ASR) system. Many studies followed, including recent ad-
vances going toward real-life implementations of bimodal
ASR (Potamianos er al., 2003b). Recently, audiovisual
speech processing applications also concerned video index-
ing and retrieval (Huang er al., 1999; Iyengar and Neti,
2001), audiovisual speech synthesis and talking heads (Yehia
et al., 2000; Bailly et al., 2003; Cosi et al., 2003; Gibert
et al., 2005), and audiovisual speech coding (Rao and Chen,
1996; Girin, 2004). In recent years, the visual modality has
also been exploited for speech enhancement in (background)
noise (Girin er al., 2001; Deligne et al., 2002; Potamianos
et al., 2003a) and more generally for speech source separa-
tion, i.e., for the extraction of a speech signal from complex
mixtures using several microphones for both linear instanta-
neous mixtures (Sodoyer et al., 2002, 2004) and convolutive
mixtures (Wang er al., 2005; Rivet et al., 2007a).

B. Video characterization of silence versus nonsilence
sections

Most of the time, studies addressing the characterization
of lip patterns in speech production have been carried out
in more or less controlled speech production contexts (typi-
cally “laboratory speech:” see, e.g., Abry and Bog&, 1986;
Benoit et al., 1992; Goecke and Millar, 2003; Jiang et al.,
2002; Yehia et al., 1998). Relatively poor attention has been
paid to the description and characterization of these patterns
during speech production in natural contexts, especially in
spontaneous multispeaker conversation. Moreover, in such
context, speech activity (i.e., actual speech production by a
speaker of interest) alternates with many silence sections
(i.e., sections where the speaker of interest does not produce
sounds, whereas other speakers may actually do) and also
with many nonspeech audible events such as murmurs,
grunts, laughs, respiration intakes, expirations, lip noise,
whispers, sighs, growls, and moans (Campbell, 2007). In
spite of this, even poorer attention has been paid to lip pat-
terns in silence and nonspeech contexts, although these pat-
terns may exhibit a specific behavior to be considered in both
audiovisual speech fundamental studies and technological
applications.

This paper provides an attempt to fill this gap. The rela-
tionship between a speaker’s lip movements and speech/
nonspeech activity versus silence is investigated using sig-
nals from a spontaneous dialog. For this aim, the recording
and the study of a “real-life” audiovisual corpus were
achieved and are presented in this paper. This corpus consists
of two speakers recorded in a spontaneous dialog situation
(in French) during about 40 min. It is characterized by two
properties. Firstly, it is based on a very clean audio (and, of
course, video) recording process since each speaker is lo-
cated in a separate room to completely avoid cross-speaker
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audio interferences in the recordings. Communication be-
tween the two speakers is effected using a specially designed
equipment described in Sec. II A. Secondly, the audiovisual
material is recorded in a lively dialog situation, in which
various creative contexts lead the two speakers to have a
spontaneous discussion (see also more details in Sec. 1T A).
As a result, the recorded signals include speech and silence
sections, as well as many different nonspeech audible events
such as those mentioned above. It also contains many face
expressions and movements with or without sound produc-
tion [see the related work of Macho et al. (2005)]. Using this
corpus and starting from a very simple hypothesis—the lips
of a given speaker should move when he/she talks (or pro-
duces nonspeech sounds), whereas they should not move (or
move less) when he/she does not utter sounds—the distribu-
tions of static and dynamic lip parameters are provided for
the two conditions. Those distributions show how dynamic
lip parameters can be associated with nonsilence sections
(i.e., speech+nonspeech audible events) versus silence sec-
tions. Actually, the correspondence is not straightforward.
Indeed, lip movements can occur during silence, and con-
versely speech or nonspeech oral production can occur with
still lips. However, it is shown that a single dynamic lip
parameter is more appropriate than static parameters for this
characterization and that temporal integration of the dynamic
parameter values can improve the “separability” of nonsi-
lence sections versus silence sections from lip information.

