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ABSTRACT

We present a new approach to the source separation problem in
the case of multiple speech signals. The method is based on the
use of automatic lipreading: the objective is to extract an
acoustic speech signal from other acoustic signals by exploiting
its coherence with the speaker’s lip movements. We show how,
if a statistical model of the joint probability of visual and
spectral audio input is learnt to quantify the audio-visual
coherence, separation can be achieved by maximising this
probability. Then, we present a number of separation results on
a corpus of vowel-plosive-vowel sequences uttered by a single
speaker, embedded in a mixture of other voices.

1. INTRODUCTION

A number of recent experiments suggest that the audio-visual
interaction in speech perception could begin at a very early
level, in which the visual input could improve the detection of
speech sounds embedded in noise. In a companion paper, we
show that this could be part of an “audiovisual scene analysis”
module improving speech intelligibility independently of the
contribution of lipreading per se [1]. In this paper, we study the
technological counterpart of this idea: is it possible to enhance
the speech sound embedded in various kinds of noise, thanks to
a computational process based on the audiovisual coherence? A
first work was made on this line, thanks to an original filtering
approach [2]. The present work explores a probably more
powerful idea: adapt blind source separation (BSS) techniques
to audiovisual speech sources.

2. THEORETICAL CONSIDERATIONS

2.1. Architecture

Let us consider the case of a stationary additive mixture of
sources, to be separated. The input of an N-signals P-sensors
separation system consists of a set of P observations xj(t), each
of them being a mixture of N  unknown signals si(t) to be
separated. A is the unknown (P,N) mixing matrix, B is the (N,P)
separation matrix to estimate in order to recover the output
signals yk(t) as close as possible to the sources si(t). In our
application, these si(t) signals are speech acoustic signals, and
we assume as many sources as observations, that is P=N.

In BSS, the separation coefficients (i.e. the B coefficients)
are estimated according to a criterion of maximisation of the
independence between the outputs [e.g. 3]. In this study, we
exploit additional observations which consist of a video signal
V1 extracted from speaker 1’s face and synchronous with the

acoustic signal s1 to be isolated. Typically, V1 contains the
trajectory of basic geometric lip shape parameters, which can be
automatically extracted by different systems developed in our
laboratory [4, 5]. In the present paper, we shall focus on the
extraction of one audio-visual source merged in a mixture of
two or more acoustic signals (Fig. 1).

2.2. Computational foundations

Most BSS techniques are based on the assumption that the
sources are non Gaussian, independent and stationary. In our
case, we restrict the independence assumption to a simple
decorrelation, and add some knowledge on the first source s1, in
order to extract it from the mixture. What we know about s1 is
the visual signal associated with it (the visible speaking face),
and it is classical to consider that the visual input is partially
linked to the transfer function of the vocal tract. Hence we
assume that the additional knowledge about s1 concerns spectral
envelope. We shall address two possible means to introduce
spectral information, through autocorrelation coefficients, or
through energy coefficients at the output of a filterbank.

2.2.1. Introducing autocorrelation coefficients in source
separation algorithms

To begin with, let us assume that we know something linked to
the spectrum, that is a normalised autocorrelation coefficient:
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where Rs1s1(k) is the autocorrelation of the source s1  for a delay
k, and Rs1s1(0) is the same for delay 0, that is the source power.
To simplify further computations, let us introduce the function:
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At the solution, we expect that one output of the algorithm, say
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Therefore, we can decide to minimise the following criterion:
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This criterion meets the basic requirement that it is positive or
null, and minimum (equal to zero) when the separation is
achieved in the restricted sense we consider in the paper, that is
when s1 is separated (y1=s1). In the case of two sources, it is
easy to see that this criterion ensures separation, while for more



than two sources, say N, we need to know (N-1) autocorrelation
terms for (N-1) delays, which leads to the generalised criterion:
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2.2.2. Replacing autocorrelation by spectral coefficients

In the same vein, we can assume that, instead of autocorrelation
functions, what we know about s1 is a number of spectral
components, defined by a filter bank. Let Hk(f) be the frequency
response of a bandpass FIR filter, and hk(t) be its temporal
impulse response. The energy of the source s1 at the output of
the filtering process is provided by the autocorrelation with zero
delay of the filtered signal hk*s1(t). Hence we can assume that
we know the normalised energy of s1 in the band corresponding
to the filter, that is:
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As in the previous case, we can introduce the function:

C y y R Rh i j h y h y h y yk k i k j k i j
( ) ( ) ( ) ( )= −( )( ) 0 0 7γ

and a suitable criterion is provided, similarly to Eq. (5), by:
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This criterion, based on a bank of (N-1) band-pass filters, allows
the separation of the source s1 provided that the spectra of all
sources si are different from each other [6].

