2246

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 23, NO. 12, DECEMBER 2015

Speaker-Adaptive Acoustic-Articulatory Inversion
Using Cascaded Gaussian Mixture Regression

Thomas Hueber, Laurent Girin, Xavier Alameda-Pineda, and Gérard Bailly

Abstract—This paper addresses the adaptation of an acoustic-ar-
ticulatory model of a reference speaker to the voice of another
speaker, using a limited amount of audio-only data. In the context
of pronunciation training, a virtual talking head displaying the
internal speech articulators (e.g., the tongue) could be automati-
cally animated by means of such a model using only the speaker’s
voice. In this study, the articulatory-acoustic relationship of
the reference speaker is modeled by a gaussian mixture model
(GMM). To address the speaker adaptation problem, we propose
a new framework called cascaded Gaussian mixture regression
(C-GMR), and derive two implementations. The first one, referred
to as Split-C-GMR, is a straightforward chaining of two distinct
GMRs: one mapping the acoustic features of the source speaker
into the acoustic space of the reference speaker, and the other
estimating the articulatory trajectories with the reference model.
In the second implementation, referred to as Integrated-C-GMR,
the two mapping steps are tied together in a single probabilistic
model. For this latter model, we present the full derivation of the
exact EM training algorithm, that explicitly exploits the missing
data methodology of machine learning. Other adaptation schemes
based on maximum-a posteriori (MAP), maximum likelihood
linear regression (MLLR) and direct cross-speaker acoustic-to-ar-
ticulatory GMR are also investigated. Experiments conducted on
two speakers for different amount of adaptation data show the
interest of the proposed C-GMR techniques.

Index Terms—Acoustic-articulatory inversion, EM algorithm,
Gaussian mixture regression, pronunciation training, speaker
adaptation, speech production, talking head.

[. INTRODUCTION

COUSTIC-ARTICULATORY inversion consists in the
estimation of the movements of the speech articulators
(e.g. tongue, lips, jaw, velum) from the speech audio signal. The
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underlying articulatory structure of speech can be exploited in
different areas of speech technology, such as automatic speech
recognition [1], low bit-rate speech coding [2], and speech syn-
thesis [3]. Acoustic-to-articulatory inversion can also be used
to animate a virtual talking head displaying the internal speech
articulators using augmented reality [4]. Such a tool provides a
complete and intuitive visual feedback that is useful for speech
therapy [5], [6] and second language learning [7]. This is the
applicative context of the present study.

Acoustic-to-articulatory inversion has been addressed in
many studies using different techniques: codebook-based ap-
proaches [8]-[10], artificial neural networks [11], [12], support
vector machines (SVM) [13], Gaussian mixture models (GMM)
[14], [15], or hidden Markov models (HMM) [16], [17].

In most studies, acoustic-articulatory models are trained in a
speaker-dependent way, using simultaneous recordings of audio
and electromagnetic articulography (EMA) data. To design a
pronunciation training system based on a virtual talking head,
a speaker adaptation framework is required for two reasons.
First, the user, referred here to as the source speaker, is gener-
ally different from the reference speaker for whom the model
was trained. Because of the inter-speaker variability, feeding
the acoustic-articulatory model of the reference speaker with
data from the source speaker, is expected to yield poor artic-
ulatory trajectories (as confirmed by our experiments). Second,
a practical usage scenario excludes the use of invasive devices
(such as EMA) on the source speaker. Hence no articulatory
data of the source speaker is assumed to be available for adapta-
tion. Consequently, the research question addressed in this study
is: How to adapt an acoustic-articulatory model of a reference
speaker to a different speaker, using acoustic data only?

To the best of our knowledge, only a few studies addressed the
problem of recovering articulatory movements from speech sig-
nals produced by a new (source) speaker, using a model trained
for another (reference) speaker. In [18], Dusan and Deng pro-
posed a vocal tract length normalization procedure to compen-
sate the morphological differences between the two speakers. In
[19], Hiroya et al. proposed to adapt an HMM-based acoustic-
to-articulatory model [16]. However, this adaptation technique
aims at adjusting not only the acoustic-articulatory relationships
of the reference model to the source speaker, but also the geom-
etry of the reference speaker’s vocal tract. Given the targeted
application, the goal of the present study is slightly different. We
do not aim at representing the estimated articulatory gestures in
the articulatory space of the source speaker, but rather in the ar-
ticulatory space of the reference speaker (in other words, we do
not want to modify the geometry of a talking head associated to
this model).
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In the present study, the acoustic-articulatory inversion is
addressed in the GMM framework and its associated regression
technique called Gaussian mixture regression (GMR). Different
strategies are investigated to adapt an acoustic-articulatory
GMM trained on a reference speaker to a source speaker, using
a limited amount of audio-only data. First, we investigate
the use of standard techniques such as the maximum-a-pos-
teriori (MAP) method [20] and the maximum likelihood
linear regression (MLLR) [21] to adapt the acoustic part of
the acoustic-articulatory GMM. We also consider a direct
cross-speaker model, i.e. a model trained on source speaker’s
audio data aligned with the reference speaker’s articulatory
data. Finally, we introduce another approach called cascaded
Gaussian mixture regression (C-GMR).

