Audio-visual enhancement of speech in noise
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A key problem for telecommunication or human—machine communication systems concerns speech
enhancement in noise. In this domain, a certain number of techniques exist, all of them based on an
acoustic-only approach—that is, the processing of the audio corrupted signal using audio
information (from the corrupted signal only or additive audio information). In this paper, an
audio-visual approach to the problem is considered, since it has been demonstrated in several studies
that viewing the speaker’s face improves message intelligibility, especially in noisy environments.
A speech enhancement prototype system that takes advantage of visual inputs is developed. A
filtering process approach is proposed that uses enhancement filters estimated with the help of lip
shape information. The estimation process is based on linear regression or simple neural networks
using a training corpus. A set of experiments assessed by Gaussian classification and perceptual
tests demonstrates that it is indeed possible to enhance simple stimuli (vowel-plosive-vowel

sequences) embedded in white Gaussian noise.
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I. INTRODUCTION

The bimodal nature of speech is now acknowledged as a
basic characteristic, both for understanding speech percep-
tion (Summerfield, 1987) and for developing tools for
human—human and human—machine communication (Bern-
stein and Benoit, 1996). One of the most well-known para-
digms for the study of audio-visual speech perception is the
identification of speech in noise (Sumby and Pollack, 1954;
Erber, 1975; MacLeod and Summerfield, 1987; Benoit et al.,
1994; Grant and Walden, 1996; Robert-Ribes et al., 1998).
In the field of speech technologies, there is an increasing
number of works on automatic audio-visual speech recogni-
tion systems, evaluated in general through their performance
in recognizing speech in adverse conditions (e.g., Stork and
Hennecke, 1996).

In all these studies, a common assumption is that the
audio and visual sensors process information independently
for parameter estimation, feature extraction or category esti-
mation (according to the various architectures proposed, see
Schwartz et al., 1998) before they are fused by the human
brain or the decision recognition algorithm for achieving an
audio-visual identification task. The question of the depen-
dence versus independence of processing is seldom ad-
dressed (although see Massaro, 1989) but independence is
implicit in all recognition systems and cognitive models of
audio-visual speech identification.

At the same time, it is obvious that there is some depen-
dence between the content of the sensory inputs, that is audio
and visual speech, since they are both consequences of one
physical cause, the articulatory gestures: e.g., spread lips
may be associated in French with the sound of an [i] or a [ti]
but not an [y] or a [by], while open lips are compatible with
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almost nothing but the sound of an [a]. This means that some
predictions about the sound should be feasible from the im-
age. Indeed, it seems that the visual information coming
from a speaker is able to improve the auditory detection of
speech in noise (Grant and Seitz, 2000). Hence it is likely
that audio and video processing are not independent in hu-
man perception. This could result in an additional contribu-
tion to audio-visual speech perception, in which the visual
stream would not only provide an intrinsic benefit through
lipreading, but also, at an earlier level, help the extraction of
audio cues necessary for identification (Barker ef al., 1998).
This idea receives some confirmation through data obtained
by Driver (1996) which show that seeing a speaker improves
the identification of a message produced by another unseen
speaker, the audio component of which has been mixed with
the audio component of the seen speaker’s message.

All these facts lead us to suggest that sound enhance-
ment could exploit the information contained in the coherent
visible movements of the speaker’s face. The objective of
this study was to demonstrate the technical feasibility of
audio-visual speech enhancement—that is, the enhancement
of noisy speech sounds, using the video input—which, to our
knowledge, has never before been attempted. We developed
a prototype system that generates enhanced speech sounds
from noisy speech plus visual information. It is based on a
fusion-and-filtering algorithm that combines the information
provided by the noisy audio and video channels to estimate
the parameters of an enhancement filter—in this case, a
Wiener filter—and then processes the noisy audio input with
this filter.

This study focused on degradations due to additive, sta-
tionary, white Gaussian noise. Obviously, such “‘simple’’
degradations of the audio input could be efficiently removed
using classical pure audio enhancement systems, such as
spectral subtraction based on noise estimation in silent peri-
ods of speech (Boll, 1979; McAulay and Malpass, 1980;
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Kang and Fransen, 1989; Le Bouquin-Jeannes and Faucon,
1995), multi-microphone techniques (Widrow et al., 1975;
Sambur, 1978; Boll and Pulsipher, 1980; Ferrara and Wid-
row, 1981; Harrison et al., 1986; Feder et al., 1989), or blind
source separation (Comon et al., 1991; Jutten and Hérault,
1991; for an overview of basic acoustic speech enhancement
methods, see Lim, 1983). However, our aim was to demon-
strate that enhancement may be improved through the use of
the video channel. Therefore, we focused on a mono-
microphone technique, and special care was given to imple-
ment three variants within the fusion-and-filtering process:
that is, filter parameters were estimated from only the audio
sensor, only the video sensor, or both sensors. The enhance-
ment results were then compared systematically. This en-
abled us to determine if the system was able to exploit the
partial complementarity of the audio and video signals in
speech perception: that is, the phonetic contrasts least robust
in auditory perception in acoustical noise are the most visible
ones, both for consonants (Summerfield, 1987) and vowels
(Robert-Ribes et al., 1998). In the future, our project will be
to combine the audiovisual technique—if successful —with
the previously mentioned pure audio mono- or multi-
microphone algorithms to improve speech enhancement: this
will be discussed further in Sec. V.

This paper is organized into five sections. In Sec. II, we
introduce the basic components of the system: the architec-
ture for estimating filter parameters from audio and video
inputs, the filter design, and the nature of these audio and
video inputs. In Sec. III, we describe the experimental con-
ditions in more detail and present the main results obtained
with an early version of the system. In Sec. IV, we present a
second version in which we implemented more powerful
(and more successful) processing tools to eliminate difficul-
ties encountered with plosives. Both objective tools such as
classification experiments and subjective tools involving per-
ceptual data from identification tests were used to assess the
enhancement effect. Finally, in Sec. V, we evaluate the
achievements of the system and propose a number of direc-
tions for future development.

