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ABSTRACT

We present a new approach to the voice activity detection
(VAD) problem for speech signals embedded in non-statio-
nary noise. The method is based on automatic lipreading:
the objective is to detect voice activity or non-activity by
exploiting the coherence between the speech acoustic sig-
nal and the speaker’s lip movements. From a comprehen-
sive analysis of lip shape parameters during speech and non-
speech events, we show that a single appropriate visual pa-
rameter, defined to characterize the lip movements, can be
used for the detection of sections of voice activity or more
precisely, for the detection of silence sections. Detection
scores obtained on spontaneous speech confirm the efficien-
cy of the visual voice activity detector (VVAD).

1. INTRODUCTION

The task of a voice activity detector (VAD) is to assess the
presence or the absence of a speech signal in a given acous-
tic environment. Different methods based on the analysis
of the acoustic signal have been proposed in the literature
(e.g. [1, 2]). Their weakness is that they generally strongly
depend on the acoustic environment, including the nature
and the power of possible parasite signals.

Now, speech is a bimodal signal, both acoustic and vi-
sual. Since visual speech information is provided by the
movements of the speaker’s visible articulators, especially
lip movements, there exists a specific coherence between
acoustic and visual signal features [3]. This coherence has
already been exploited in several speech processing appli-
cations such as speech enhancement [4, 5], speech sources
separation [6, 7], or speech recognition [8].

In this paper, we propose to use visual speech infor-
mation, namely lip movements, as VAD. Such visual VAD
(VVAD) is characterized by a major advantage: Contrary to
usual acoustic VADs, it is robust to any acoustic environ-
ment (e.g., simultaneous speaker(s), non-stationary back-
ground noise, convolutive mixtures, etc.) Thus, the pro-

posed VVAD can be used in any acoustic mixture, includ-
ing ones with many different speech/audio/noise sources.
Previous work on VAD based on visual information can be
found in [9]. The authors proposed to model the distribu-
tion of the visual information according to two exclusive
classes: one for speech non-activity (where the visual infor-
mation is modeled by a single Gaussian) and one for actual
speech (where a mixture of only two Gaussian laws is used).
Following, for a given visual data, the speech/non-speech
decision is taken by likelihood calculation from both dis-
tributions. In the present paper, the approach is different
since the phenomenology of audio-visual speech is more
deeply considered: First, we use a spontaneous speech cor-
pus with natural speech/non-speech sections, and then, we
lead a comprehensive analysis of this corpus (Section 2).
This analysis shows that the visual spaces related to speech
and non-speech sections are actually not exclusive, but on
the contrary, strongly overlapping. Thus, in Section 3, we
characterize the visual information to be used in the VVAD
in dynamical terms. Numerical experiments and detection
scores are given in Section 4.

2. LIP-SHAPE ANALYSIS

2.1. Material description

For this study, we designed a dedicated audio-visual cor-
pus of spontaneous speech. Two male French speakers (JL
and LG) were set in a spontaneous dialog situation with
many speech overlapping and non-speech events. In or-
der to assess the visual VAD, we needed to have the audio
signals of the speakers (and possibly other sources) avail-
able separately. For this aim, the two speakers were placed
and recorded in a different room. They both had a micro-
camera (and of course a microphone) focused on the lip re-
gion and they could see and hear each other thanks to a mon-
itor screen and headphones providing real-time feedback.

The extracted visual information consists in the time tra-
jectory of basic lip contour geometric parameters, namely
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interolabial width A and height B. These parameters were
extracted by using the “face processing system” of the ICP
[10] which is based on blue make-up, Chroma-Key system
and contour tracking algorithms. The parameters are ex-
tracted every 20 ms (the video sampling frequency is 50Hz),
synchronously with the acoustic signal which is sampled at
16 kHz. Thus, in the following, a signal frame is a 20 ms
section of acoustic signal associated with a pair of lip pa-
rameters (A, B).

