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Fast and Accurate Direct MDCT to DFT Conversion
With Arbitrary Window Functions

Shuhua Zhang and Laurent Girin

Abstract—In this paper, we propose a method for direct con-
version of MDCT coefficients to DFT coefficients, without passing
through time signal reconstruction. In contrast to previous works,
this method is valid for any pair of MDCT and DFT window func-
tions. It is based on the decomposition of the MDCT-to-DFT con-
version matrices into a Toeplitz part plus a Hankel part. The latter
is split, then mirrored and combined with the former to construct
a global Toeplitz matrix. This leads to a fast FIR filtering imple-
mentation of the conversion process. The filter taps are DFT coeffi-
cients of window functions products, and concentrate most of their
energy in a few low-frequency taps. The conversion can thus be ef-
ficiently approximated by keeping only a few most significant taps,
as confirmed by numerical experiments: For example, for frame
size of 2048, Hanning-windowed DFT is obtained from KBD-win-
dowed MDCT with SNR over 60 dB when keeping only 20 taps.

Index Terms—Modified Discrete Cosine Transform (MDCT),
Discrete Fourier Transform (DFT), window function, Toeplitz
matrix, FIR filtering.

I. INTRODUCTION

T HE Modified Discrete Cosine Transform (MDCT) [1] is
a time-frequency (TF) transform that is widely used in

audio processing, especially in perceptual audio coding algo-
rithms. This is the case for, e.g., MPEG-2/4 Advanced Audio
Coding (AAC) [2] and Ogg Vorbis. The MDCT belongs to the
family of Lapped Transforms (LT) which are critically sampled,
even with overlap between adjacent frames of input signal, and
assume perfect reconstruction (for both time TF time and
TF time TF) [3], [4]. Those properties are much appreciated
in audio coding, since even with quantization of MDCT coef-
ficients, the MDCT ensures smooth transitions between frames
and good signal reconstruction.
However, the MDCT is poorly appropriate for spectral anal-

ysis and signal manipulation in the TF domain, for several rea-
sons [4]–[6]: Its basis vectors are not shift-invariant, it does not
conserve the energy, and MDCT coefficients, which are real-
valued, cannot be easily interpreted in terms of magnitude and
phase. All this contrasts with the widely used Discrete Fourier
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Fig. 1. Connections between the time, DFT, and MDCT domains. denotes
the DFT operation, and denotes the MDCT operation.

Transform (DFT) or Short-Term Fourier Transform (STFT)1.
In the same line, linear time-invariant filtering is generally not
equivalent to product in theMDCT domain, except for very spe-
cific filter shapes [7]. For all those reasons, the DFT/STFT are
used in most audio/speech (TF) processing systems.
Therefore, if one wants to apply some TF-domain signal pro-

cessing on signals that are coming from perceptual audio de-
coders, one has the following two possibilities: 1) develop (often
tricky and over-specific) MDCT-domain processing (e.g., [8]
for instantaneous frequency estimation; see [6] for a review of
several other examples of MDCT-domain processing), or 2) go
to the DFT domain. The latter possibility is the more general,
and currently, most audio processing systems that are cascaded
with audio coders consider this solution.
The plain way to go from the MDCT to the DFT is to

first go from the MDCT back to time using the inverse
MDCT (IMDCT) and then go from time to the DFT, or the
“ ” scheme (Fig. 1). But there are two related
drawbacks with this indirect method: Nonlocality and com-
plexity. The “ ” scheme works on complete
spectra, even if only a subband conversion is intended. In other
words, we need to apply the IMDCT on the whole MDCT
spectra before DFT calculation, and this is true even if a limited
number of DFT coefficients are intended. However, both the
MDCT and the DFT decompose time signals into orthogonal
trigonometric functions with evenly spaced frequencies. Thus,
MDCT spectra and DFT spectra of the same time signal should
look alike roughly, and a DFT coefficient should mainly depend
on a few MDCT coefficients at nearby frequencies. Therefore,
it is legitimate to look for a direct MDCT-to-DFT transform
that would exploit such local relationship between MDCT
and DFT coefficients. This would allow efficient calculation
of specific DFT coefficients from a reduced set of MDCT
1DFT refers to the discrete version of the Fourier transform as applied on a

given frame of signal, whereas STFT refers to a set of DFTs applied on succes-
sive (generally ovelapping) signal frames. There is no such literary distinction
for the MDCT: this term can refer to a given MDCT frame—as for the proposed
MDCT-to-DFT conversion which is a frame-wise process—or it can refer to the
overall set of MDCT frames, depending on the context.