C. Application to automatic voice activity
detection

Finally, a technological application of the study is con-
sidered: the possibility of using visual information to auto-
matically detect sound production and silence sections in a
given audio channel. Such an algorithm is called a voice
activity detector (VAD), and it is generally derived from au-
dio information only. Among other applications, it can be
used to drastically improve the performance of speech
enhancement/separation techniques: silence detection, i.e.,
the detection of regions where the speaker of interest does
not produce any sound, is used to identify properties of the
noise or properties of the mixture configuration. These prop-
erties are then used to process the extraction of the speech
signal of interest when it is detected as present in the
mixture’ (see, e.g., Ephraim and Malah, 1984; Abrard and
Deville, 2003). Various types of audio VAD have been stud-
ied, and they can achieve good performance even with a low
signal-to-noise ratio (SNR) (Le Bouquin-Jeannés and Fau-
con, 1995; Sohn et al., 1999; Tanyer and Ozer, 2000;
Ramirez et al., 2005). However these techniques are based
on the analysis of the acoustic signal, and consequently their
performance depends strongly on the environment noise.
Generally the noise has to be considered as stationary or
weakly nonstationary and/or with a given power spectral
density function or probability density function. Thus, when
the noise is highly nonstationary with a low SNR (a concur-
rent speaker, for example), the audio VAD performance con-
siderably decreases. In this case, visual information could
be very useful since it is completely independent of the
acoustic environment.” For instance, in a previous study,
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De Cueto er al. (2000) used a basic visual voice activity
detector (V-VAD) for detecting a speaker’s speech activity in
front of a computer. For this, either specific lip parameters or
the average luminance of the mouth picture can be used
(Iyengar and Neti, 2001). However, those studies are limited
to the speaker’s “intent to speak,” useful for, e.g., turn-taking
detection. The methods do not provide accurate segmentation
of the content of a given speaker’s sequences. More recently,
Liu and Wang (2004) proposed a V-VAD based on Gaussian
models. One Gaussian kernel was used to model the silence/
nonspeech sections, and two kernels were used to model the
speech sections.” However, little information is reported on
the video processing, on the nature of the corpus that is used
for setting and testing the V-VAD, and even on the visual
information itself: it is not clear whether static or dynamic
information is used. Also, the size of the experimental data is
not compatible with real-life applications. The V-VAD pro-
posed in the present paper specifically addresses these last
remarks: it is based on real-life audiovisual data (and it is
tested using these data) while remaining simple (given that
lip shape parameters are available). Its efficiency is demon-
strated by a series of detection scores [receiver operating
characteristics (ROCs)]. As mentioned before, this V-VAD
can be used in a speech enhancement system or a source
separation system [see, for instance, Rivet e al. (2007b) for
a first application of V-VAD to the speech source separation
problem].

This paper is organized as follows. Section II presents
the method, beginning with a description of the audiovisual
corpus (Sec. II A) including the recording conditions and the
definition of the video (lip) parameters used in this study.
This is followed by the description of the audio (Sec. II B)
and video (Sec. IT C) processing applied to the data. The lip
dynamic parameter used for silence versus nonsilence char-
acterization and VAD is described in detail in Sec. II D. Sec-
tion III presents the results of the study: in Sec. III A, the
audio content of the corpus in terms of silence versus nonsi-
lence sections is presented. Then, Sec. IIl B provides an
analysis of the properties of the static and dynamic lip pa-
rameters in silence versus nonsilence sections. The perfor-
mance of the proposed V-VAD in terms of ROC curves is
given in Sec. III C. Section IV presents our conclusions.

Il. METHOD
A. Description of the audiovisual corpus

To describe and characterize lip movements in relation
with speech/sound production or nonproduction requires the
acquisition of appropriate audiovisual data. An original au-
diovisual corpus was thus recorded and processed, consisting
of a series of spontaneous dialogs between two male French
speakers (JLS and LG). To obtain a set of conversation situ-
ations as natural as possible, several tasks were suggested to
the speakers. These tasks were, e.g., different interactive
games such as answering as fast as possible to a word asso-
ciation problem, finding the solution of riddles, or playing
language games. In all these tasks, the interaction between
speakers was totally spontaneous, thus including spontane-
ous turn taking, interruptions, hesitations, and possible cross-
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FIG. 1. Tllustrations of the audiovisual corpus recording session. The two
speakers are in separate rooms. A specially designed equipment is used for
the real-time transmission of audio and video signals between the speakers,
as well as the recording of these signals.

overlapping between speakers. This led each of them to al-
ternate between natural silence sections and speech sections
of various sizes and contents. The corpus also contains many
different kinds of audible and nonaudible nonspeech events,
such as those mentioned in Sec. I.

The two speakers were placed and recorded in separate
rooms. They both had a microphone and a microcamera fixed
on a light helmet. The camera focused on the lip region to
optimize the capture of labial information. Moreover, the
speakers could hear and see each other using headphones and
a monitor screen in front of them with real-time video feed-
back. This was necessary to ensure “naturalness and convivi-
ality” during the conversation. Automatic time-code genera-
tors were used for postprocessing synchronization of all
audio/video signals. Finally, these experimental settings en-
abled the conditions of a real face-to-face conversation to be
simulated while the recorded audio signals (and, of course,
the video signals) were perfectly separate. Illustrations of the
recording session are given in Fig. 1.