2.2.3. The audio-visual algorithm

In the case of our application, we do not have at our disposal the
exact spectral components of the source s1, but only indirect
indications about the spectrum through lip characteristics
associated to the sound s1. It is classical to consider that the
visual parameters of the speaking face and the spectral
characteristics of the acoustic transfer function of the vocal tract
are related by a complex relationship which can best be
described in statistical terms (see e.g. [7]). Hence, we assume
that we can build a statistical model providing the joint
probability of a video vector V containing parameters
describing the speaking face (e.g., lip characteristics) and of an
audio vector S containing spectral characteristics of the sound.
Let us call this joint probability p(S,V). This statistical model is
not given for free: it must be designed from a learning corpus.
In the present study, we define the probability p(S,V) as a
mixture of Gaussian kernels, and we use the learning corpus to
estimate the mean, covariance matrix and weight of each
Gaussian kernel, by iterating an Expect. Max. (EM) algorithm.

Then the separation algorithm consists in selecting a
separation matrix B for which the first output y1 produces a
spectral vector Y1 as coherent as possible with the video input
V1. This results in the following criterion:
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However, it may happen that the video input V1 at some instants
is associated to a large series of possible spectra, and hence
produces very poor separation. Therefore, we introduce the
possibility to cumulate the probabilities over time. For this aim,
we assume for simplicity that values of audio and visual
characteristics at several consecutive time frames are

independent from each other, and we define accordingly the
cumulated joint audio-visual probability by:
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This product of joint probabilities, for various lengths of
temporal integration (T+1), is maximised, instead of criterion
(9), to find a better estimation of the separating matrix.

3. EXPERIMENTAL RESULTS

3.1. Data

The audio-visual corpus we attempted to separate from noise
consisted of V1CV2CV1 sequences uttered by a French speaker.
V1 and V2 were vowels within [a, i, y, u]. C was within the
plosives set [p, t, k, b, d, g, #]. The 112 sequences (4xV1, 7xC,
4xV2) were pronounced twice by a single speaker, to generate
both a training and a test set. The corrupting signals consisted in
continuous meaningful sentences uttered by the same speaker.

The video data consisted in two basic geometric parameters
describing the speaker’s lip shape, namely internal width (LW)
and height (LH) of the labial contour (see Fig. 2, right box).
These parameters were automatically extracted every 20 ms by
using the ICP face processing system [4]. Sounds were sampled
at 16 kHz. On the same 20-ms windows synchronous with the
video analysis, we computed 32 spectral parameters providing
power spectral densities (Psd) at the output of a bank of 32
filters linearly spaced between 0 and 5 kHz. Psds were
converted in dBs, and a principal component analysis (PCA)
was applied to reduce the number of spectral components to 12
dimensions (explaining more than 96% of the total variance).
Hence the audio-visual space dimension was 14 (12 audio + 2
video).

3.2. Statistical model of the p(S,V) probability

The EM Gaussian mixture algorithm was applied to the training
data set, containing 2497 audio-visual vectors (112 stimuli,
about 24 vectors per stimulus). A preliminary study showed that
increasing the number of PCA audio dimensions and of
Gaussian laws in the mixture slightly increased performances
[8]. In the present work we used 16 Gaussian laws. On Figure 2,
we display the projections of the Gaussian covariance matrices
on the two video dimensions and on the first two audio
dimensions. They can be interpreted in the following manner.

The video space displays a quite classical organisation,
with closed lip shapes (bilabials in any context, Gaussian law
1), rounded lip shapes ([y], [u] and dentals and velars in [y]/[u]
context, Gaussian laws 2, 3, 4 and 5), spread lip shapes ([i],
Gaussian law 8) and opened lip shapes ([a], Gaussian law 16).
The other Gaussian laws model the open-to-close and close-to-
open gestures of the jaw and lips between these targets. This
configuration confirms the basic property of audio-visual
speech, that is the complementarity between the two modalities:
visually close stimuli are auditorily well separated and vice
versa. Thus, different Gaussian kernels of the model whose
projection on two specific audio-visual dimensions are confused
can be clearly separated when projected on two other
dimensions. For example, the four Gaussian kernels 2, 3, 4 and
5 are confused in the (LW, LH) space around the [y]/[u] round-
closed lip shape, while separated in the audio subspace with one



kernel around [u] (Gaussian 2), one around [y] (Gaussian 3) and
the other two for dentals and velars in rounded context. On the
other hand, Gaussian kernels 5 and 13, close in the audio space,
are clearly separated in the video space. As we said, this
complementarity is essential for the efficiency of our approach.

