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Abstract 

We present a new approach to the source separation problem 

for multiple speech signals. Using the extra visual information 

of the face speaker, the method aims to extract an acoustic 

speech signal from other acoustic signals by exploiting its 

coherence with the speaker’s lip movements. We define a 

statistical model of the joint probability of visual and spectral 

audio input for quantifying the audio-visual coherence. Then, 

separation can be achieved by maximising this joint 

probability. Experiments  on additive mixtures of 2, 3 and 5 

sources show that the algorithm performs well, and 

systematically better than the classical BSS algorithm JADE. 

1. Introduction 

A number of recent experiments suggest that the audio-visual 

interaction in speech perception could act at a very early level, 

and that the visual input might improve the detection of 

speech sounds embedded in noise [1]. In this paper, we 

implement this idea for enhancing speech embedded in various 

kinds of noise, thanks to a computational process based on the 

audiovisual input. Enhancement has already been obtained 

with an original filtering approach [2]. The present work 

explores another  idea: adapt blind source separation (BSS) 

techniques to audiovisual speech sources. 

2. Designing the algorithm 

2.1. Background 

Let us consider the case of a stationary additive mixture of 

sources, to be separated :  

x=As 

y=Bx 

where s contains N unknown signals,  A is the unknown P x 

N mixing matrix, x the P observations, and B is the N x P 

separation matrix to estimate in order to recover the output 

signals y as close as possible to the sources s. In this 

application, the signals s are speech signals, and we assume as 

many sources as observations, that is P=N. Furthermore, we 

exploit additional observations which consist of a video signal 

V1 extracted from speaker 1’s face and synchronous with the 

acoustic signal s1 that we want to extract. Typically, V1 

contains the trajectory of basic geometric lip shape 

parameters, which can be automatically extracted by different 

systems developed in our laboratory [3, 4]. In the present 

paper, we focus on the extraction of one audio-visual source 

merged in a mixture of two or more acoustic signals. 

Classical BSS algorithms consider statistically 

independent sources, and basically involve higher (than 2) 

order statistics. In the Audio Visual Source Separation 

(AVSS) approach, we just need decorrelated sources, and  we 

assume that we know the lip motion associated to the  source 

s1 that we want to extract. The lip pattern provides an 

incomplete information about the vocal tract shape, hence it is 

classical to consider that the visual input is partially linked to 

the transfer function of the vocal tract. In the following, we 

assume that the additional knowledge about s1 concerns the 

variation of its spectral envelope. 

2.2. Principle 

First, let us assume that we know a number of spectral 

components of s1, defined by a filter bank. Let Hi(f) be the 

frequency response of i-th bandpass FIR filter, and hi(t) be its 

temporal impulse response. The energy of the source s1 at the 

output of the filtering process is provided by the 

autocorrelation with zero delay of the filtered signal 

hi{s1}(t)=hi(t)*s1(t). The normalised energy of s1 in the i-th 

band is: 
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where rsig(t) is the autocorrelation function of signal sig. If 

one output of the algorithm, say y1, provides an estimate of s1,  

we should obtain: 
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Moreover, for extracting one source among N, it easy to show 

that we need N-1 spectral coefficients. Therefore, we propose 

to minimize the following criterion : 
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This criterion, based on a bank of (N-1) band-pass filters, 

allows the separation of the source s1 provided that the spectra 

of all sources s
n
 are different [5]. 

2.3. The AVSS algorithm 

In this work, we don’t know the exact spectral components of 

the source s1, but we can estimate the spectrum through lip 

characteristics associated to the sound s1. It is classical to 

consider that the visual parameters of the speaking face and 

the spectral characteristics of the acoustic transfer function of 

the vocal tract are related by a complex relationship which 

can be described in statistical terms (see e.g. [6]). Hence, we 

assume that we can build a statistical model providing the 

joint probability of a video vector V containing parameters 

describing the speaker’s face (e.g., lip characteristics) and of 



an audio vector S containing spectral characteristics of the 

sound. Let us denote this joint probability p
av

(S,V). This 

statistical model is designed from a learning corpus, by 

modelling the probability p
av

(S,V) as a mixture of Gaussian 

kernels. The learning corpus is used for estimating the mean, 

the covariance matrix and the weight of each Gaussian kernel, 

by running an Expectation Maximization (EM) algorithm. 