1558-7916/$31.00 © 2012 IEEE
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Fig. 2. Overlap and add in the time domain and corresponding TF-domain vec-
tors. The time vectors and all have the same size .

coefficients at nearby frequencies, hence reduce complexity in
subband conversion, and possibly reduce complexity for the
fullband conversion either.
In [9], the so-called mapping methods were proposed for the

MDCT-to-DFT conversion, but this was only to save memory
usage, not computational complexity. In [10], a method for
directly converting the MDCT to the Modified Discrete Sine
Transform (MDST) was proposed, which can be easily ex-
tended to direct conversion from the MDCT to the Modified
Complex Lapped Transform (MCLT) [11], [12]—a special
shifted DFT. However, the window functions for the MDCT
and the MDST are required to be identical. This is sufficient
when the MCLT is intended, but not when the DFT or a
general shifted DFT is intended. Indeed, in practice different
window functions are very often used for the MDCT (e.g., the
Kaiser-Bessel-Derived (KBD) window [13] or the sine window
that both ensure the perfect reconstruction property, for coding
[1]) and the DFT (e.g., Hamming or Hanning windows, for
spectral analysis and processing). In [6], an intermediate
transform called Circulant Lapped Transform (CLT) has been
proposed to convert the MDCT to the DFT, i.e., MDCT-to-CLT
followed by CLT-to-DFT. The overall process is shown to be
efficiently approximated by a complex-valued Finite Impulse
Response (FIR) filtering applied on MDCT coefficients. But the
conversion is limited to the DFT with the rectangular window
(and the MDCT with an arbitrary symmetric window).
In the present paper, we propose a new direct MDCT-to-DFT

conversion process that has the following advantages. Most im-
portantly, it overcomes the limitation of the above methods con-
cerning the window functions: It is valid for any arbitrary pair of
MDCT andDFTwindows. Also, this process is more efficient in
the sense that it does not rely on an intermediate representation
(such as the CLT) while also leading to a fast and accurate FIR
implementation. This FIR implementation inherently allows lo-
cality of theMDCT-to-DFT conversion, i.e., it can be applied on
a subband basis, and has a low complexity, even for full-band
conversion. Fast algorithms for the MDCT [14] and the DFT
[15] all have computational complexity of (
being the number of MDCT coefficients for a single transform,
or 1/2 of the frame size), while the proposed direct conversion
method only has computational complexity of . More-
over, unlike fast MDCT or FFT that depends on complicated
bit-reverse indexing and butterfly operations, the direct method
needs only vector scaling and vector addition, thus it is much
more simpler to implement and also memory efficient. The re-
sulting conversion process can be plugged on the output of any
perceptual audio coder based on MDCT representation to pro-
vide DFT coefficients corresponding to any arbitrary window,
hence ready-to-use for a large set of audio/speech processing
applications.

The rest of the paper is organized as follows. In Section II, a
general form of matrix transformation fromMDCT to DFT vec-
tors is presented. In Section III, the specific structure of the con-
version matrices is investigated. The fast FIR implementation
is derived from this specific structure in Section IV. Section V
presents the accurate low-order approximation of the FIR-based
conversion, numerical simulations, and an example of applica-
tion that validate this approach. Section VI concludes the paper.

II. MATRIX TRANSFORMATION FROM MDCT TO DFT
Assuming that the MDCT is calculated with a window func-

tion that satisfies the perfect reconstruction condition [1],
[3], then MDCT coefficients can be transformed back to time
samples, which can be further transformed to DFT coefficients.
Therefore, in this section, we first provide the expression of the
DFT coefficients (of a given signal frame) as a linear trans-
formation of the MDCT coefficients (of the same frame and
neighboring frames). For this aim, let us express the DFT ma-
trix and the MDCT matrix as trigonometric matrices. Here
a trigonometric matrix is the product of a real diagonal matrix
(window function part) and a matrix whose entries are of the
form of or its real part. Let
be the size of the MDCT (the number MDCT coefficients for a
single transform). The matrix is of size with
is of size , and we have2:

(1)

where for energy normalization. Note that we
can have different arbitrary window functions for and

for (but remind that must satisfy the perfect
reconstruction condition).
Given a time vector size of , whose first and second

halves are and , respectively, the corresponding MDCT
coefficient vector size of is

(2)

where are the first and last rows of , respectively.
Let us denote by , four consecutive sample
vectors of size , and denote by , the con-
catenation of and (see Fig. 2). Then MDCT coefficient
vector from (2). By
the IMDCT and the overlap-add operation, time samples and
can be recovered from the MDCT coefficients, but from the

last, current, and next frames:

(3)

if and , which is
ensured by the perfect reconstruction condition of the window
function .
2Note that for clarity, we adopt the “C convention” for vector/matrix entries

indexing, i.e., all indexes go from 0 to number of terms minus one. Vectors are
column oriented if not specified otherwise. The symbol denotes transpose,
denotes conjugate, and denotes transpose and conjugate.
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Similarly, for the DFT, let us denote by and the first and
last rows of . Thus the DFT carries the time vector
to DFT coefficient vector

for . Combining this latter equation for
with (3), the DFT coefficient vector for the time

vector is given by

(4)

where

(5)

are called conversion matrices, size of . Thereby,
the DFT coefficient vector of a given frame is obtained from
the MDCT coefficient vectors of the previous, current and next
frames, using three conversion matrices and ,
which depend only on the window functions and ,
and share a specific structure that we shall see in the next sec-
tion.
In the following, time samples are supposed to be real, thus

their DFT spectra are conjugate symmetric. Therefore, we only
consider the first rows of , hence the con-
version matrices are reduced from the original size to
truncated size .