Il. ARCHITECTURE OF THE SPEECH ENHANCEMENT
SYSTEM

A. Audio-visual fusion for speech enhancement

Audio-visual speech enhancement is a multi-channel en-
hancement problem. Most classical multi-sensors noise can-
celing systems are based on the calculation of correlation
functions between the samples of different audio inputs. In
our case, the two sensors, that is, the audio and the video
input, are quite different in nature. Indeed, the visual input,
which is restricted to lip characteristics, has a low sampling
frequency compared to the audio one, and it provides only
partial information about the vocal tract shape, and no infor-
mation at all about the source. Hence no usual correlation
function can be computed, and we cannot exploit these noise
canceling systems as they are. However, the partial informa-
tion provided by the lips about the vocal tract shape corre-
sponds to some information on the spectral shape of the
speech signal. Hence it can be used to define the spectral
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FIG. 1. Four integration models for audiovisual speech identification.

parameters of an enhancement filter designed to process the
audio noisy channel. As additional spectral information
should be available from the audio channel, even degraded,
the audio and video inputs must be integrated for an accurate
estimation of the filter.

Since the problem of mixing an audio and a video
speech stream has been addressed extensively in automatic
speech recognition, it may be interesting to analyze the pro-
posed solutions. It appears that there exist four basic archi-
tectures for fusing sounds and images toward the identifica-
tion of the speech message (Schwartz et al., 1998). We shall
review them briefly, before attempting to study their adapta-
tion to the speech enhancement problem.

In speech recognition, the problem is to estimate a pho-
netic class from audio and video parameters. In the Direct
Identification model (DI), the input stimuli are recognized by
a bimodal classifier, which works with vectors of concat-
enated audio-visual parameters [Fig. 1(a)]. In the Separate
Identification model (SI), the audio and video inputs are clas-
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sified separately before a late-integration fusion process oc-
curs on the separate classification results [Fig. 1(b)]. In con-
trast, the last two models are based on early-integration (i.e.,
before classification). In the Dominant Recoding model
(DR), audition is supposed to be the dominant modality for
speech perception and the visual input is recoded into an
auditory representation. Then, classification takes place in-
side this auditory integration space [Fig. 1(c)]. In the Motor
Recoding model (MR), both inputs are projected into an
amodal motor representation of articulatory gestures before
fusion and classification [Fig. 1(d)].

In this speech enhancement problem, the parameters of
an enhancement filter H(#) must be estimated from audio
and video parameters. The noisy acoustic input is then pro-
cessed by this filter to provide an enhanced audio signal. By
adapting the previous taxonomy to audio-video fusion for
filter estimation, four possible architectures can be defined:
Direct Estimation (DE) of the filter from the audio+video
parameters [Fig. 2(a)]; Separate Estimations (SE) of spectral
characteristics of the filter from each input, followed by a
fusion process [Fig. 2(b)]; Dominant Recoding (DR) of the
video input into spectral characteristics of the filter [Fig.
2(c)]; or implementation of a complete audio-visual inver-
sion process followed by a resynthesis of the filter (Motor
Recoding, MR) [Fig. 2(d)].

Within these four architectures, the last one, MR, while
quite appealing for theoretical and technical reasons, seems
not feasible at present. Indeed, articulatory data are sorely
lacking, and neither audiovisual-to-articulatory inversion,
nor articulatory-to-acoustic synthesis are sufficient (although
see promising advances in, e.g., Bailly ef al., 1991; Schroeter
and Sondhi, 1994; Yehia et al., 1998). The DR structure,
which is the simplest one, has already been tested (Girin
et al., 1996). Although preliminary results on vowel en-
hancement were interesting, they were limited by the fact
that the filter was estimated only from the visual input.
Therefore, it seems necessary to combine audio and video
inputs for filter estimation, which is the case of the two other
architectures, SE and DE. Using DE seems to provide a more
general framework than SE and requires fewer a priori as-
sumptions about audio-visual fusion; this is the one which
was selected in this study. In this architecture, the filter esti-
mation is realized from both the video and the noisy audio
input. We compared this audio-visual (AV) version with an
audio-only (A) condition and with a video-only (V) condi-
tion in which only the noisy audio input or only the video
input was used for filter estimation. Notice that the V condi-
tion is similar to both the DR architecture and the video
branch of SE, while the A condition is a special case of the
audio branch of SE. This provided a basic homogeneous
framework for a comparison with the audio techniques. Such
comparisons enabled us to evaluate the true benefit of the
video input for speech enhancement, and the role of the
audio-visual synergy in this process. In the following, the
synergy criterion will be the test of the inequality AV=(A or
V), that is, performances should be better with two inputs
than with one.
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ment.

B. Filter estimation

The sensor fusion process in the DE architecture con-
verges on the estimation of the filter frequency response
H(0) [Fig. 2(a)]. We shall now specify our choice for this
filter and its estimation process. Let us denote, respectively,
the speech signal s(¢), the noise v(#) [white, Gaussian and
assumed to be uncorrelated with s(7)], and the observed
noisy signal x(¢#)=s(¢)+v(¢). The linear, optimal estimator
of the signal according to the mean square error criterion is
obtained by filtering x(#) with the Wiener filter, of which the
expression in the (normalized) frequency domain is (Lim,
1983):

P
H(6)= (1)
where P (6) and P,(6) denote, respectively, the power
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spectral densities (PSD) of the signal and the observed noisy
signal.

P ,(6) can be estimated directly from the observed noisy
signal with classical spectral analysis techniques. The major
problem is the estimation of P (#) since the signal is cor-
rupted by noise. In the present system, P () was estimated
using an associative algorithm (henceforth ‘‘associator’’)
trained on data from a training corpus. This corpus contained
clean audio stimuli and their associated video input. The au-
dio stimuli were mixed with noise in a controlled way, so
that both clean and noisy spectra (PSD) were available.
Then, we used this training set to tune the following three
associators:

e an audio-only associator A estimating P (#) from P,.(6)
only;

* a video-only associator V estimating P (#) from the video
input only;

 an audio-visual associator AV estimating P () from both
P (0) and the video input.

Concerning the representation of the PSDs, a linear pre-
diction (LP) model was used (Markel and Gray, 1976). There
are several justifications for this choice. Since the lip contour
provides no information about the source, only the global
shape of the short-time spectral amplitude (STSA) of the
signal can be estimated from a labial shape, rather than any
information on the fine (temporal) structure of the signal > It
so happens that the LP model is an efficient method for
coding the STSA envelope with a small number of coeffi-
cients that can be used by the associators. Furthermore, the
LP model has the form of an all-poles transfer function, that
is to say a numeric filter, which can be easily used to build
the enhancement filter.