The visual information extracted from this corpus con-
sists of the time trajectories of two basic geometric param-
eters characterizing the lip contour (see Sec. I A), namely,
inner width [, and inner height [, (Fig. 2). These parameters
were extracted using the ICP “face processing system”
(Lallouache, 1990), which is based on blue make-up, image
thresholding with the Chroma-Key system, and contour
tracking algorithms. The parameters were extracted every
20 ms (the video sampling frequency is 50 Hz) synchro-
nously with the acoustic signal, which is sampled at
44.1 kHz. Thus, in the following, a signal frame is defined as
a 20 ms section of acoustic signal together with a pair of lip
parameters ([,,,1;,). A spontaneous audiovisual speech corpus
for two speakers with a total duration of 40 min was finally
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FIG. 2. The lip parameters used in this study: inner lip height (/,) and inner
lip width (1,,).

obtained, representing 120 000 vectors of audiovisual frames
per speaker.

B. Audio analysis and silence/nonsilence labeling

The first phase of the corpus analysis consisted in the
labeling of the 20 ms frames (corresponding to the video
sampling) as “silence frames” or “nonsilence frames” based
on the analysis of the audio signal and the dichotomy defined
in Sec. I: Silence frames are defined as signal frames with no
sound produced at all, and nonsilence frames contain speech
and nonspeech acoustic events. It is important to note that
these definitions are given here for each speaker indepen-
dently (obviously, a silence frame for one speaker can be
simultaneous with a nonsilence frame for the other speaker
since the two tracks are recorded separately). Silence frames
are mainly present between phrase boundaries that result
from conversation turn taking and also in more or less long
pauses within one speaker’s “continuous” talk due to, e.g.,
hesitations.

The labeling into silence frames versus nonsilence
frames was made semiautomatically with the algorithm pro-
posed by Ramirez et al. (2004) and a manual verification.
This algorithm measures the long-term spectral divergence
between speech and environment noise and formulates the
decision rule by comparing the long-term spectral envelope
to the average noise spectrum, thus yielding a high discrimi-
nating decision rule and minimizing the average number of
decision errors. The decision threshold is adapted to the mea-
sured noise. In our case, the environment noise was generally
very low, and the results of this labeling were almost perfect.
A manual verification of the entire corpus was made, and a
very small number of errors were corrected. It can be noted
that very short silences corresponding to the time periods
preceding the release of unvoiced plosives are not considered
as silence frames, even though they may happen to be
slightly greater than 20 ms. This is because of the nature of
the audio detection algorithm that considers longer signal
sections. Conveniently, this is coherent with the definition
and processing of the temporal integration step that we pro-
pose in Sec. II D.

C. Video preprocessing

As mentioned before, the extracted visual information is
the time trajectory of the geometric parameters [, and [,
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characterizing the lip contour. The measures provided by the
face processing system, although very accurate, are slightly
noisy. Since a dynamic video parameter is calculated from
the derivatives of the temporal trajectories, computed by a
difference operator, which is very sensitive to noise, the lip
parameter trajectories have to be filtered (smoothed). This is
not a trivial task for such signals since labial parameter tra-
jectories are highly nonstationary signals: slow variations in
time can be followed by drastic changes, for instance, when
lips are closing. Therefore, it is difficult to remove noise in
regions with slow variations while respecting the abrupt
variations provided by natural lip movements. In our study, a
technique based on spline functions was used. A basic ver-
sion of this technique has been successfully used in a previ-
ous study using audiovisual corpora (Girin, 2004), and this
process is refined here as follows.

The basic principle of the spline smoothing consists in
locally fitting (noisy) data x(i) with a cubic spline s(z;) de-
fined as piecewise polynomial functions, where each piece is
described using a cubic polynomial. The fitting is based on
the minimization of the following criterion:

u 2
f=p> W(i)|X(j)—s(tj)|2+(l—p)J (%) dr. (1)
j=1

The first term is a weighted least-squares error between data
and the spline model [the weights are given by w(i)], and the
second term stands for the smoothness of the resulting curve.
Balancing these two constraints is made possible by setting
the parameter p at an appropriate value between 0 and 1. For
instance, p=0 produces a least-squares straight line fit to the
data, p=1 produces a cubic spline interpolate, and interme-
diate values provide a trade-off between close fit and
smoothness.

In the proposed video processing system, the nonstation-
ary property of the lip movements is taken into account by
adaptively tuning the p parameter according to the signal
dynamics. Relatively large p values must be used in time
sections with high natural variations of the lip parameters to
closely track these variations. On the contrary, relatively
small p values must be used in quasistationary regions to
adequately remove the noise. Thus the lip parameter signals
l,, and [, are segmented in time sections depending on the
value of their local (sliding) variance C(r)=1/N=N?, u(t
+n)?, with N=6 [1(t) represents a visual parameter (/,, or /),
and ¢ denotes the time index of 20 ms frames].