III. STRUCTURE OF THE CONVERSION MATRICES
Each entry of the three conversion matrices , and
is an inner product between one DFT basis vector and one

MDCT basis vector. This gives a specific structure to the ma-
trices regardless of the MDCT window function and the
DFT window function 3.

A. Phase Shift, Toeplitz and Hankel Matrices
For the purpose of generality, i.e., deriving common proper-

ties for , and , let us define two trigonometric ma-
trices and given by

(6)

where are real window functions, and are
time shifts. We first study the product of and , and we
will apply the results to , and in Section IV with
specific settings of and .
Remark 1: In the first equation of (6), by changing
to , where is a constant frequency

3As already mentioned in the introduction, this is a notable extension to the
previous work [6] where a rectangular window function was considered for the
DFT. Note also that a specific matrix structure was also exploited in [6] but this
was within the MDCT-to-CLT conversion, although we consider here direct
MDCT-to-DFT conversion matrices.

shift, we can derive conversion from the MDCT to the shifted
DFT, including the MCLT. Since the real part of the MCLT is
simply the MDCT and the imaginary part is the MDST, we can
derive the MDCT-to-MDST conversion. But for clarity of nota-
tions and mathematical development (at the cost of minor gen-
erality), we restrict our development to the conversion from the
MDCT to the standard DFT.
The product of and has the form

(7)

where

(8)

(9)

Here is frequency-dependent phase shift, and is the
frequency response of with time and frequency
shift. See Appendix A for detailed derivation. Both and

are real, thus frequency response is conjugate sym-
metric about and -periodic except for a phase
term :

(10)

From (7), we see that matrix can be factored into two ma-
trices, the first one is for phase shift and the
second one is a sum of a Toeplitz matrix [16] and a Hankel
matrix:

(11)

This way (7) can be written as

(12)

Note that this structure is shared by the conversion matrices
, and since are special cases of and
are special cases of by (4) and (1).

Product of a Toeplitz matrix and a vector is equivalent to FIR
filtering applied to the vector; product of a Hankel matrix and
a vector is equivalent to FIR filtering applied to the reversed
vector. Therefore, applying matrix of (12) to a MDCT vector
is equivalent to two FIR filtering processes, one applied to
in the order of bin 0 to bin and the other applied to

the same vector but in the order of bin down to bin
0. However, neither nor is ready for vectorized
implementation of FIR filtering, because different rows have
different sets of non-zero entries (see the top two matrices in
Fig. 3), thus modification of filter taps are needed for different
DFT bins. In the following, we shall see that it is possible to
reorganize the entries of matrix into a global
Toeplitz matrix, where each row has the same sequence of non-
zero entries, leading to a single FIR filtering process ready for
vectorized implementation.
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Fig. 3. Splitting and mirroring of the Hankel matrix , and composition of the extended Toeplitz matrix . Here , and for
illustration.

B. Splitting and Mirroring of the Hankel Matrix
Equation (11) shows that the Toeplitz and the Hankel parts

are connected by the frequency response function , whose
properties (10) in turn lead to explicit relations between the two
parts:

(13)
(14)

provided negative column indexing is permitted, which is equiv-
alent to extending matrices to the left. Observe that the column
indexes in (13) add up to thus can be seen as mirrored
values about . Similarly, the column indexes in (14)
add up to thus can be seen as mirrored values about

. This mirror symmetry allows the matrix
to be split and mirrored, and then combined with the matrix

to form an extended matrix :

(15)

for . This process is illustrated in Fig. 3. The
splitting of is along , then the upper left
part is mirrored to the left about and the lower right
part is mirrored to the right about . is then
inserted between the two mirrored parts of . The resulting
extended matrix is a Toeplitz matrix size of :

(16)

If is replaced with , the vector needs to be
replaced with an extended version that echoes (15) so that by
(15) and (12), we have

(17)

The extended vector is given by (see Appendix B for the
details)

(18)

which can also be viewed as padding for the finite length input
. As can be seen in Fig. 3, the vector is mirrored about

to the left and about to the right
(with multiplication by ). Finally, the rightmost term of (17) is
a vectorized FIR filtering process applied on , as detailed in
the next section.

IV. SYMMETRIC FIR FILTERING OF MDCT COEFFICIENTS

A. Basic Implementation
Let us now apply the developments of Section III to the

MDCT-to-DFT conversion problem. Equation (17) can be
written as

(19)
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Fig. 4. Product of window functions. Here is a Hanning
window and is a KBD window.