Thus the A, V, or AV associators deliver an estimated
spectrum of the signal modeled by LP equations, that is,

2)

where As(z)z 14+3=7_,a,;z"" is the polynomial of the esti-
mated LP signal model and és is its gain (the detailed pro-
tocol for this estimation will be described in the methodol-
ogy sub-sections). Then, the PSD P(6) can be estimated by
|S,(e/%)|?. The observation spectrum is estimated with the
LP model calculated directly on the noisy signal, that is,
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and P.(#) can be estimated by |S,(e/%)|?>. Now, the en-
hancement filter is defined by
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S(z)=

3)

H(z)=

)

This filter was implemented with the two following restric-
tions. First, since no information about the source energy can
be estimated from the lip shape, (A}A, remained unknown. In
other words, only the a,; coefficients could be estimated
from the lip shape (i.e., the coefficients that describe the
global shape of the spectrum but not its energy level). Thus
the filter was defined without its gain, and the output signal
was renormalized in energy with the same energy as the
input signal. Second, to simplify the model, only the causal
factorized part of the filter was considered, that is,

H(z)= M (35)
Ay(2)

Hence, the filtering can be considered as a two-step process,
summarized in Fig. 3. In the first step, an LP analysis was
performed on the noisy signal and the noisy residual signal
was extracted by filtering through the inverse noisy LP filter
A,(z). Then, a new signal was synthesized by filtering the
residual through the LP filter I/As(z), estimated by the as-
sociators. Enhancement was expected, provided that the es-
timated spectrum was close enough to the true spectrum of
the signal, or at least, closer than the noisy spectrum
1/A(z). For continuous speech, the processing was per-
formed frame-by-frame in synchrony with the extraction pe-
riod of the video parameters. A trapezoidal window was ap-
plied to frame junctions to ensure the continuity of the
filtered signal.

Ill. A, V, AND AV ENHANCEMENT OF
VOWEL-PLOSIVE-VOWEL SEQUENCES

A. Stimuli
1. Phonetic content and predictions

To evaluate the feasibility of the method and to assess
its potential advantages and drawbacks, we worked on a
simple corpus consisting of single speaker French vowel—
consonant sequences of the form V,CV,CV,, where V, and
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TABLE I. Phonetic features for the vowel set [a,i,y,u] (a) and the plosive set
[pstk,b.d,g] (b). Only the height feature is required for the vowel [a]. The [a]
stimuli/answers were not used in the computation of transmitted information
for the rounding and backness features.

(a) Vowel Height Rounding Backness

a — ? ?

1 + - -

y + + —

u + + +

(b) Consonant Place Voicing

p labial unvoiced
t dental unvoiced
k velar unvoiced
b labial voiced
d dental voiced
g velar voiced

V, were within the set [a,i,y,u] and C was within [p,tk,
b.d,g]. The 96 V,CV,CV, sequences (4 XV, 6XC, 4XV,)
were repeated twice, once for training, the second time for
testing. The advantage of this corpus is that it enables us to
make a number of predictions based on previous experiments
on audio-visual speech perception. Indeed, the vowel set dis-
plays the three basic phonetic contrasts for vowels, namely
height (e.g., [a] vs [i]), backness (e.g., [y] vs [u]), and round-
ing (e.g., [i] vs [y]), these last two contrasts being indepen-
dent in French (Table Ia). It is well-known that rounding and
height are visible while backness is not. It has also been
shown (Robert-Ribes et al., 1998) that the auditory informa-
tion of these vowels is distributed in a manner complemen-
tary to the visual information: the most visible contrast [i y]
is the least robust in acoustical noise. We expected that this
complementarity of the audio and video channels should
play an important role in the comparison of the AV speech
enhancement process with the A-alone or V-alone processes.
The same kind of pattern holds for the plosive set, including
a visible place contrast (bilabials vs dentals/velars); an al-
most invisible one, at least when only the lip information is
provided (dentals vs velars); and an invisible but quite au-
dible mode contrast between voiced and unvoiced conso-
nants (Table Ib). Once more, the audio and video channels
are complementary (see Summerfield, 1987), and the AV
enhancement process should be expected to increase place
intelligibility, if not voicing.

2. Audiovisual characteristics

The video parameters used in this work were geometric
parameters describing the lip contour. The choice of such
parameters is justified by three main reasons. (i) Lip shape
provides the main contribution to visual speech information.
By isolating the lip movements in speech perception tests,
Summerfield (1979) and Le Goff et al. (1996) have shown
that lip information represents about two-thirds to three-
fourths of the total intelligibility gain obtained when seeing
the speaker’s face. (ii) It happens that the most relevant in-
formation is at the same time the easiest to extract. Different
video lip shape tracking systems have been elaborated to
focus on this particular region of the face. The lip shape
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extraction process is usually based on texture contrast with
the background skin. Such a system has been developed in
our laboratory to record and analyze synchronized sounds
and lip movements (Lallouache, 1990). This system, which
is used in the present study, can automatically extract basic
parameters of the lip shape contour in two steps. First, the lip
contour is isolated from the remainder of the image using
blue lipstick and a Chroma-Key system. Second, classical
pixel-based contour tracking algorithms are applied.' (iii)
These parameters represent an efficient ‘‘coding’’ of the vi-
sual input, since information is well concentrated in a small
number of coefficients. Several studies have been completed
that efficiently characterize lip shape in French (Abry and
Bog, 1980, 1986; Benoit et al., 1992). We chose the three
parameters that appear to be the most informative, namely
interolabial width (LW), height (LH), and area (LS) (see
Fig. 3). Notice that LS is highly correlated with the product
LW.LH, which provided an indirect way to introduce a qua-
dratic term into the linear associator defined later.

Each audio-visual stimulus consisted of an audio seg-
ment with a duration around 500 ms, sampled at 16 kHz,
paired with a video matrix of [LW LH LS vectors extracted
every 20 ms, according to the 50 frames-per-second camera
sampling.

B. Noise degradation and LP model generation

Stationary white Gaussian noise (generated by com-
puter) was added to each audio stimulus of both the training
and test sets with signal-to-noise ratios (SNR) in the set {°,
18,12, 6,0, —6, —12, —18 dB} (SNR=% means that no
noise was added).