Each section is then fitted with a cubic spline whose
parameter p is determined as a function of this variance.
More specifically, this automatic smoothing process for each
visual parameter »(7) is the following:

e Compute for each frame the local variance C(z).

e Search sections of consecutive frames with a variance C(z)
lower than a fixed threshold C,;, defining a quasistationary
signal section. Then all other frames are considered as non-
stationary. This provides alternations of quasistationary
sections and nonstationary sections with variable lengths.

e For each section i compute the mean of C(z) over the sec-
tion,
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(T; denotes the size of the section i, and #; denotes the

_ l 1 1

C;= F E C(1r) (2) index of the first frame of the section) and compute p; so
o= that
Pmin lf 10g10 éi < )\min
Pmax ~ Pmin = pmin)\max - pmax)\min . -

pi - m loglo Ci - )\max - )\min lf )\min = loglo Ci = )\mam (3)
Pmax if 10glO 61’ > )\max

where the thresholds are fixed as

std(C)

) L =0.0001,
50 ) P

)\min = 10g10<

Nmax = 10g10(5 std(C)), pmax =0.8.

Finally, the weights w(i) of Eq. (1) are assumed to be
equal to 1 for all data. This process is applied on each pa-
rameter [,,(¢) and [,(r) to obtain the smoothed visual param-

eters 1,(¢) and ZNh(t).4 An illustration of the results obtained
with this process is given in Sec. III B.

D. A dynamic lip parameter for silence versus
nonsilence characterization and automatic silence
detection

In Sec. I A, we have briefly discussed the importance of
the lip movements (as opposed to static lip shapes) for char-
acterizing audiovisual speech. In a preliminary work, lip
movements have been shown to be good candidates to char-
acterize the opposition between silence and nonsilence ac-
tivities (Sodoyer er al., 2006), the lip shape variations being
generally smaller in silence sections. Therefore, following
this previous work, we chose to describe the lip shape move-
ments with one dynamic parameter, summing the absolute
values of the two lip parameter derivatives (Sodoyer et al.,
2006),

() = +
@ ot ot

(4)

Large 7r(f) values indicate significant lip movements and
should index nonsilence frames, while low values corre-
sponding to small lip movements (or no movement at all)
should index silence sections. Note that this dynamic param-
eter exploits the complementarity between the two lip pa-
rameters for many speech sequences (see Fig. 3). Indeed, the

variations of l~w(t) may characterize rounding movements
during which lip height may not change much, and vice
versa, the variations of l~h(t) may characterize opening/
closing movements during which lip width may not change
much. For example, in Fig. 3, the variations of the width
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parameter are larger than the variations of the height param-
eter between 278.5 and 278.8 s, and the contrary occurs be-
tween 278 and 278.2 s.

However, the situation is not so simple. On the one
hand, instantaneous large 7(¢) values can correspond to local
short lip movements in silence sections (e.g., smiles, grimac-
ing, funny faces, or changes in the lip “rest position”). This is
likely to produce silence detection errors (silence classified
as nonsilence). On the other hand, local lip stability within
speech gestures can lead to low local 7(¢) values providing
false alarms (speech classified as silence). To overcome these
problems, 7r(¢) values are then summed over time. Therefore,
the parameter p(z) is defined from the filtering of 7(r) as

p(?) = h(t) = (), (5)

with A(z) being the truncated version of a first-order low-pass
filter defined by

I, cm

ol )

!
2772 2774 2776 2778 278 2782 2784 2786 time (s)

T T
| m /\/—\ i
0 | | | I | I | | |

2772 2774 2776 277.8 278 2782 2784 2786 time (s)

T T T T

0.2 B
0.1F B

pu lakel 3ne pas pa a set PERSON

I I I ! I ! I I I

2772 2774 2776 2778 278 2782 2784 2786

time (s)
FIG. 3. Example of lip parameter trajectories: (top) inner width parameter,

(middle) inner height parameter, and (bottom) corresponding acoustic sig-
nal.
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FIG. 4. Examples of sounds present in the spontaneous speech corpus. [(a) and (b)] typical hesitation sound in French [“euh,” a long [D]; included in the
sequence in (b)]; (¢) sound of “Mmmm...;” (d) snap of the lips before speech; () respiration intake; (f) laugh.

1= —t
h(r)=—-2, exp(7>, (6)

T =0

where 7 is the time constant of the filter and 7 is the number
of integrated frames. These two parameters must be ad-
equately chosen so that the filter significantly decreases the
influence of isolated and accidental high 7(¢) values in si-
lence sections. On the other hand, the filter should not blur
small but significant movements in nonsilence sections. In
our study, for the sake of simplicity, the filter length is fixed
to T=100 samples (or 2 s), and several representative values
for 7 are tested in Sec. III B (the 7 value has the role of a
memory factor over the past 7r(f) values: the smaller the 7,
the shorter the memory).