Fig. 5. Filter taps for MDCT to DFT conversion (log-magnitude). Here
is a Hanning window and is a KBD window.

where the last equation is due to the conjugate symmetry of
in (10). Therefore, by extending , and in the

way of extending by (15), and extending , and
in the way of extending by (18), the matrix form of direct
MDCT-to-DFT conversion (4) can be equivalently represented
as FIR filtering.
Remark 2: Note that in (19), the FIR filtering, or convolution,

is applied in the MDCT domain. This is not the usual fast im-
plementation of time-domain convolution by frequency-domain
point-wise product. Also in (19), for each ,
the filtering process requires the same sequence of filter taps

, thus can be easily imple-
mented in a vectorized manner. In [10], direct MDCT-to-MDST
conversion with the same window function was derived through
trigonometric manipulations, resulting in a FIR filter similar to
(19). However, a key difference is that in [10], outputs at dif-
ferent bins require different segments of a filter taps sequence,
which complicates implementation.
Let us now calculate the phase term and FIR taps

for each of , and . For shorthand, let us denote here

(20)

Then let us substitute time shifts of , and in place of
, and times shifts of , and in place of for matrices
and defined in (6). From (8), we have the phase terms:

(21)

and from (9), we have the filter taps determined by the window
functions and :

(22)

See Appendix C for the details. Also, the vectors
are extended to , respectively,

using (18) and here .
Then applying (21) and (22) to (17), (16), and (4), we have

(23)

Therefore, each of can be seen as a FIR filter with
taps and is conjugate symmetric by (10). The FIR filtering

processing of (23) is represented as a flowchart diagram in
Fig. 6(a).

B. Filter Coefficients Calculation Using DFT and Alternative
Implementation
One way to compute the filter taps is to use (22) directly. But

it is also possible to compute the filter taps by the DFT, that is,
DFT of element-wise window function product with appropriate
pre- and post-twiddle. Let

be two circular extensions of , which are different only
in sign at their second halves. Let and

. Then, we have

(24)

where denotes DFT size of , and the pre- and post-
twiddle factors are

(25)

for (see Appendix C). Fig. 4 provides
an illustration of window function products and Fig. 5 provides
an illustration of the magnitude of the corresponding filter taps
(discussed in Section V.A). Note that an important case is when
both and are symmetric. Then the filter taps in
(24) have equal real and imaginary parts except for sign (see
Appendix C):

(26)
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Fig. 6. (a) Flowchart of direct MDCT-to-DFT conversion by (23); (b) Flowchart of direct MDCT-to-DFT conversion by (27). Here denotes one frame delay
of the MDCT spectrum, denotes extension (padding) operation for the MDCT spectra by (18), denotes convolution with the filter .

Obviously, the taps , and can be easily
recovered from (24) with

, and , and since
this calculation is made only once, the FIR process can be then
implemented with (23). Alternately, the coefficients of (24) can
be used directly in the equivalent FIR filtering:

(27)

where and for consis-
tency. This alternative FIR filtering processing is represented
as a flowchart diagram in Fig. 6(b). Although a little bit more
complicated than the implementation of (23)/Fig. 6(a) because
of the MDCT vectors addition/subtraction, we will consider this
implementation in the next section since we shall see that (24)
is not only a fast way to compute filter taps but also plays a key
role in addressing the problem of low-order FIR approximation
and convergence of filter taps as . Because of the tight
and simple links between both sets of filters, similar derivations
and conclusions can be drawn from the simpler implementation
(23).

V. LOW-ORDER FIR APPROXIMATION

A. Energy Concentration of Filter Taps
Both the MDCT and the DFT are Fourier-type spectral trans-

forms with a grounded physical interpretation in terms of en-
ergy concentration around the spectral components of the trans-
formed signal. Given a pure tonal signal where
the frequency , with appropriate smooth windowing

functions, both its MDCT spectrum and its DFT spec-
trum concentrate at . Moreover, and

should have similar shapes since they both approximate
the power spectrum of (for a discussion on the specific
shape of MDCT spectra, see, e.g., [17] and [5]). Therefore, only
minor localmodifications should be needed to go from to

, i.e., each coefficient should be fairly well recon-
structed from and the neighboring coefficients, and there-
fore, we can expect some energy concentration of the three fil-
ters in the coefficients around . Note
that this echoes the discussion about the locality vs. non-locality
of the conversion in the introduction.
This is totally compliant with the fact that from the perspec-

tive of multirate filterbank, smooth window functions
and are impulse responses of low-pass prototype FIR fil-
ters [18], and therefore, in the frequency domain both
and are assumed to have a narrow mainlobe centered
around 0 that concentrates most of the taps energy (one of the
most important design goals of window functions [19]). This
is, for example, the case for the Hamming or Hanning window
used for the DFT, and the sine or KBD window used for the
MDCT. Then, this will also be the case for the product func-
tions and . More specifically, sup-
pose that the mainlobes of the frequency responses of
and are within and , re-
spectively. Since time-domain point-wise product corresponds
to frequency-domain convolution, by (24), most energy of
will be within