Then, all (clean and noisy, training and test) audio
stimuli were cut into 32 ms frames synchronized with the
video parameters. This involved an audio window overlap of
12 ms to synchronize with the 20 ms video period. For each
audio frame, a 20-order LP spectrum was calculated using
the autocorrelation method and the Durbin—Levinson algo-
rithm (Markel and Gray, 1976).

On the one hand, the LP spectra of the training corpus
were used for the training of the associators (see Sec. C), and
the LP spectra of the test corpus were used for the Gaussian
classification test of Sec. E. On the other hand, the noisy
stimuli of the test set were processed by the system (in the
same configuration as above in what concerns synchroniza-
tion, overlap, and LP model calculation) and used in the
perceptual test of Sec. F. Note that when generating the
noisy stimuli, the SNR was defined as the ratio of the signal
energy and the noise energy on each entire stimulus so that
the noise was stationary over its entirety. But when generat-
ing the LP spectra, the SNR was defined as the ratio of the
signal energy and the noise energy on each frame. In this
latter case, the noise was added frame by frame, so that the
complete set of eight SNRs was well controlled in the train-
ing process and classification test (see the following sec-
tions).
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C. Associators for filter parameter estimation

For each noisy frame of the signal to be processed, the
A, V, and AV associators were designed to estimate the
l/ﬁs(z) spectrum from either 1/A,(z), or the corresponding
set of video parameters [LW LH LS], or both.

The first tool chosen for performing the estimation was
linear regression. Its efficiency has already been demon-
strated in different works involving estimation of speech
spectral parameters from characteristics of the speaking face
(Robert-Ribes et al., 1996; Teissier et al., 1999; Yehia et al.,
1998). The principle is simply to estimate each output spec-
tral parameter as a linear combination of the input (audio and
video) parameters. The regression matrix M of linear com-
bination coefficients was obtained by minimizing the mean
square error ¢ =|M,;M—M,||, , where M, and M,, were two
matrices concatenating the input and corresponding output
parameter sets contained in the training corpus.

As far as the input/output LP parameters are concerned,
preliminary tests based on spectral distances and classifica-
tion tests (as described in Sec. E) showed that the best esti-
mation performances were obtained with a spectral ampli-
tude representation, consisting of the logarithmic values of
the amplitudes of the LP spectrum taken for 50 values
spaced equally on the upper-half unit circle. To obtain the
I/As(z) filter from the 50 output spectral parameters, an in-
verse FFT was processed on the squared linear-scale coeffi-
cients, and a 20-order Levinson procedure was performed on
the resulting estimated autocorrelation coefficients.

The A, V, and AV linear associators were trained on the
96 stimuli in the training set, with altogether about 2400
audio-visual vectors (about 25 frames per stimulus). In each
condition (A, V, or AV), the associator output consisted of

the set of the 50 values of 1/AS(Z) for each training frame. In
the A condition, these values were estimated from 1/A,(z)
only. Each input was hence a vector concatenating the 50
values of 1/A,(z) and the value 1 (thereby ensuring that the
intercept value of the regression need not be zero). Thus the
associator M was a 51X50 matrix. In the V condition,
1/As(z) was estimated from the [LW LH LS] triplet, and M
was a 4X50 matrix. In the AV condition, I/As(z) was esti-
mated from both the 50 values of 1/A.(z) and from
[LWLH LS], resulting in a 54X50 matrix for M.

In the A and AV conditions, the associator training was
realized with audio inputs corrupted at different noise levels
for better generalization with respect to SNR. Then the asso-
ciation process combined two associators tuned under two
different training/processing conditions. One was dedicated
to stimuli with ‘“‘large’> SNRs: in the training phase, the
stimuli frames were presented at frame SNRs of %, 18, 12, 6,
and 0 dB. The other one was dedicated to stimuli with
““small’” SNRs: the stimuli frames were presented at frame
SNRs of 6,0, —6, —12, and —18 dB. During the enhance-
ment process, each frame was submitted to a linear discrimi-
nant analysis (trained on the same corpus) to decide whether
it belonged to the large or small SNR condition, so that the
corresponding associator could be applied. Pilot tests carried
out on the complete training corpus showed that this linear
discriminant analysis could separate frames with SNR lower

3012 J. Acoust. Soc. Am., Vol. 109, No. 6, June 2001

than O dB or higher than 6 dB with less than 1% errors.
Between 0 and 6 dB, the two associators provided quite simi-
lar outputs.

D. Filtered stimuli

Once the three associators had been trained, the 768
stimuli in the test set (96 sequences, 8 SNRs) were processed
in the following way. First, for each 32 ms video-
synchronous frame, the LP normalized spectrum 1/A .(z) and
the residual signal were computed, and the 50 values of the
spectrum log amplitude were extracted. Second, these values
and/or the video input [LW LH LS| were used to estimate
the 50 values of l/ﬁs(z) (in the A or AV condition, each
frame was first submitted to the linear discriminant analysis
to select the large or small SNR associator). Then, an inverse
FFT was performed on the linearized 50 estimated values of
I/As(z), providing autocorrelation coefficients; the filter pa-
rameters were obtained from these coefficients by a 20-order
LP model. Last, the residual signal was processed in this
filter; energy was normalized and a trapezoidal windowing
was used for frame continuity. This provided us with three
sets of filtered stimuli, in the A, V, and AV conditions. The
evaluation of these filtered stimuli together with the unproc-
essed noisy stimuli was made objectively, by a classification
test, and subjectively, by a perceptual identification test.

E. Gaussian classification test
1. Methodology

The objective evaluation of the process was made by a
classification test performed separately on the vowel and plo-
sive spectra. For each of the 96 sequences in both the train-
ing and test corpus, we first manually selected two frames
within the vocalic nuclei of each vowel and two frames con-
taining or just preceding the burst of each consonant. Alto-
gether, this provided us with 576 vowel frames in both the
training and test corpus (96 stimuliX3 vowels per
stimulus X2 frames per vowel) —that is to say 144 per vowel
category (four categories)—and 384 consonant frames (96
stimuliX2 plosives per stimulusX2 frames per plosive)—
that is to say 64 per plosive category (six categories).

From the frames selected in the training corpus, we
found the Gaussian distribution associated with the four
vowels and the six plosives. Since the number of data were
small compared to the number of input parameters, the num-
ber of audio parameters was reduced from 50 to 10 by means
of a principal component analysis (PCA). Both the PCA and
the Gaussian distribution parameters for the ten classes
(means and covariance matrices) were determined with the
audio data selected in the training corpus and presented at
the three largest SNRs (o, 18, 12 dB). The ten first compo-
nents in the PCA represented 97% of the whole variance in
this training set.