Finally, the video-based automatic acoustic silence de-
tection is achieved for each frame by comparing p(f) to a
threshold pg, that remains to be determined. Therefore, the
problem can be formalized by the following hypotheses:

e H: The audio frame belongs to a silence section.
e H,: The audio frame belongs to a nonsilence section.

Then, the audio frame index will respect the following
rule:
Hn
p(1)S py,.

ns

()

That is, if p(r) < py, the frame ¢ is considered as silence, else
it is considered as nonsilence. This test is what is here re-
ferred to as V-VAD.
lll. QUANTITATIVE ASSESSMENT
A. Audio analysis results

The audio processing described in Sec. II B has been

applied to the corpus for each speaker (JLS and LG). As
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mentioned before, each frame (about 120 000 20 ms frames
per speaker) was automatically labeled as silence or nonsi-
lence before a systematic manual verification. To illustrate
the diversity of the corpus, Fig. 4 shows several audio se-
quences for both speakers. These examples illustrate the
need for a distinction between silence and nonsilence rather
than speech versus nonspeech. Some audio sections with a
significant amount of energy (nonsilence), e.g., Fig. 4(a) be-
tween 41.8 and 42.3 s, Fig. 4(d) between 74.7 and 74.9 s, or
Fig. 4(e), between 26.5 and 27.1 s, are not speech but rather
grunts or murmurs. Table I presents some quantitative re-
sults, derived from the analysis, which provide a character-
ization of the corpus. The number of frames labeled as si-
lence versus nonsilence is quite close for speakers JLS and
LG (51% and 58% of the total corpus, respectively). If a
“silence section” is defined as a section composed of con-
tiguous silence frames, and if a “nonsilence section” is de-
fined as a section composed of contiguous nonsilence
frames, 691 silence sections and 695 nonsilence sections are
obtained for speaker JLS, and 603 silence sections and 607
nonsilence sections are obtained for speaker LG, with re-
spective average time lengths of 1.73 and 1.93 s for the first
speaker and 2.55 and 1.85 s for the second one. The corre-
sponding standard deviations are quite high (the section
length ranges from one to more than 2000 frames, that is,
40 s), illustrating the diversity of dialog situations. Figure 5
shows the duration histograms of silence and nonsilence sec-
tions. In both cases, more than 90% of the sections have a
duration lower than 4 s.

B. Video characterization of silence versus
nonsilence

For each speaker, the labial parameters [,,(f) and [,()
were smoothed with the preprocessing described in Sec. II C.
Figure 6 shows the results of this process. It can be seen that
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TABLE I. Characteristics of the audiovisual corpus processed in this study. The frame size is 20 ms. The data
in this table are derived from the semiautomatic audio process of Ramirez er al. (2004), with manual verifica-

tion.
JLS LG
Number of silence sections 695 603
Mean duration (s) 1.73 2.55
Standard deviation of duration (s) 2.13 3.49
Minimum duration (s) 0.02 0.04
Maximum duration (s) 22.98 41.98
Number of nonsilence sections 691 607
Mean duration (s) 1.93 1.85
Standard deviation of duration (s) 2.08 1.85
Minimum duration (s) 0.02 0.02
Maximum duration (s) 16.7 12.8
N Total number of frames 119 996 119 996
N, Number of silence frames 61373 (51% of N) 69 162 (58% of N)
N, Number of nonsilence frames 58 623 (49% of N) 50 834 (42% of N)
N, Number of frames with 7, (1) and I,(¢) null 22 658 (19% of N) 26 249 (22% of N)
Number of nonsilence frames with
N, ~ ~ 5915 (10% of N,) 4908 (10% of N,,)
: 1,,(r) and [,(¢) null
Number of silence frames with
N, 16 743 (27% of N) 21341 (31% of N,)