Similar results can be drawn for and .
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The energy concentration property of the conversion filters
is illustrated in Fig. 5. Here, the DFT window is a Han-
ning window (widely used in, e.g., spectral analysis) and the
MDCT window is a KBD window (the most frequently
used window in AAC coding [2]), Let us recall that the filter
taps are conjugate symmetric (about ) so that we
only represent here their magnitude for positive indexes . It
can be seen that for the three filters the power of the taps de-
creases to 0 very quickly with the index (note the scale
of the -axis). Taps with (i.e., 99.2% of taps)
are more than 50 dB below the tap at ; in other words,
most of the taps energy is concentrated at a few low-frequency
bins. Of course, how much precisely of energy is concentrated
at low frequency taps depends on the DFT and MDCT window
functions, but similar results are obtained with other window
combinations.

B. Low-Order Approximation

Based on the above discussion, it is possible to approximate
(27) accurately by keeping only several most significant taps,
that is, keeping the coefficients of the conversion filters for

, with , and setting the other coefficients
to zeros. Furthermore, when doing that, it may be desirable
that the number of coefficients kept be not the same for the
three filters, i.e., for for , and

for , resulting in an approximate FIR filtering4:

(28)

Indeed, the three filters and display the same
general trends, but they generally do not have the same overall
magnitude and decaying speed. As illustrated in Fig. 5,
usually decays faster to 0 than , due to their difference in
the phasing of the window functions (Fig. 4). But on the other
hand, usually has larger total energy than , that is,

, by (24)
and Parseval’s theorem. Therefore, different values for
and in (28) can be set to obtain the best tradeoff between
(high) conversion accuracy and (low) computational cost.
More specifically, the computational cost of the approximate

FIR processing is proportional to the total number of kept taps
4Note that (28) reveals locality between MDCT spectra and DFT spectra, as

discussed in Section V.A: An output coefficient depends mainly on the
and consecutive input coefficients in and cen-

tered at bin , respectively. This is a direct consequence of energy concentration
of the filter taps.

Fig. 7. Approximation accuracy versus the total number of taps kept. Here
is a Hanning window. Both the random and music sig-

nals have samples.

. Its accuracy can be estimated in log
signal-to-noise power terms as (see Appendix D):

(29)

where

(30)

Equation (29) can be used to predict approximation accuracy
before filtering signals with given filters length, or to set
and corresponding optimal values of and given a
target accuracy. For a given value of , one basic strategy
to obtain and is to sort out all coefficients

in decreasing order of their absolute values, then
keep the first taps, and finally count out , and .
Following this sorting strategy for a range of values, it

is shown in Fig. 7 that the estimated SNR of (29) closely fol-
lows the actual SNR (resulting from numerical simulations) for
both random and musical signals ( samples, or 113 s of
44.1 kHz signal), hence validating (29). This is observed here
for both the Hanning-KBD and the Hanning-sine window con-
figurations. The Hanning-KBD configuration appears to be sig-
nificantly more accurate than the Hanning-sine given the same

, which is consistent to the significantly lower side-
lobes of the KBD window than those of the sine window5. We
can also see from Fig. 7 that setting is enough to keep
SNR at about 60 dB for the Hanning-KBD configuration. Such a
number of coefficients is very low compared to the MDCT size

. (Note that for the Hanning-KBD configuration, a
reconstruction SNR about 100 dB is obtained with ,
i.e., 1/16 of the number of MDCT coefficients.)

C. Asymptotic Analysis of FIR Approximation
As the MDCT size increases, we may expect that, for a

given accuracy, the required total number of taps increases
5This is why the KBD window is used more often in AAC coding.
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Fig. 8. Approximation accuracy versus the total number of taps kept over dif-
ferent . Here is always a Hanning window.

too. But this is not the case: the required actually tends
to saturate at some value even as , which guarantees

complexity of the approximate FIR filtering process for
a given accuracy. This saturation phenomenon is illustrated in
Fig. 8, where the independence of w.r.t. is visible for
SNRs lower than, say, 60 dB with the Hanning-KBD configura-
tion, and for SNRs lower than, say, 45 dB with the Hanning-sine
configuration.
There are two reasons for this phenomenon: The first is that

the total energy of the taps of each of the three filters in (27) is
proportional to ; the second is that for a fixed , the filter tap

, or , or , when normalized (divided) by ,
converges to a fixed value as . Thus, if first ,
and taps of the three filters are to be kept, respectively, then
the ratio of their energy to the total energy converges, and by
(29), this implies that the accuracy converges too as .
If this limit accuracy is no lower than the required accuracy, then

will ensure the required accuracy for
any , in other words, the needed saturates at some value
as . Let be a function defined on [0, 1] whose peri-
odical extension on has a convergent Fourier series, and when
discretely sampled, becomes the window function product with
pre-twiddle (or ). By
(24) and Parseval’s theorem, as , we have

(31)

Note that the post-twiddle factor, , which does not
change energy, is omitted here for simplicity, and

(32)

(33)

The same is true for and . Therefore, the two reasons
mentioned above are valid and saturation of is guaranteed.