Then the selected vowel frames in the test set were sub-
mitted to Gaussian classification. This means that for each
frame, ten PCA spectral components were computed, and a
priori probabilities of this vector of ten components were
calculated for each of the four vowel Gaussian distributions
estimated from the training set. The frame was identified as
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belonging to the category providing the highest a priori
probability. Similarly, the selected plosive frames in the test
set were classified in reference to the six plosive Gaussian
distributions. Both unfiltered frames and A, V, and AV fil-
tered frames (that is, the spectra at the output of the A, V,
and AV associators) were submitted to the classification pro-
cess for the eight selected SNRs.

Results are presented in terms of classification scores
and transmitted information scores. The classification scores
were normalized with respect to chance performance accord-
ing to the formula

Corrected score

correct responses 1

total responses number of categories
1

1- :
number of categories

The numbers of classification of each phoneme i for presen-
tation of each phoneme j were gathered into confusion ma-
trices. From these matrices, the transmitted information
(Miller and Nicely, 1955; Breeuwer and Plomp, 1986;
Robert-Ribes et al., 1998) was computed for the three vo-
calic phonetic features introduced in Sec. A 1, namely height,
rounding, and front—back contrast, and the two consonantic
phonetic features, namely voicing and place (see Table I).
The percentage of transmitted information is defined by:

r=1002>7) )
B H(s) ’

with H(s,r) the transmitted information from stimuli s to
answers r, and H(s) the existing information in the stimuli.
These values are defined by:

p(sf)p(r_,))

H(SJ):_Z 2}: P(Siarj)logz( p(si )

H<s>=—2 p(s)logy(p(s)),

with p(s;) the probability of occurrence of feature s; in the
stimuli, p(r;) the probability of occurrence of feature r; in
the answers, p(s; ,r;) the probability of shared occurrence of
feature s; in the stimuli and feature r; in the answers. If we
denote n the total number of stimuli and n; the number of
occurrences of stimulus s; (both fixed), and n ; the number of
occurrences of answer r; and n;; the number of occurrences
of stimulus s; with answer r; (both provided by the confu-
sion matrices), then p(s;) is known as n;/n; and p(r;) and
p(s;,r;) are not known but can be estimated by n;/n and
n;iln.

2. Results

The correct classification scores are displayed in Fig.
4(a) for the unfiltered and filtered vowel frames. First, we
notice that the scores in the unfiltered condition decreased
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from 100% with clean stimuli to close to 0% for SNR=—18
dB. At such a small SNR value, all spectra were roughly flat,
hence identification became impossible. From this baseline,
we observe that the A filtered stimuli were better identified,
with a gain up to 20% or more around —6 dB to 0 dB [at O
dB, 43% vs 69%, )(2(1)=77.1, p<0.001]. This shows that
the associator did learn some helpful relationship between
noisy and clean audio spectra. More interestingly, we notice
that the V filtered stimuli were partly recognizable, with a
score around 40%. Finally, the AV filtered condition shows
the efficiency of the system, with an increase in recognition
score around 40% at SNRs lower than 0 dB [at 0 dB, 43% vs
84%, x*(1)=211.3, p<0.001]. The scores in the AV con-
dition were higher than in the A condition for SNRs below
18 dB [e.g., at 0 dB, 84% for AV vs 69% for A, Xz(l)
=38.5, p<0.001] and similar above 18 dB. The AV scores
were always higher than the V scores for all SNRs except
—18 dB where the AV and V scores were similar. The su-
periority of AV over V holds even at very low SNRs where
the audio information is very poor [e.g., at —12 dB, 46.5%
for AV vs 37% for V, x*(1)=10.1, p<0.005]. To summa-
rize, the inequality AV=(A or V) was verified for the clas-
sification scores. This shows the ability of the AV system to
“‘reshape’” vowel spectra, and to efficiently exploit the
complementarity of the A and V sensors.

In terms of individual phonetic features, the transmitted
information scores for the vowel features [Figs. 4(b)—(d)]
show that each feature was improved by the process in the
AV condition. The rounding and height contrasts were well
maintained up to the largest amounts of noise in the AV
filtered condition compared to the unfiltered (and the A and
V filtered) condition(s). The only surprise comes from the
low score for the rounding feature in the V condition (and
AV condition at SNR=—18 dB), since this feature is con-
sidered highly visible. We shall come back on this in Sec.
IV. For the front—back feature, the AV condition was similar
to the A condition, which was expected since the video in-
formation is quite poor for this feature, as shown by the V
score close to 0%. Altogether, the inequality AV=(A or V)
was confirmed for the different features. These results are a
first indication of the efficiency of the DE architecture to
combine the video and audio information for vowel enhance-
ment.

The results for consonants are more disappointing. Ab-
solute scores were quite poor, but they must be taken cau-
tiously, since it is well known that local information is too
restricted. Hence Gaussian classifiers were not powerful
enough to achieve fully acceptable performances. However,
compared scores are relevant, and they demonstrate that the
consonants were poorly improved by the AV filtering pro-
cess (which was again more efficient than the A or V pro-
cesses). The scores for large SNRs were even decreased by
the filtering procedure while the gains for the small SNRs
were less than 15% [max at 0 dB, 5% for unfiltered vs 19%
for AV, x*(1)=36.7, p<0.001] [Fig. 5(a)]. The transmitted
information scores [Figs. 5(b)—(c)] show that the voicing
feature was severely degraded by both the A and AV filtering
procedure at large SNRs. The place feature was degraded by
the A filtering over 6 dB SNR and was slightly or not en-
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hanced by the AV filtering for almost all SNRs (some deg-
radation is even induced at 18 dB), in spite of the high vis-
ibility of the labial versus nonlabial contrast.

F. Perceptual test
1. Methodology

To perform a complete assessment of the system, a per-
ceptual identification experiment was carried out on the 96
stimuli of the test corpus. Sixteen French native subjects,
aged from 22 to 31, were tested. They displayed no known
problem of hearing and speech production/perception. They
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were asked to identify both vowels and consonants of the
stimuli presented in the unfiltered and A, V, and AV filtered
conditions, for the eight SNRs. It should be remembered that
in this test, the SNR was defined as the ratio of the signal
energy and the noise energy over the complete stimulus (and
no longer for each frame).