Then the separation algorithm consists in estimating a 

separation matrix B for which the first output y1 produces a 

spectral vector Y1 as coherent as possible with the video input 

V1. This results in maximizing the following Audio-Visual 

(AV) criterion: 
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However, it may happen that the video input V1, at some 

instants, is associated to a large series of possible spectra, and 

hence produces very poor separation (the “viseme” problem, 

see [7]). For solving this problem, we introduce the 

possibility to cumulate the probabilities over time. For this 

purpose, we assume that the values of audio and visual 

characteristics at several consecutive time frames are 

independent from each other, and we define the cumulated 

joint audio-visual probability as:  
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3. Experimental results 

3.1. Data 

The audio-visual corpus used in the experiments consists of 

V1-C-V2-C-V1 sequences uttered by a French speaker. V1 

and V2 are vowels within [a, i, y, u]. C is a consonant within 

the plosives set [p, t, k, b, d, g, #] (# means no plosive). The 

112 sequences (4xV1, 7xC, 4xV2) are pronounced twice by a 

single speaker, for generating both a training and a test set. 

The corrupting signals consist in continuous meaningful 

sentences uttered by the other speakers. The video data 

consist of two basic geometric parameters describing the 

speaker’s lip shape, namely width (LW) and height (LH) of 

the labial internal contour. These parameters are automatically 

extracted every 20 ms by using a face processing system [3]. 

Sounds are sampled at 16 kHz. On the same 20 ms sound 

windows, synchronous with the video analysis, we compute 

32 spectral parameters providing power spectral densities 

(psd) at the output of a bank of 32 filters equally spaced 

between 0 and 5 kHz. Psds are converted in dBs, and a 

principal component analysis (PCA) is applied to reduce the 

number of spectral components to 12 dimensions (explaining 

more than 96% of the total variance). Hence the audio-visual 

space dimension is 14 (12 audio + 2 video). The EM gaussian 

mixture algorithm is applied to the training data set, 

containing 2497 audio-visual vectors (112 stimuli, about 24 

vectors per stimulus). In the present work, the number of 

gaussians in each mixture is set to 16.  

3.2. Procedure 

The AV criterion J
av

(y) (Eq. 4, 5) is optimized by a relative 

gradient algorithm [8]. We tested several N x N mixtures,  

with N =2, 3, et 5,  where s1 is the speech source to extract 

(2495 test frames) and the N-1 other sources are corrupting 

speech sources. For each N x N mixture, we tested two 

different mixture matrices A1 and A2, and  we used several 

temporal integration widths T  with  T=1, 10 et 20 frames. For 

each mixture, the N observations are defined by: 
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which are characterized (the sources being normalized in 

energy) by  input SNRs : 
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Table 1: Input SNRs (dB) 

 2 sources 3 sources 5 sources 
 A1 A2 A1 A2 A1 A2 

Sensor 1 -1.16 -14 +2.70 +0.73 -6.53 -10.6 
Sensor 2 -1.58 -19.1 +3.20 +0.1 -6.47 -3.67 
Sensor 3 - - +9.60 +2.15 -14.8 -8.43 
Sensor 4 - - - - -3.34 -16.1 
Sensor 5 - - - - -6.02 -10.2 

 

The evaluation was made by concatenating all 112 stimuli of 

the test set into a single file containing 2495 audio-visual 

frames. For each test frame, and for a given separating matrix  

B, the procedure consists in computing y=Bx, in estimating 

the spectrum Y1 according to the process described in section 

3.1 (spectral analysis followed by PCA), and in computing the 

probability pav(Y1,V1) thanks to the model described in section 

2.3. The optimal B matrix, which maximises the probability 

pav (Y1,V1), produces an output y1 which is the best estimation 

of the source s1. The output SNR is given by: 
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where G is the global matrix defined by :  

G=BA 

Finally, we tested the same mixtures with the classical BSS 

algorithm JADE [9]. For taking into account possible 

indetermination in this algorithm, we systematically selected 

the best  SNRout(n)  for the signal s1 among all output sensors:  
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The results are presented with histograms of output SNR 

values on the 2495 test frames (Fig. 1  to 7)  from which we 

summarize  some salient values in  the tables 3 to 5.  

3.3. Results 

From Tab. 3-5 and Fig. 1-7, three main features appear : 

 

• Role of integration width : It is clear that a large T value 

improves the performances, both for AVSS and JADE: 

the output SNRs increase from T=1 to 10 and 20 (Fig. 1 

to 3, Fig. 4 vs. 5 ; results summarized in Tab. 3 and 4). 



The reason for AVSS is that the integration in Eq. (5)  

allows to improve the estimation of B=A-1. For BSS, 

increasing T improves the estimation of second-order 

and fourth-order cumulants necessary for the 

convergence towards A-1. 

• Superiority of AVSS : All along Fig. 1-7, AVSS performs 

better than JADE, sometimes slightly (as in Fig. 1) 

sometimes strongly (8 dB mean gain of output SNRs in 

Fig. 6). This shows that the spectral information on s1, 

even incompletely provided by V1, is a more accurate 

hint for the extraction of s1, than the only criterion of 

statistical independence. 