D. Comparison With the Plain MDCT-to-DFT Conversion
The complexity of the direct MDCT-to-DFT conver-

sion for a complete spectrum
is real multiplications and

real additions using (28), or
totally . On the other hand, the plain
MDCT-to-DFT conversion scheme, that is, ,
has the complexity of of ad-
ditions and multiplications (the fast IMDCT based on
the FFT costs [14]; the split-radix FFT
costs ). Therefore, roughly, if

, then, theoretically, the direct
method will be faster than the plain method. For a typical

, we have .
Moreover, compared to the plain method, the proposed di-

rect method has the two following major advantages. First, it
works also locally, that is, conversion can be applied directly
within a subband by (28). In contrast, calculating a reduced set
of DFT coefficients with the plain scheme implies to calculate
the complete IMDCT. Second, (28) is straightforward to imple-
ment in Matlab, C, or assembly. Unlike the fast IMDCT and the
FFT, it does not involve any bit-reversed addressing or compli-
cated data flow control, and can be very efficient on systems
supporting vector operations, for example, most modern DSPs.
We have implemented the direct method on Matlab using

vector operations. It runs about 60X real-time on a 3.0 GHzCPU
for 44.1 kHz mono signals with and . We
have also implemented both the direct method and the plain
method in C. (The Matlab and C implementations are available
at http://www.gipsa-lab.grenoble-inp.fr/~laurent.girin/demo/).
Running times in ms of both methods with different and
different are shown in Table I. Generally, the larger
or the smaller , the faster the direct method relatively,
and the break-even is about 20, close to the above-men-
tioned value. It should be noted that the fast IMDCT and the
FFT in the plain method use the renowned FFTW3 library
(http://www.fftw.org) which is highly optimized, although the
direct method is implemented without using any optimized
vector library.

E. Example of Application—Phase Vocoder
As a straightforward example of application, we have com-

bined our direct conversion method in Matlab with D. Ellis’s
vocoder [20]. A phase vocoder typically works in the DFT
domain and speeds up or slows down audio signals by interpo-
lating the amplitude and phase of DFT coefficients [21], [22].
With the direct MDCT-to-DFT method, we can construct a
phase vocoder that accepts MDCT coefficients as input. This
is applicable to audio signals compressed by MDCT-domain
audio coders. For instance, the inputs are MDCT coefficients
decoded from AAC bitstreams encoded at 32 kbps for a mono
speech signal sampled at 16 kHz. The performance are tested
in terms of SNR (against exact MDCT-to-DFT conversion, i.e.,
log power ratio between reconstructed signal and difference
between reconstructed signals with the two methods) and
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TABLE I
RUNNING TIME OF THE DIRECT MDCT-TO-DFT METHOD AND THE PLAIN

METHOD , C IMPLEMENTATION

TABLE II
SNRS AND MOS OF THE PHASE VOCODER WITH THE APPROXIMATE
MDCT-TO-DFT CONVERSION AGAINST THE PHASE VOCODER

WITH THE EXACT MDCT-TO-DFT CONVERSION

Mean Opinion Score (MOS, given by the PESQ evaluation
software [23], references are time-scaled signals with the exact
conversion). In Table II, results with two time scaling factors
( , slowing down) and four different approximation
orders are given. It is found that the SNRs
are noticeably lower than the SNRs of the direct conversion
itself (i.e., without time scaling) with the same approximation
order. This is because the phase vocoder accumulates phase
and thus accumulates phase error, and reconstruction SNRs are
very sensitive to this problem. However, the quality in terms of
MOS given by PESQ is quite good for (larger than
4, which means the difference between the approximate and
exact methods are perceptually insignificant), and it remains
fair even for the extreme case .

VI. CONCLUSION
In this paper, we have proposed a method for converting

MDCT coefficients to DFT coefficients through conjugate
symmetric FIR filtering, which can be effectively approximated
by retaining only the few first (most significant) taps. This
method is based on the observation that three MDCT-to-DFT
conversion matrices are involved in this process, and that
each of those three matrices can be separated into a Toeplitz
matrix and a Hankel matrix, which can be combined into an
extended Toeplitz matrix due to the 1/2 frequency shift term in
the MDCT. Also, we exploited the fact that the coefficients of

the extended Toeplitz matrices are DFT coefficients of window
functions products, resulting in an equivalent FIR filtering
process with sharp concentration of energy at low-frequency
taps for usual DFT and MDCT window functions.
Beyond the presented study, the low order FIR filtering for