The V,CV,CV; stimuli were segmented manually into
V,CV, and V,CV, items so that the subjects would hear V,
and C only once for each presentation. The total of 6144
sounds (96 stimuliX2 segments X8 SNRsX4 conditions) was
randomized and divided between the 16 subjects. For each
stimulus, they were asked to give a response between the
four possible vowels for both V; and V,, and between the
six possible plosives for C. There were altogether 384 vowel
responses and 192 consonant responses for each noise level
and each condition (96 stimuli, two VCV segments per
stimulus, 2 vowels and 1 plosive per segment), that is to say
96 responses per vowel category (4 categories) and 32 re-
sponses per consonant category (6 categories). These re-
sponses were analyzed separately for the vowels and the plo-
sives and processed in the same way as for the Gaussian
classification test, that is, with corrected global scores, con-
fusion matrices, and transmitted information scores for the
individual phonetic features.

2. Results

The results are presented in Fig. 6 for the vowels and
Fig. 7 for the plosives. Concerning the vowels, we first no-
tice that the degradation of identification scores for the un-
filtered stimuli with low SNRs was similar to classification
scores. However, the A filtering was not very efficient: the
gain was low at low SNRs [at SNR=—12 dB, 20% for un-
filtered vs 29% for A, X2(1)=7.8, p<0.005]. There was
even some degradation due to filtering at high SNRs [at
SNR=18 dB, 96% for unfiltered vs 91% for A, )(2(1)
=9.6, p<<0.005]. The V filtering provided some information,
with an intelligibility around 20%—-30%. Notice that the fluc-
tuations in score with SNR were due to differences in the
residual form (see Fig. 3). However, the results in the AV
condition were quite good, although less so than in the
Gaussian classification test, with an increase in identification
scores compared with unfiltered stimuli at all SNRs below 18
dB. The gains reach 5.5% at 12 dB [x*(1)=9.2, p<0.005],
9% at 6 dB [x*(1)=12.6, p<0001], 17.5% at 0 dB
[x2(1)=246, p<0.001], 16% at —6 dB [x*(1)=20, p
<0.001], and about 22% at —12 dB [yx*(1)=417, p
<0.001],and —18 dB [x?(1)=77.8, p<0.001]. Once more,
the AV condition was systematically better than the A and V
conditions.

The percentages of transmitted information, given in
Figs. 6(b)—(d), confirm these results and the ones of the clas-
sification test. The scores for the A condition were close to
the scores in the unfiltered condition with some improvement
for low SNRs and some degradation for high SNRs. The V
condition, while providing some information on the height
contrast, was surprisingly deceptive for the rounding con-
trast. However, in the AV condition the system provided
much better performances that can be summarized as fol-
lows. (i) There was an efficient reinforcement of the round-
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ing feature: the [i,y] contrast, which was rapidly and strongly
degraded in noise before enhancement, was well recovered.
This case represents a good example of the audio/video
complementarity of speech (robust video distinction while it
is the weakest audio contrast in noise; see Robert-Ribes
et al., 1998). (ii) Contrary to the rounding feature, the height
[a] versus [i y u] contrast was robust in the unfiltered condi-
tion (until 0 dB SNR). This is due to the good audibility of
the first formant region in white noise. Below 0 dB, the AV
filtering produced a large improvement of the height feature
scores. (iii) At last, the front—back [y,u] contrast, not very
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robust in the unfiltered condition, was not improved by the
AV process.

For consonants, the perceptual results were poor and
confirmed the classification test results. While still better
than in the A and V conditions, the identification scores [Fig.
7(a)] in the AV condition remained lower than those for
unfiltered stimuli [e.g., at SNR=0 dB, 53% for unfiltered vs
39.5% for AV, x*(1)=17.3, p<0.01], except for the two
weakest SNRs [e.g., at SNR=—12 dB, 6% for unfiltered vs
155% for AV, x*(1)=8.7, p<0.005]. This shows that at
this point the system produced some degradation of the con-
sonants. As shown by Figs. 7(b)—(c), the voicing feature was
degraded by the process, while the place feature was not
improved despite the labial information available in the data
(the V condition seemed unable to exploit this information as
well).

G. Discussion

The Gaussian classification tests on single frames and
the perceptual identification of whole sequences provided a
consistent pattern of results. AV filtering produced a strong
enhancement of vowels, at all SNRs, and always much stron-
ger than both the A and the V filtering. The results for con-
sonants were much more disappointing: A, V, or AV en-
hancement filters failed to improve on consonant
identification or classification except at the poorest SNR con-
ditions, and often resulted in lower scores than those ob-
tained when no filter was applied. Our interpretation is that
in the present implementation, the linear associator was more
adapted to vowel spectra than to plosives. There are two
reasons for this. First, vowellike spectra (consisting of well-
defined formant patterns) occurred more frequently in the
corpus than plosivelike spectra (including silence, consonan-
tal voicing and bursts). Second, vowel spectral contrasts
were larger than plosive ones. Therefore, the intrinsic ‘‘av-
eraging’’ process characteristic of linear regression resulted
in estimated plosive spectra that looked quite similar to vow-
els! This was obvious through visual inspection of the fil-
tered stimuli.

To confirm this hypothesis, we carried out a comple-
mentary experiment where the training corpus for the AV
associator training was restricted to only plosive frames (the
two frames per consonant defined in Sec. E 1). In this case,
the linear regression algorithm was focused on the available
information: it appeared that the plosive test frames filtered
by this local AV association process provided much higher
scores in the Gaussian classification test. Indeed, these
scores, displayed in Fig. 5, were this time systematically bet-
ter than those of unfiltered stimuli, with a gain close to 30%
at 0 dB [5% for unfiltered vs 34% for local associator,
x*(1)=104, p<0.001]. This shows that the poor scores ob-
tained previously were not due to a lack of information in the
A and V sensors but to an under-representation of this infor-
mation in the filtering process. The aim of the next experi-
ment was to exploit an association tool more powerful than
linear regression.
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IV. NONLINEAR ASSOCIATORS FOR IMPROVING
PLOSIVE ENHANCEMENT

A. Improving the association process: From linear
regression to perceptrons

The previous section revealed the need for more power-
ful associators than linear regression (LR in the following),
in order to better take into account the plosive parts of the
corpus. We decided to look for nonlinear associators in the
most efficient condition of the previous experiment, that is,
the AV one. Neural Networks have been used extensively for
classification tasks in speech recognition, including audio-
visual recognition (Stork and Hennecke, 1996). In addition,
they are theoretically able to approximate any nonlinear
function. Therefore we used classical Multi-Layer Percep-
trons (MLP) based on error gradient back-propagation with
momentum (Rumelhart er al., 1986), with one hidden layer
and sigmoidal neuronal threshold functions.