“ 1.(1) and T,(r) null

the adaptive spline filter efficiently removes the measure-
ment noise: slowly varying sections seem correctly
smoothed, whereas fast parameter variations in highly non-
stationary sections are preserved. Figure 7 shows the distri-
bution of the resulting lip parameters for both speakers, sepa-
rately for the audio silence frames and the nonsilence frames.
First, differences between the distributions for the two speak-
ers can be noticed. These differences are simply due to in-
terindividual differences in lip shapes and gestures. Despite
these differences, the two distributions have similar shapes in
the nonsilence context [Figs. 7(a) and 7(c)]. For each
speaker, the resulting organization of the labial space is clas-
sical for speech configurations (Benoit et al., 1992; Robert-
Ribes et al., 1998), assuming that the additional nonspeech
gestures do not smear the global trends. For example, we can
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FIG. 5. Histograms of the time length (in seconds) of (top) silence sections
and (bottom) nonsilence sections for speaker LG.
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distinguish closed lip shapes [I,(t)=0 and ,(r)=0] corre-
sponding to bilabials in any vocalic context, rounded lip
shapes (e.g., [y], [ul, at around 1,()=2cm and I,(7)
=0.25 cm, and consonants in rounded contexts), spread lip
shapes (e.g., [i], at around 7,(1)=3.5 cm and ,(f)=0.6 cm,
and consonants in spread contexts), and open lip shapes (e.g.,
[a], at around 7,()=3.5 cm and 7,(f)=1 cm, see also Fig. 3,
and consonants in open contexts). Notice that closed lip
shapes represent 10% of nonsilence frames for both speakers
(see Table I). This is a typical example of the difficulty to
associate a given lip shape to a given audio class: in this
specific case, a speaker actually spoke or emitted sounds
with his mouth shut (during short periods). Now, let us con-
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FIG. 6. A lip width parameter trajectory filtered with the adaptive spline
technique. Top: raw parameter; bottom: smoothed parameter. The slowly
varying sections are efficiently smoothed, while the abrupt changes are pre-
served.
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FIG. 7. Distribution of the visual parameters for the two speakers JLS [top: (a)

and (c)] and silence frames [right: (b) and (d)].

sider the visual parameter distribution associated with audio
silence, in Figs. 7(b) and 7(d). These figures show that an
important subset of visual parameters corresponding to si-
lence frames is located in a subregion within the general set
of speech shapes displayed in Figs. 7(a) and 7(c). Besides,
another important subset of lip configurations is grouped
around the origin, which corresponds to closed lips. Table I,
however, shows that closed lip shapes represent only 27%-—
30% of the lip shapes associated with silence frames. This is
much more than the 10% proportion in nonsilence frames but
quite far from the totality of silence frames. Altogether, it
appears that closed lip shapes are present in both distribu-
tions and thus cannot be systematically associated with a
silence frame. More generally, since most values of the dis-

tribution of static visual parameters [1,,(r),1,(r)] associated
with either silence frames or nonsilence frames are located in
the same region, this information is not sufficient to charac-
terize audio silence versus nonsilence. This confirms the
need for a dynamic characterization of lip gestures.

A first illustration of this is given in Fig. 8, which pro-
vides the same plots as in Fig. 7, but for the derivatives of
the parameters (on a log scale for a better concentration of
the values). We can see that although still overlapping, the
silence and nonsilence distributions are globally much better
separated than previously, with the distributions for nonsi-
lence frames being concentrated in higher parameter values
than for silence frames. Also, the differences in the distribu-
tions between the two speakers seem to be much smaller in
this case than in the static case for both silence and nonsi-
lence frames.
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and (b)] and LG [bottom: (c) and (d)] and for the nonsilence frames [left: (a)

Figure 9 displays the distribution (here as an histogram)
of the dynamic parameter p(z) for the entire corpus respec-
tively for speaker JLS (left column) and speaker LG (right
column) and for four values of the time constant 7 corre-
sponding to the summation of one frame (that is no actual
temporal summation), five frames (100 ms integration), ten
frames (200 ms), and 100 frames (2 s). The underlying goal
is to tune the temporal integration window so that the distri-
butions of p(z) corresponding to the silence sections (the his-
togram plotted in black in Fig. 9) and to the nonsilence sec-
tions (the histogram plotted in white) are as separate as
possible. Each of these two distributions is grossly distrib-
uted among two classes: the first one is a peak on the left part
of the figure corresponding to no lip movement (including,
of course, stable closed lips), and the second one is a kernel
on the right part of the figure corresponding to the presence
of lip movements. The two kernels associated with silence
frames (plotted in black) and nonsilence frames (plotted in
white) are centered on different locations, the nonsilence ker-
nel being to the right of the silence kernel. This confirms that
nonsilence sections are generally associated with larger/
faster movements of the lips than silence sections. However,
the two kernels are strongly overlapping for the one-frame
integration, as shown in Figs. 9(a) and 9(e) since short lip
movements can occur during audio silences. Furthermore,
the distribution peak associated with stable closed lips on the
left part of these figures contains a large contribution of non-
silence frames since short stable lip shapes can occur during
speech/sound activity. An optimal temporal integration win-
dow is required, which should provide the best separation of
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these kernels, while reducing the proportion of no-movement
values associated with nonsilence frames. Too large a time
constant [as in Figs. 9(d) and 9(h)], while successfully ad-
dressing this last point, mixes the silence and nonsilence ker-
nels too much, losing the discrimination between silence and
nonsilence audio frames for moving lips. However, the his-
tograms plotted in Figs. 9(c) and 9(g) show that a suitable
time summation around five to ten frames (100—200 ms) can
largely improve the discrimination between silence and non-
silence sections (actually the optimal value is likely to be
closer to 5 than to 10): in this case, the white portion of the
peak at the origin is quite small, and the black and white
kernels are better separated than in the other configurations.
Notice finally that the dynamic parameter p(7) provides less
difference between speakers than the static labial parameters,
as was already observed in Fig. 8. This could be important
for a future multispeaker application.