MDCT-to-DFT conversion reveals an intrinsic relationship be-
tween the MDCT and the DFT: the energy of an MDCT co-
efficient is projected locally, that is mostly to a few DFT co-
efficients of near frequencies. Therefore, using the presented
conversion technique, it is possible to accurately estimate am-
plitude, phase or group delay of a signal in a subband using
local MDCT coefficients and very few local computations (in-
stead of relying on whole spectra IMDCT synthesis and DFT
analysis). In a general manner, the proposed method allows di-
rect chaining of MDCT-based perceptual audio decoders (e.g.,
AAC) and DFT-domain processing. As a straightforward ex-
ample of application, we have plugged our conversion method
between an AAC decoder and a phase vocoder. Another appli-
cation of this method is for MDCT quantization in perceptual
audio coders: the method may allow accurate and efficient con-
trol of quantization noise in the MDCT domain according to
DFT domain psychoacoustic criteria. Finally, we plan to plug
the presented method within the Informed Source Separation
(ISS) system of [24], which is based on a DFT-domain Wiener
filtering of source signals from mixture signals, to adapt it effi-
ciently to AAC compressed mixture signals: source separation
and generation of remix signal will then be possible without
passing through mix signal time-domain reconstruction.

APPENDIX A

Note that .
Then, the entry of at , by definition of matrix
multiplication and (6), is



576 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 21, NO. 3, MARCH 2013

as is stated in (7), (8), and (9).

APPENDIX B

To show that the extended vector given by (18) indeed
satisfies (17), we compare the th element in and the th
element in .
By (16) and (18), we have

Therefore, the extended vector given by (18) satisfies (17).
(Note that the phase term verifies .)

APPENDIX C

From (1), we write explicitly the matrices and as

which implies their time shifts are and ,
respectively. Obviously, both and have time shift 0 while
both and have time shift . Then replace

with the time shifts of and replace with time
shifts of respectively in (8), we have

Note that . To compute the
filter taps by (9), we have to replace with the
window functions for , and , and then replace with
the window functions for , and :

Note that ranges from to for , from 0 to
for , and from 0 to for . Then (22)

follows readily from the above.
For the DFT form (24), the modulation term is

instead of the normal . But we have

which implies (24). Themodulation term also has a special sym-
metry due to its phase:

Now consider and are even symmetric (and real).
Then window function products and
are even symmetric too and is odd symmetric,
which, with the above symmetry of the modulation term, lead
to (26).
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APPENDIX D

Let us assume that in (28), coefficients are zero-mean
uncorrelated white noises with the same variance equal to 1.
Then, the variance of the error of approximating (defined
in (19), but with subscript ) in (28) is

(34)

And similarly, the variance of the exact filter output is

(35)

Similar results can be drawn for and . Let us
further assume that in (28) are indepen-
dent with each other (in addition to being each one a zero-mean
1-variance white noise). The function defined in (30)
is the total energy of the first taps of the three filters, re-
spectively. Then, by (34), the variance of total approximation
error of DFT coefficient using (28) is

(36)

and by (35), the variance of the DFT coefficient is

(37)

Therefore, the approximation accuracy in term of log-SNR can
be estimated as

(38)

Note that the white noise and independence assumptions of
, and may not be valid in reality. Neverthe-

less, (29) still gives very close estimation of the approximation
accuracy even for musical signals, as shown by experiments,
illustrated in Fig. 7, and commented in Section V.B.

REFERENCES
[1] J. Princen and A. Bradley, “Analysis/synthesis filter bank design based

on time domain aliasing cancellation,” IEEE Trans. Acoust., Speech,
Signal Process., vol. ASSP-34, no. 5, pp. 1153–1161, Oct. 1986.

[2] “Coding of moving pictures and audio, Part 7: Advanced audio
coding,” Tech. Rep. ISO/IEC 13818-7, 2005, ISO/IEC JTC1/SC29/
WG11 MPEG.

[3] H. Malvar, Signal Processing With Lapped Transforms. Norwood,
MA: Artech House, 1992.

[4] Y. Wang, L. Yaroslavsky, M. Vilermo, and M. Vaananen, “Some pecu-
liar properties of the MDCT,” in Proc. 5th Int. Conf. Signal Process. .
WCCC-ICSP ’00, Aug. 2000, vol. 1, pp. 61–64.

[5] S. Zhang, W. Dou, P. Chi, and H. Yang, “MDCT spectrum separation:
Catching the fine spectral structures for stereo coding,” in Proc. IEEE
Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Mar. 2010, pp.
369–372.

[6] S. Zhang, W. Dou, and H. Yang, “DFT spectrum estimation from crit-
ically sampled lapped transforms,” Signal Process., vol. 91, no. 2, pp.
300–310, Feb. 2011.

[7] K. Suresh and T. Sreenivas, “Linear filtering in DCT IV/DST IV
and MDCT/MDST domain,” Signal Process., vol. 89, no. 6, pp.
1081–1089, Jun. 2009.

[8] S. Merdjani and L. Daudet, “Direct estimation of frequency from
MDCT-encoded files,” in Proc. 6th Int. Conf. Digital Audio Effects
(DAFx-03). DAFx-03, Sep. 2003, pp. 1–4.