Different values for the number of neurons in the hidden
layer were tested from 20 to 200, using both Gaussian clas-
sification and listening tests. It appeared that performances
improved slightly above 40 neurons. The following results
were obtained with 120 hidden neurons, which was a good
compromise between performances and calculation cost. The
complete experimentation protocol of Sec. III concerning
training and testing was preserved, so that the new results
can be compared with the results obtained with linear regres-
sion. The training phase involved 200 iterations with the
whole training set, which was enough to ensure convergence
of the network (i.e., low error and no overtraining).

B. Gaussian classification test

The output spectra obtained with the MLP on the se-
lected frames defined in Sec. IIIE 1 were presented to the
Gaussian classifier of the same section and the results are
displayed in Figs. 4 and 5.

For vowels, the classification scores for the MLP were
improved compared to the linear regression below 6 dB. The
gain reached more than 10% at —18 dB [39.5% vs 51%,
x2(1)=15, p<0.001] and at —12 dB [46.5% vs 57.5%,
x*(1)=142, p<0.001]. The transmitted information scores
show that this gain was provided by a quite large improve-
ment of the rounding feature, while the height and backness
features were not noticeably modified. This provides an in-
teresting correction to the surprisingly low score for the
rounding feature noticed in Sec. IIIE 2.

For consonants, the recognition scores were also in-
creased compared to linear associators, and reached a value
almost always higher than the scores for unfiltered stimuli.
The gain reached 14% to 20% from —18 dB to 6 dB [at O
dB, 5% for unfiltered vs 25% for MLP, )(2(1)=62.7, p
<0.001], with only a small and not significant loss at
SNR=w [64% for unfiltered vs 58.5% for MLP, )(2(1)
=2.3, p>0.1]. However, the scores of the ‘‘local’’ associa-
tor described in Sec. III G were not reached. Hence, the
available information was not exploited completely. At the
phonetic features level, transmitted information scores were
almost always higher with the MLP than with linear regres-
sion. Consequently, the voicing feature was more or less at
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the same level for MLP filtered and unfiltered spectra, while
the place feature was much improved by the MLP filtering
below 18 dB SNR. These encouraging results led us to per-
form a complementary perceptual test for a final evaluation
of the system on this corpus.

C. Perceptual test

The MLP-processed stimuli were presented to the 16
subjects in the same condition as the unfiltered or linear re-
gression filtered stimuli. Global results confirm the important
progress from LR to MLP estimation (Figs. 6 and 7). In the
MLP condition, the increase of vowel intelligibility with re-
spect to the unfiltered condition was quite large [about 35%
for SNRs lower than 0 dB: e.g., at —12 dB, 20% for unfil-
tered vs 57% for MLP, xy*(1)=110, p<<0.001]. These re-
sults correspond to a gain in SNR around 9 to 12 dB (Fig. 6).
At the phonetic features level, transmitted information scores
reveal a large improvement from LR to MLP for vowel
rounding below 12 dB SNR, and also some improvement for
the vowel backness feature between —6 and +12 dB [Fig.
6(d)]. This demonstrates the ability of the MLP-DE structure
to efficiently combine the video and audio information for
vowel enhancement.

For consonants, there was also a significant improve-
ment from LR to MLP [13% at SNR=—6 dB: 26% for LR
vs 39% for MLP, )(2(1)=7.6,p<0.01, and 12.5% at 0 dB:
39.5% for LR vs 52% for MLP, x*(1)=6, p<<0.025]. As a
result, the identification scores of the MLP-processed plo-
sives reached the values for unfiltered stimuli, and the aver-
age score across the whole SNR range was almost the same
as the one obtained in the unfiltered condition: 55.5% for
MLP filtered vs 54.1% for unfiltered stimuli [the difference
is not significant, X2(1)=0.6,p>04].In comparison the LR
scores only reached 49.8%, showing an average degradation
of about 4% compared with the unfiltered condition [x2(1)
=5.7, p<0.025] [Fig. 7(a)]. The voicing feature was still
quite degraded in the MLP filtered condition compared with
the unfiltered condition [Fig. 7(c)]. In contrast, the place fea-
ture was quite improved by the MLP-based process, espe-
cially from —12 to 6 dB SNR [Fig. 7(b)], which explains
why the identification scores were comparable with the un-
filtered condition. This shows that some visible information
(notably on the [p,b] closures) was used efficiently by the
filtering process.

V. DISCUSSION
A. Summary of the main achievements

We defined in Sec. III an architecture for audio-visual
speech enhancement, expecting some predictability of the
audio spectrum from the video input, and based on a fusion-
and-filtering procedure in three steps:

(1) separate the sound source from the spectral transfer func-
tion characteristics using an LP analysis of the input au-
dio signal;

(2) combine the noisy spectral characteristics and the visual
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input parameters to estimate the transfer function of the
clean speech sound, using either a linear or a nonlinear
associator;

(3) filter the estimated source through the estimated transfer
function.

We assessed this system on a vowel-plosive-vowel corpus
with both an objective Gaussian classification test and a sub-
jective perceptual identification procedure, and we obtained
the following results:

(1) the linear-regression filter estimation provided much bet-
ter global results when both the audio and the video
streams participated to the filter estimation (AV filtered
stimuli) than in the audio-only (A filtered stimuli) or
video-only (V filtered stimuli) conditions. In more detail,
the AV scores were better than the A scores for low
SNRs; better than the V scores for high SNRs; better
than both the A and V scores for medium SNRs; and in
no case lower. This demonstrates the efficiency of the
visual contribution and the good exploitation of the
audio-visual synergy for speech enhancement by the DE
architecture;

(2) in the AV condition, vowels displayed a very large en-
hancement for both assessment tools, with a significant
improvement of the enhancement efficiency from the lin-
ear to the nonlinear associator. This was largely due to a
better enhancement of the rounding feature. The best fil-
tering algorithm, involving AV nonlinear estimation,
provided an increase in recognition and perception
scores corresponding to a 9—12 dB gain along the entire
SNR range for the vowels;

(3) plosives were not enhanced, and were even degraded by
the use of the linear associator. However, the results with
the nonlinear associator were less clearcut. Indeed,
Gaussian classification displayed a significant enhance-
ment of the stimuli through nonlinear estimation, while
perceptual tests showed the same global intelligibility for
unfiltered and filtered plosives. At the feature level, voic-
ing was quite degraded for linear and nonlinear estima-
tion, while place was enhanced only for nonlinear esti-
mation.