3.3. Experimental procedure

Most of our study dealt with two-sources mixtures, defined by:

x a s a s     x a s a s1 11 1 12 2 2 21 1 22 2 (11)= + = +
s1 is the speech source to be separated, s2 is a corrupting speech
source to eliminate. Sources were normalised in energy. Hence,
the input SNRs on each sensor xi are given by:
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while it is easy to show that the output SNR on y1 is given by:
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where c is defined as the ratio b12/b11, which controls the y1

output. We tested two mixture matrices. The first one (Mixt. 1
in the following) provided input SNR values respectively of
–1.2 and –1.6 dB on the two sensors, while the second one
(Mixt. 2) respectively provided –14 and –19 dB. The evaluation
was made by concatenating all 112 stimuli of the test set (see
Section 3.1) into a single file containing 2495 audio-visual
frames. For each test frame, and for a given separating matrix
B, the procedure consisted in computing y = Bx, estimating the
spectrum Y1 according to the process described in Section 3.1
(spectral analysis followed by PCA), and computing the
probability p(Y1,V1) thanks to the model described in section
3.2, in order to determine the B matrix maximising this
probability. The optimal B  matrix produces an output y1

supposed to provide the best estimation of the source s1. We
shall describe in the next section the optimisation procedure.

3.4. Results

Firstly we performed “exhaustive scans”, that is examination of
the variations of either the instantaneous version of joint
probability p(Y1(t),V1(t)) (Eq.9) or its temporally integrated
version p(Y1(t…t–T),V1(t…t–T)) (Eq.10) when the control
parameter c was systematically varied. We display on Fig. 3 the
variations of the logarithm of inverse probability values for
Mixt. 2 and for one frame, for which it appears that the best c
value (minimum of the curve) is not at the theoretical solution
when instantaneous probabilities are considered (Fig. 3, left).
This is due to the fact that some visual frames are quite
ambiguous in terms of associated spectra (many possible
spectra for a lip shape: this is what is called “visemes”, [9]).
When temporal integration from 5- to 10-frame length is used,
the pattern is much improved (Fig. 3, centre and right).

Then, we implemented an automatic procedure for
searching the optimal B matrix maximising the instantaneous or
temporally integrated versions of p (Y1,V1) . We used an
equivariant algorithm exploiting relative gradient and a serial
updating technique with orthogonal contrast [3]. For each
mixture, and for three integration lengths 1, 5 and 10 in Eq. 10,
we processed the 2495 test frames with this algorithm. For each
frame, the algorithm was initialised at the value of the previous
frame, and at convergence we computed the output SNR value.

On Fig. 4 we display the cumulated histograms of output SNR
values: we observe that for both mixtures, more than 95% of the
test frames are separated with an output SNR larger than 20 dBs
for a 10-frame temporal integration, while input SNRs were all
lower than 0 dBs. The results are much poorer for smaller
temporal integration length T, and particularly for T =1.
Furthermore, the mean number of iterations of the gradient
algorithm towards convergence is also much decreased (around
10 times less for T=10 than for T=1). Therefore, altogether, the
convergence time is not increased by temporal integration,
while the performances are dramatically improved.

4. CONCLUSION

It appears that the principle of an audio-visual algorithm for
speech signals separation is theoretically sound and technically
viable. The high separation scores we obtain imply reasonable
integration widths (T=10 corresponds to 200 ms, which is rather
low), and lead to very good quality of the separated stimuli.

Of course, it must be acknowledged that classical (pure
audio) BSS algorithms are able to separate such mixtures with
quite the same performances [8]. But this work is promising
because we can expect to proceed in the future with much less
ideal configurations, and particularly with less sensors than
sources, a case in which the visual information should enable to
better focus on a particular source and improve its
enhancement/separation. Future works should also consider the
combination of this approach with standard ICA methods.

Note (1): An enlarged version of this paper has been submitted
for publication to EURASIP [6].
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Figure 1 – The audio-visual source separation system

Figure 2 – The audio-visual statistical model (see text)
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Figure 3 – Variations of the audio-visual probability p(Y1,V) for a range of c values around the theoretical solution c=–1.11 for
mixture 2, and for three temporal integration lengths T: from left to right, T=1, 5 and 10.
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Figure 4 – Separation results: Cumulated histograms (in %) of output SNR values on the whole test corpus,
for the two mixtures and for compared temporal integration length values T.
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