C. Automatic video-based silence detection

The proposed V-VAD of Sec. I D was tested on the
120 000 frames of the corpus and for the different settings of
the time integrations: 1 frame (instantaneous case) and 5, 10,
20, and 100 frames. In each case, the results of automatic
silence frame detection using the V-VAD were compared
with the reference labels provided by the acoustic semiauto-
matic identification process presented in Sec. II B. This test
has been done for each speaker.

Figure 10 shows an example of silence detection. This
figure represents the time trajectory of the lip parameters

1.(t) and I,(r) [Figs. 10(a) and 10(b)], of their respective
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derivatives [Figs. 10(c) and 10(d)], and of the dynamic pa-
rameters 7(¢) and p(¢f) with their corresponding detection
thresholds [Figs. 10(e) and 10(f)] for about 7 s of signal
produced by speaker JLS. Figure 10(g) represents the corre-
sponding speech waveform with the detected and reference
silence regions. This figure illustrates the different possible
relations between visual and acoustic data: movement of the
lips in nonsilence (e.g., from 29.7 to 30.6 s) and in silence
(e.g., just before 31.5 s or between 32 and 32.3 s), nonmove-
ment of the lips in silence with opened lips (e.g., from
31.2to 31.4s) and closed lips (from 31.5 to 31.9 s), and
nonmovement in nonsilence (from 30.9 to 31.1s). The
V-VAD, adequately tuned (7=20), performs quite well. The
silence section of this sequence has been detected. Obvi-
ously, the V-VAD fails to avoid a false detection between 31
and 31.2 s, but this is a tough configuration: part of this
mistakenly detected section is a long nonsilence section with
still lip shape, corresponding to a drawling sentence ending.
Moreover, the V-VAD has shrunk the actual silence section.
But, on the other hand, it discards several possible false de-
tections in the speech section between 32.5 and 36 s in spite
of both closed lip sections and small movements in some
regions.

More general results are presented in Fig. 11 as ROC.
These curves represent the percentage of correct silence de-
tection (defined as the ratio between the number of detected
silence frames and the actual number of silence frames) as a
function of the percentage of false silence detection (defined
as the ratio between the number of nonsilence frames de-
tected as silence frames and the actual number of nonsilence

Sodoyer et al.: Voice activity detection based on lip movements
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frames). To obtain those curves, the threshold p, was varied
between the minimum and the maximum of p(r) (however,
when using the V-VAD, one would set py, to a fixed value,
ensuring a good trade-off between hit rate and false alarm,
possibly using the ROC curves as charts). It can be seen from
those curves that the benefit of low-pass filtering the param-
eter p(z) is significant. By decreasing the influence of short
stable periods in actual speech or sound production, it en-
ables the false silence detection ratio to be decreased signifi-
cantly. Symmetrically, by decreasing the influence of short/
small lip movements in silence, it improves the silence
detection ratio. The time integration must be set carefully.
When no time integration is performed, the false silence de-
tection scores are moderate (e.g., the point 20%—-80% for
speaker JLS and 22%-80% for speaker LG). On the con-
trary, too large a time integration (7=100 frames correspond-
ing to 2 s) dramatically decreases the silence detection ratio.
Finally, the ROC performances are significantly improved
with suitable time integration. For instance, using 7=five
frames (corresponding to 100 ms) efficiently decreases the
false silence detection ratio without decreasing the silence
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detection ratio: ROC scores of 12%—80% and 15%—80% are
obtained for speaker JLS and speaker LG, respectively.

As a complementary result, Fig. 12 shows the ROC
curves obtained when [,(r) and [,(r) are used in Eq. (4), i.e.,

unfiltered visual parameters, instead of l~w(t) and l~h(t), to
compute p(7) with Eq. (5). In this case, lower performances
are obtained, which confirms the importance of the prepro-
cessing. Moreover, the role of integration is more important
in this case because it also reduces the influence of the mea-
surement noise coming from the lip parameter extraction
system. This explains that the difference between the results
of Figs. 11 and 12 is particularly important if no integration
is performed (e.g., 37%—-80% in the no-integration case com-
pared to 17%-80% with adequate integration). The results
with temporal integration are quite close with or without
preprocessing for speaker JLS, although they are better with
the preprocessing than without the preprocessing for speaker
LG. This seems to be due to greater measurement noise for
this last speaker.
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IV. CONCLUSION

This paper had two objectives. The first one was to de-
scribe the recording and processing of an audiovisual corpus
in natural interaction situations. The second objective was to
use this corpus to characterize the visual information pro-
vided by a speaker’s lips during the different dialog phases,
with a particular focus on silence sections. An automatic
simple and efficient visual voice activity detector was de-
rived from this analysis.