B. Audio-visual interdependencies

Given this pattern of results, we can return to some is-
sues raised in the introductory sections. The departure point
of this study was the assumption that there was some inter-
dependency between the audio and the video streams. The
experimental results provide strong support to this assump-
tion. Indeed, it appears that the AV filtering condition pro-
duces a gain of about 6 dB in SNR compared with the A
condition for both vowels (Fig. 6) and plosives (Fig. 7).
Hence the video stream does contain a significant deal of
information on the audio spectrum, which is evidence for a
statistical dependence. Notice that in this AV versus A com-
parison, the A condition provides a baseline which is similar
to the unfiltered condition for vowels, but unfortunately
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FIG. 8. Typical pattern of distribution of the auditory parameter F'2 and the
visual parameter LW for the set of high French vowels [i y u].

lower for plosives. In this latter case, the AV associator
helped at best to remove the degradation introduced by the A
associator.

Audio-visual complementarity is also demonstrated in
this work. It enables the poorest audio feature to benefit
greatly from audio-visual enhancement, as it was clearly
demonstrated for vowels. For example, the rounding feature
for unfiltered vowels provided low perceptual intelligibility
scores compared to the front—back feature: 5% vs 12% at 0
dB, 30% vs 65% at 6 dB; but the MLP-AYV filtered stimuli
displayed the inverse pattern: 46% vs 11% at —6 dB, 71% vs
52% at 0 dB, and 100% vs 80% at 18 dB [Figs. 6(b)—(c)].

Finally, it is of interest to notice the importance of in-
troducing nonlinear processes in audio-visual fusion. Indeed,
it is commonly considered that linear association between
audio and video speech parameters captures a great deal of
the information (see, e.g., Yehia et al., 1998; Robert-Ribes
et al., 1996). However, it is clear that only gross audio-visual
correlations can be captured by linear regression, while
audio-visual complementarity is intrinsically associated to a
basic nonlinear property of the audio-visual relationship.
Consider, for example, the [i,y,u] set of French high vowels.
The major auditory parameter characterizing this set would
be F'2, the ‘‘perceptual second formant,”” while interolabial
width LW provides a major correlate of the rounding con-
trast between [i] and [y] or [u]. In Fig. 8, typical values of
F'2 and LW for [i y u] for a French male speaker display
audio-visual complementarity: in LW, [i] is well separated
from [y] and [u] which are almost confounded, while in F'2
[i] and [y] are close together and well separated from [u].
Linear regression between LW and F'2 would lose this
complementary pattern, hence the success of nonlinear asso-
ciation in Sec. IV, particularly for enhancing the rounding
feature for vowels.

C. Future directions

Although these results fulfill the initial objective of this
study, they are not a final achievement. Indeed, the frame-
work was quite controlled and simple. It will be necessary
now to explore new directions. Three main directions can be
mentioned.
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First, the estimation tools were quite basic. A first effort
to switch from linear regression to nonlinear MLPs led to
significant progress (see Fig. 6). However, the comparison of
LR, MLP, and local associators for plosive enhancement in
Fig. 7 shows that all the local information is still not ex-
ploited: the MLP went more or less halfway toward what can
be considered optimum under the corresponding evaluation
tool. More powerful tools, such as multi-expert systems (Jor-
dan and Jacobs, 1994) or neural gas (Fritzke, 1994), could
fill this gap. Another important objective will be to explore
dynamic associators, able to exploit the regularities in the
evolution of audio and video parameters. Hidden Markov
Models could provide a natural basis for this, as they do for
pure audio enhancement of speech in noise (Ephraim, 1992).
This kind of tool is likely to be crucial for plosive enhance-
ment, since it is quite well-known that plosive characteriza-
tion cannot be achieved correctly without considering spec-
tral dynamics (Kewley-Port er al., 1983; Sussman et al.,
1991). More generally, such tools will be also necessary for
dealing with more complex conditions, involving extended
corpora and noise degradations, and multi-speaker applica-
tions. This is part of a global program that will be of increas-
ing interest in the future: i.e., to systematically explore the
statistical relationship between sound and image, using such
tools as mutual information between groups of parameters in
the audio and the video streams.

Second, though it was chosen for this initial demonstra-
tion to ignore pure audio enhancement techniques, it will be
necessary to re-introduce them in the following of this work.
This will be important for dealing with nonstationary noises,
and particularly with variations in the spectral patterns of the
competing sources, as is the case with ‘‘cocktail-party”’
speech. We will study how to extend the so-called DE archi-
tecture to a multi-channel framework including various audio
and video sensors for performing the filter estimation: we are
beginning to explore a generalization of the blind separation
approach to multi-modal speech sources (Girin et al., 2000).

Finally, the ‘‘joint processing of the audio and video
streams,”” which was applied here to speech enhancement,
could be generalized to various problems in the field of
human—-machine communication and telecommunication.
The natural coherence and complementarity of these two
data streams are already exploited in speech recognition sys-
tems, and in the development of speech synthesis systems.
They could also be of benefit to audio-visual compression in
videophone technology: in another study, vector quantization
algorithms were applied either separately to audio and video
data, or to audio-visual vectors (Girin et al., 1998). The latest
results showed that it was possible to save 3 bits out of 15 in
the second case. This provides a quantitative estimate of the
amount of redundancy in the audio and video streams.

Altogether, one can foresee the elaboration of a global
platform for audio-visual speech communication, which
would involve preprocessing (localization, enhancement,
scene analysis...), recognition, coding, transmission and syn-
thesis of audio-visual speech. In any case, the main objective
remains to maintain the intrinsic coherence of sound and
image at the heart of all the speech processing algorithms.
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