2.2. Analysis

Corpus analysis aims at characterizing possible differences
on visual patterns between silence (defined as vocal inactiv-
ity) and non-silence sections for a given speaker. We pre-
fer to use this distinction rather than the distinction between
speech and non-speech, because non-speech sections are not
bound to be silence, since many kinds of non-speech sounds
can be produced by the speaker (e.g., laughs, sighs, growls,
moans, etc.) To provide an objective reference for the detec-
tion, we first manually identified and labeled acoustic sec-
tions of silence and non-silence. Then, we defined a nor-
malized video vector as v(t) = [A(t)/µA, α B(t)/µB]T

where α is the coefficient of linear regression between A(t)
and B(t), µA and µB the mean values of A(t) and B(t) cal-
culated on the complete corpus for each speaker (T denotes
the transpose operator). Fig. 1 represents the distribution of
the components v1(t) and v2(t) of v(t) for the non-silence
frames (Fig. 1(left)) and the silence frames (Fig. 1(right))
for speaker JL. Fig. 1 (left) is classical for lip-shapes dur-
ing speech. Fig. 1(right) shows that a large subset of silence
frames are grouped around the origin, which correspond to
closed lips. Besides, another important subset is located in
a non-closed region within the general set of speech shapes
provided in Fig. 1 (left). On the other hand, closed lip-
shapes are present in both distributions and they cannot be
systematically associated with a silence (or non-silence) frame.
In summary, there is no direct relationship between silence
and closed lips, or speech and open lips: static lip-shape is
not sufficient to characterize silence or non-silence.

Now, further investigations revealed that silence frames
can be better characterized by the lip-shape movements. In-
deed, in silence sections, the lip-shape variations are small.
On the contrary, during speech sections these variations are
generally quite stronger. Given these observations, we pro-
pose to identify the silence sections with one or several vi-
sual parameters of dynamical nature.

3. VISUAL DETECTION OF SILENCE

In pilot experiments, we tested the efficiency of several dy-
namical parameters. These tests have shown that the sum of
the absolute values of the gradient of v(t) components

π(t) =
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Fig. 1. Distribution of the visual parameter v(t) for non-
silence frames (left) and silence frames (right). Note that
10% and 36% of the points are at the origin for the left and
right figures respectively.

gave the best performances for the detection task described
in the following. Thus we retained this dynamical parame-
ter. In spontaneous speech, there may exist some short lip
movements in silence, because of, e.g., smiles, funny faces
or changes of the “lip rest position”. To avoid the associ-
ation of corresponding π(t) values with a speech frame in
this case, we propose to integrate these values in time. For
this, we filter π(t) such as: ρ(t) = h(t) ∗π(t) where h(t) is
a truncated first-order low-pass filter defined by: h(t) =
1

τ

∑T−1

n=0
exp(−n

τ
)δ(t − n), with T fixed to 100 frames.

Now, the principle of the VVAD is to compare, for each
frame t, the visual parameter ρ(t) with a threshold λ that
remains to be determined. Thus, if ρ(t) < λ the frame t is
considered as silence, else it is considered as non-silence.
We plotted on Fig. 2 the distribution of ρ(t) for the entire
corpus, for speaker JL and for three values of the time con-
stant τ : 0.1 (instantaneous case), 5 and 100. We can see that
ρ(t) is grossly distributed among three classes for sponta-
neous speech: from left to right, the first one corresponds to
closed lips, the second one corresponds to slow movements
and the third one corresponds to fast movements. The goal
is to tune the time-integration such as the silence and non-
silence distributions of ρ(t) are as much separate as possi-
ble, so that the estimation of λ is easy and the visual deci-
sion fits well with the manual audio labeling. The differ-
ent figures show that the choice of the integration duration
must be considered carefully: as seen before, a short time
constant (or no integration at all, see Fig. 2(left)) makes
the detection too sensitive to local perturbations (short lip
movements during silence and short stable lip shapes during
speech activity.) In contrast, a too long time constant (e.g.
on Fig. 2(right)) mixes silence and non-silence sections into
a common window, leading to quite unaccurate detection.
Eventually, the histogram plotted on Fig. 2(middle) shows
that a suitable time constant can largely improve the separa-
tion of silence and non-silence sections.

Since the two silence and non-silence classes cannot be
completely separated, it is impossible to find a ”perfect”
threshold λ allowing to correctly detect all silence frames
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Fig. 2. Histograms of the dynamical visual parameter ρ(t) (on log-scale) for three integration durations: instantaneous (left),
suitable value of τ = 5 frames (middle) and too large value of τ = 100 (right). The black and white histograms respectively
represent the ρ(t) values associated to silence and non-silence sections respectively.

without making false silence detections. In applications us-
ing VAD (e.g., speech enhancement: speech inactivity sec-
tions are used to estimate background noise), false detec-
tions can dramatically reduce the performances. In this case,
it is better for our VVAD to favor the actual detection of
silence (i.e. reducing the false detections) rather than re-
ducing the missed detection. This can be done arbitrarily
by choosing to detect only the silence sections with long
durations. From this last point, we finally retain as silence
sections all sections composed of at least N consecutive in-
dividual silence frames.