Good detection rate (%)
Good detection rate (%)

400 20 40

False detection rate (%)

60 8
False detection rate (%)

FIG. 11. ROC silence detection curves for the two speakers JLS (left) and
LG (right). For each speaker, five integration durations of the visual param-
eter p(¢) are used: No integration (dotted line), 100 ms (7=5, solid line),
200 ms (7=10, dash-dot line), 400 ms (7=20, dashed line), and 2s (7
=100, small dashed line).
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FIG. 12. ROC silence detection curves for the two speakers JLS (left) and
LG (right). Here, the visual parameter p(¢) has been computed [using Eq.
(5)] with unfiltered lip parameters I, and [,, in Eq. (4). For each speaker, five
integration durations of the visual parameter p(7) are used: No integration
(dotted line), 100 ms (7=5, solid line), 200 ms (7=10, dash-dot line),
400 ms (7=20, dashed line), and 2 s (7=100, small dashed line).

Regarding the first objective, let us recall that the corpus
contains about 40 min of signal, providing a rich set of au-
diovisual data for two speakers in a realistic situation of
spontaneous dialog (in French). This corpus is dedicated to
fundamental studies in speech and language sciences, as well
as to the assessment of audiovisual speech processing sys-
tems. The design of such a corpus is not a straightforward
task. It requires specific recording equipment and protocol.
In addition, as was pointed out in this paper, the preprocess-
ing of the video data is not trivial (although it can be easily
implemented after adequate settings). This corpus can be
downloaded free of charge from http://www.icp.inpg.fr, as-
suming it is used for scientific/nonprofit purposes.

Regarding the second objective, the results show that the
instantaneous lip shapes in silence and nonsilence frames are
largely overlapping. Consequently, such straightforward in-
formation cannot be efficiently used for silence versus non-
silence automatic classification of speech sequences. In con-
trast, lip movements can provide adequate information: A
single dynamical parameter processed with suitable temporal
integration and threshold has been shown to be appropriate
for efficient silence (versus nonsilence) detection. The detec-
tion scores have shown that the resulting V-VAD (actually a
visual silence detector) can be exploitable in real speech pro-
cessing applications such as enhancement, source separation,
and recognition in noise, with, e.g., a 12% false alarm rate
versus an 80% hit rate. It is of primary importance to remem-
ber that these performance scores are completely indepen-
dent of the acoustic environment, a property that is not en-
sured by classical acoustic VAD. Note finally that in the
perspective of a “real world” implementation, the blue
make-up used for labial information extraction is not a limi-
tation of the proposed method. In a recent study (Aubrey
et al., 2007), it has been shown that the dynamic information
provided by Eq. (6) is equivalent (in terms of detection
scores) to the information provided by a retina model applied
on raw black and white images of the lip region, with natural
lips (i.e., without make-up).

Further investigations will be conducted to increase the
V-VAD performance. They could incorporate an adaptive de-
cision threshold, taking into account the image quality and/or
the interspeaker variability. Another perspective is to use
both video and audio information together to increase the

Sodoyer et al.: Voice activity detection based on lip movements



detection performance, either taking a decision from a fusion
of the decisions provided independently by audio and video
information or using both sources of information to feed a
single decision process. This would lead to the design of an
audiovisual VAD, which seems to us an important outcome
for future developments in audiovisual speech processing
systems. The V-VAD that has been presented in this study
provides a good basis for such development.

'Note that this explains why all throughout the paper we consider the
distinction between silence sections and nonsilence sections (including
speech and nonspeech audible events) rather than the distinction between
speech and nonspeech (including silence and nonspeech audible events).
Accordingly, the term voice activity is to be understood as covering speech
and nonspeech audible events (while voice inactiviry would correspond to
silence). The term VAD is a usual denomination in the speech processing
literature.

*Yet a dependence can be found by considering “the Lombard effect”
(Lombard, 1911; Lane and Tranel, 1971): The speaker may increase his/
her articulatory efforts (and thus modify the speech characteristics) to
improve communication efficiency in noise. This does not reduce the in-
terest of the visual speech information (on the contrary, the movements of
the visible articulators may be exaggerated by the Lombard effect).

These authors prefer to classify between speech and nonspeech sections
rather than between silence and nonsilence sections as we do even if it
seems less appropriate for use in enhancement/separation applications.

4Actually, it is not applied in regions where the parameters are equal to
zero, or more specifically, the zero value in those regions is not modified
since (i) the zero signal is not noisy, and (ii) this avoids unwanted oscil-
lations or overshoots of the spline-filtered parameters after fast lip closing
or before fast lip opening regions. In practice, implementing this precau-
tion is a trivial task.
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