[9] M. Goodwin, “Efficient system and method for converting between
different transform-domain signal representations,” U.S. patent App.
09/948 053, Sep. 2001.

[10] C. Cheng, “Method for estimating magnitude and phase in the MDCT
domain,” 116th AES Convention May 2004, Audio Engineering
Socitey, p. Paper Number: 6091.

[11] H. Malvar, “A modulated complex lapped transform and its applica-
tions to audio processing,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process. ICASSP’99, Mar. 1999, vol. 3, pp. 1421–1424.

[12] S. Chen, N. Xiong, J. H. Park, M. Chen, and R. Hu, “Spatial parameters
for audio coding: MDCT domain analysis and synthesis,” Multimedia
Tools Applicat., vol. 48, no. 2, pp. 225–246, 2010.

[13] M. Bosi and R. E. Goldberg, Introduction to Digital Audio Coding and
Standards. Norwell, MA: Kluwer, 2003.

[14] P. Duhamel, Y. Mahieux, and J. Petit, “A fast algorithm for the imple-
mentation of filter banks based on ‘time domain aliasing cancellation’,”
in Proc. Int. Conf. Acoust., Speech, Signal Process. ICASSP’91, Apr.
1991, vol. 3, pp. 2209–2212.

[15] P. Duhamel, “Implementation of “split-radix” FFT algorithms for
complex, real, and real-symmetric data,” IEEE Trans. Acoust., Speech,
Signal Process., vol. ASSP-34, no. 2, pp. 285–295, Apr. 1986.

[16] R. Gray, Toeplitz and Circulant Matrices: A Review. Hanover, MA:
Now Publishers Inc., 2006.

[17] L. Daudet and M. Sandler, “MDCT analysis of sinusoids: Exact results
and applications to coding artifacts reduction,” IEEE Trans. Speech
Audio Process., vol. 12, no. 3, pp. 302–312, May 2004.

[18] P. Vaidyanathan, Multirate Systems and Filter Banks. Englewood
Cliffs, NJ: Prentice-Hall, 1993.

[19] F. Harris, “On the use of windows for harmonic analysis with the dis-
crete Fourier transform,” Proc. IEEE, vol. 66, no. 1, pp. 51–83, Jan.
1978.

[20] D. P. W. Ellis, “A phase vocoder in Matlab,” 2002 [Online]. Available:
http://www.ee.columbia.edu/~dpwe/resources/matlab/pvoc/

[21] M. Portnoff, “Implementation of the digital phase vocoder using the
fast Fourier transform,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. 24, no. 3, pp. 243–248, Jun. 1976.

[22] M. Dolson, “The phase vocoder: A tutorial,” Comput. Music J. vol.
10, no. 4, pp. 14–27, 1986 [Online]. Available: http://www.panix.com/
~jens/pvoc-dolson.par

[23] “Perceptual evaluation of speech quality (PESQ): An objective method
for end-to-end speech quality assessment of narrow-band telephone
networks and speech codecs Tech. Rep. ITU-T Rec. P.862, 2001,
ITU-T Rec. P.862.

[24] A. Liutkus, J. P. amd Roland Badeau, L. Girin, and G. Richard, “In-
formed source separation through spectrogram coding and data em-
bedding,” Signal Process., vol. 19, no. 10, pp. 1–13, 2011.

Shuhua Zhang was born in Anhui, China, 1978.
From 1997 to 2001, he studied at the Beijing Institute
of Technology, Beijing, China, where he received
a B.Sc. degree. In January 2011, he received his
Ph.D. degree from the department of electronic
engineering, Tsinghua University, Beijing, China, on
low-bitrate stereo audio coding. From February 2011
to July 2012, he was a post-doctoral researcher at the
GIPSA-Lab (Grenoble Laboratory of Image, Speech,
Signal, and Automation), Grenoble, France, and
worked on informed source separation. His research

interests include: audio and speech coding, spatial audio, time-frequency
transforms, blind and informed source separation, and fast DSP algorithms.



578 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 21, NO. 3, MARCH 2013

Laurent Girin was born in Moutiers, France, in
1969. He received the M.Sc. and Ph.D. degrees in
signal processing from the Institut National Poly-
technique de Grenoble (INPG), Grenoble, France,
in 1994 and 1997, respectively. In 1999, he joined
the Ecole Nationale Supérieure d’Electronique et
de Radioélectricité de Grenoble (ENSERG), as an
Associate Professor. He is now a Professor at Phelma
(Physics, Electronics, and Materials Department
of Grenoble-INP), where he lectures (baseband)
signal processing, from theoretical aspects to audio

applications. His research activity is carried out at GIPSA-Lab (Grenoble Labo-
ratory of Image, Speech, Signal, and Automation). It concerns different aspects
of speech and audio processing (analysis, modeling, coding, transformation,
synthesis), with a special interest in joint audio/visual speech processing and
source separation.