4. QUANTITATIVE ASSESSMENT

4.1. Experimental procedure

We tested the proposed VVAD on about 13200 20ms-frames
of the corpus (about 4.4 min of spontaneous speech). We
applied the VVAD for different time constants: τ = 0.1,
suitable time constant (τ = 5) and too large time constant
(τ = 100). For each configuration, we made the threshold
λ vary uniformly between the minimum and the maximum
of ρ(t). Then, we compared the results of automatic silence
frame detection using the VVAD with the reference label
provided by the manual identification. This procedure was
repeated twice: A first time for the detection of all acous-
tic silence frames independently and a second time for the
detection of acoustic silence composed of at least N con-
secutive silence frames.

4.2. Results

First of all, Fig. 3 illustrates the different possible relations
between visual and acoustic data: movement of the lips in
non-silence (e.g., from 0s to 0.5s) and in silence (e.g., just
before 1.5s, or between 2s and 2.3s), non-movement of the
lips in silence with opened lips (e.g., from 1.2s to 1.4s) and
closed lips (from 1.5s to 1.9s), and non-movement in non-
silence (from 0.9s to 1.1s). The VVAD, adequately tuned
(with τ = 5 and post-processing with N = 20), performs
quite well. It fails to avoid some false detections (between
0.8s and 1.1s) or to detect some silence sections (between 2
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Fig. 3. Silence detection. Top: Acoustic speech signal with
silence reference (solid line), frames detected as silence
(dotted line) and frames eventually retained as silence when
N = 20 consecutive silence frames (dashed line). Middle:
Static visual parameters v1 (solid line) and v2 (dashed line).
Bottom: Dynamical visual parameter ρ(t) integrated with
τ = 5 (solid line, truncated at -3 for the −∞ value) and the
threshold λ (dashed line).

and 2.3s). But it discards several possible false detections
in the speech section between 2.3s and 4s, in spite of both
closed lips sections and small movements in some regions.

The detection results are presented on Fig. 4 as Receiver
Operating Characteristics (ROC). These curves represent the
percentage of silence detection (defined as the ratio between
the number of detected silence frames and the actual num-
ber of silence frames) as a function of the percentage of false
silence detection (defined as the ratio between the number
of non-silence frames detected as silence frames and the
actual number of silence frames). We can see on this fig-
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Fig. 4. ROC silence detection curves for: First, two integra-
tion durations of the visual parameter ρ(t): instantaneous
(solid line), and suitable integration (τ = 5, dotted line).
Second,with N consecutive silence frames, in dashed line
N = 20 frames (400ms) and in dash-dot line N = 200
frames (4s)

ure the benefit of low-pass filtering of the parameter ρ(t):
by lessening the influence of short static lip-movements in
speech and also short lip-movements in silence, it allows to
significantly decrease the false silence detection ratio for a
given silence detection ratio, compared to the case where no
integration is performed (e.g., the point 20%-80% without
integration becomes 5%-80% with a correct integration).
Futhermore, Fig. 4 shows the effect of post-processing for
unfiltered version of ρ(t). The ROC curves show that the a
too large duration (N = 200 frames corresponding to 4s)
leads to dramatically decrease the silence detection ratio.
On the contrary, using a reasonable (N = 20 frames corre-
sponding to 400ms) allows to efficiently decrease the false
silence detection ratio without decreasing the silence detec-
tion ratio (in comparison to the case with no post-processing,
i.e. N = 1 frame). The gain due to post-processing is simi-
lar to the gain due to low-pass filtering.

Altogether, we obtain silence detection scores that are
exploitable in real speech processing applications like en-
hancement, separation or recognition in noise. The compro-
mise such as 5%-80% can guarantee a sufficently low false
detection rate for a correct exploitation of the information.

5. CONCLUSION

Direct VAD from raw lip parameters cannot lead to satis-
factory performances because of the intricate relationship

between visual and acoustic speech information. However,
we showed in this paper that considering a single appropri-
ate dynamical parameter together with temporal integration
at both the feature level (low-pass filtering of this parame-
ter) and the decision level (testing N successive frames) can
lead to efficient visual voice non-activity detection. More-
over, these performances are completely independent of the
acoustic environment. Other part of this work concerns the
use of the VVAD for speech source separation, as presented
in another paper submitted to the present conference.
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