• Equivariance : The equivariance property implemented 

in JADE allows a remarkable  stability of output SNRs 

from one mixing matrix to the other (compare A1 and A2 

in Tab. 3, 4, 5, for each T value for JADE). Though we 

implemented a relative gradient descent in AVSS, 

equivariance is not so well achieved, as it can be seen for 

example in Tab. 5. This could be due to the non-linear 

nature of the AV probability function. 

Furthermore, two additional criteria should be taken into 

account in the comparison between AVSS and JADE : 

 

• Computation cost : JADE is very fast, thanks to the 

Jacobi algorithm. Though slower, AVSS is still relatively 

fast thanks to a gradient descent exploiting the value for 

a given frame as the initial value for the next frame (less 

than 15 iterations before convergence with T=20 in the 

2-2, 3-3 and 5-5 case). 

• Stability of the selected sensor for extraction : This is a 

clear advantage of AVSS, which ensures that s1 is always 

extracted on y1, since the criterion is focused on V1. On 

the contrary, the instability of BSS is well-know. Indeed, 

small fluctuations in the values of second or fourth-order 

moments result in many permutations of solutions from 

one frame to the next. In Table 2, we display the number 

of cases where there was a switch in the selected sensor 

where s1 appeared, between two consecutive frames. We 

could envision in the future to apply the AV criterion 

Jav(y) at the output of a BSS algorithm, in order to select 

the good sensor. 

Table 2 : Number of JADE permutations for different 

mixtures and different integration widths. 

 2x2 3x3 5x5 
 T=1 T=10 T=20 T=10 T=20 T=20 

A1 674 218 120 276 362 534 
A2 506 49 4 171 148 387 

4.  Conclusion 

The principle of an audio-visual algorithm for speech signals 

separation is theoretically sound and technically viable. The 

high separation scores we obtain imply reasonable integration 

widths (T=20 corresponds to 400 ms, which is rather low), 

and lead to very good quality of the separated signals. This 

work is promising because we can expect to proceed in the 

future with much more realistic (and difficult) configurations. 

Especially, with less sensors than sources, speech extraction 

using visual information could be achieved following this 

idea. Indeed, in this case, AVSS enables to extract the best s1 

fit in terms of maximal SNR. On the contrary, the BSS cannot 

find this maximum, since it provides no equivalence in terms 

of inter-sensor independence. We are presently deriving the 

formal equations and implementations of this configuration. 

Finally, we envision in the future a combination of AV 

coherence cues with classical BSS techniques as they are 

developed in our group [10]. 
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Table 3 : Results for 2 sensors, 2 sources 

Table 4 : Results for 3 sensors, 3 sources 

   A1 A2 
    ≥30 dB ≥10 dB ≥0 dB ≥30 dB ≥10 dB ≥0 dB 

AVSS 35% 88% 98% 38% 90% 98% T=10 
JADE 16% 81% 96% 16% 82% 96% 
AVSS 68% 98% 99% 64% 99% 100% 

T=20 
JADE 28% 94% 99% 28% 94% 99% 

   A1 A2 
   ≥30 dB ≥10 dB ≥0 dB ≥30 dB ≥10 dB ≥0 dB 

AVSS 31% 59% 76% 23% 59% 76% T=1 
JADE 17% 56% 78% 17% 56% 78% 
AVSS 63% 94% 98% 64% 95% 99% T=10 
JADE 39% 91% 98% 39% 91% 98% 
AVSS 81% 98% 99% 80% 99% 100% 

T=20 
JADE 52% 98% 100% 50% 98% 100% 



 

 

 

Table 5 : Results for 5 sensors, 5 sources 

   A1 A2 
    ≥30 dB ≥10 dB ≥0 dB ≥30 dB ≥10 dB ≥0 dB 

AVSS 36% 99% 100% 22% 89% 98% T=20 
JADE 8% 88% 99% 9% 88% 99% 
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Figure 1 : 2 sensors, 2 sources - Matrix A1 - T=1  
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Figure 2 : 2 sensors, 2 sources - Matrix A1 - T=10 
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Figure 3 : 2 sensors, 2 sources - Matrix A1 - T=20 
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Figure 4 : 3 sensors, 3 sources - Matrix A1 - T=10 
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Figure 5 : 3 sensors, 3 sources - Matrix A1 - T=20 
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Figure 6 : 5 sensors, 5 sources - Matrix A1 - T=20 
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Figure 7 : 5 sensors, 5 sources - Matrix A2 - T=20 