Two versions of the C-GMR are proposed, motivated and
evaluated. The first one, referred to as split cascaded GMR
(SC-GMR) is a straightforward chaining of two distinct GMRs.
The main principle is here to map the acoustic features of the
source speaker into the acoustic space of the reference speaker,
similarly to a voice conversion system, before estimating the
articulatory trajectories with the reference model. In the second
version, referred to as the integrated cascaded GMR (IC-GMR),
acoustic conversion and acoustic-to-articulatory inversion are
completely tied and integrated in a single probabilistic model.
For this model, we derive the exact expectation-maximization
(EM) [22] algorithm that jointly optimizes the complete set of
model parameters during adaptation (i.e. the model parameters
related to the acoustic data of source and reference speakers and
to the articulatory data of the reference speaker). Importantly,
this algorithm is intended to deal with small adaptation datasets
using the missing data methodology of machine learning [23],
[24]. As for the inference, we use both “frame-by-frame” esti-
mation based on the mean squared error (MSE) criterion and
“utterance-by-utterance” estimation based on the maximum
likelihood parameter generation (MLPG) algorithm. This latter
algorithm was proposed by Tokuda et al. for HMM-based
speech synthesis [25] and adapted to GMR by Toda et al.
[26]. Note that a preliminary version of the IC-GMR technique
was initially proposed in [27] but with incomplete theoretical
foundations and no training algorithm.

This paper is organized as follows. Section II recalls the
basics of GMR techniques. Section III formalizes MAP
and MLLR-based adaptation schemes, as well as the di-
rect cross-speaker GMR. Section IV presents the SC-GMR.
Section V presents the IC-GMR. The associated EM algorithm
is derived in Section VI. Experiments conducted to assess
the performance of the proposed techniques are reported and
discussed in Section VII. Section VIII provides conclusions
and perspectives.

II. GAUSSIAN MIXTURE REGRESSION

In this section, we first recall the theoretical aspects and set
the notations of the GMR which is the foundation for both
SC-GMR and IC-GMR techniques.
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A. Gaussian Mixture Model

Let us consider X and Y two random (column) vectors,
of dimension Dx and Dy respectively. Let us denote by
J the concatenation of X and Y into a column vector, i.e.
J = [XT,Y"]T, where " denotes the transpose operator. Let
p(x|@x)! denote the probability density function (PDF) of X,
parametrized by the set of parameters @x . Let N (x|pux, Xxx )
denote the Gaussian distribution on X with mean vector ux and
covariance matrix Sxx. Let ¥xvy denote the cross-covariance
matrix between X and Y. A GMM on (X, Y) consists of a
weighted sum of Gaussian PDFs:

M
p(1©5) = > mnN (§lta.m: Zasm) (1)
m=1

where M is the number of components of the mixture. For each
component m, 7, = p(m) is the prior probability satisfying
M o =1 = [t o iy ] is th d

m=1Tm =1, 13 m =[x iy ] is the mean vector an
3233.m 1s the covariance matrix given by:

2XY,m
3vyy.m

2IXX,m
YvxX.m

2

Yiim =

All these parameters are estimated using the classical EM algo-
rithm for GMM [28(ch. 9)].

It is well-known that if J follows a Gaussian distribution, the
marginal distribution of X and the conditional distribution of
Y given x are also Gaussian. These results extend to Gaussian
mixtures and we have:

M
p(ylx, ®J) = Z p(m\x, @X)N(YLMYIxA,m, EYY\xmz)’ (3)

m=1

with
By |x,m — HY . m + EYX,mE;(;(:m(X - ,u’X,m)7 (4)
Evyixm = BYYm — ZvXmEXX mEXYms (5
7ij\/’ X|HX m s 2XX,rn
p(m[x, Ox) = (x| ) (6)

ZZL N (x|px.i, Bxx,i) .

The conditional distribution (3) can be rewritten as a mixture of
linear-Gaussian forms:

M
Py, ©3) = > wal (y|A;x + b}, UL,

m=1

(7

: —1
with w,, = p(m|x,Ox ), AX = EyxXmEXK m> P =
By m— AL X m, and Uy, = Yyy|x,m (this choice of notation

will become clear in Section V-B).

B. GMR-MSE

The conditional GMM (3) (or (7)) can be used to map x into
an estimated value ¥ of y. When the mapping is done to mini-

Ip(x|@x) is an abuse of notation, meaning p(X = x|®x ). Upper-case
letters X denote random vectors, and lower-case letters x, realizations.
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mize the mean squared error (MSE) independently for each ob-
servation vector x;, we obtain the well-known result:
M
¥t = B[Ylx:, 03] = > p(mlxs, Ox) iy, x m

m=1
M

= wn(ALx +b},). ®)

m=1

This mapping is referred to as a gaussian mixture regressor [29]
(of x; into ¥;) based on MSE criterion (GMR-MSE).

C. GMR-MLPG

Alternatively, [26] proposed a joint estimator for a sequence
of T vectors [y1,...,¥¢ ...,y given an input vector se-
quence [xy,. .. ., Xr]. This estimator has the following
expression:

s Xty oo

Feeq = (W'D W) 'W'DE, 9)

where Jeeq = [J1,--35¢ -2 ¥p] is a DyT column
vector?, W is a matrix encoding the linear dependencies be-
tween static features and their derivatives, E is built from the
MSE estimation for each input vector computed with (8) and
D is a block-diagonal matrix built from the conditional covari-
ance matrices (5) and posteriors (6), for the whole considered
sequence. The reader is referred to [26] for more details. This
approach will be referred to as GMR-MLPG since it is an
adaptation of the maximum likelihood parameter generation
algorithm (MLPG) proposed in [25] for HMM-based synthesis,
to the GMM-based mapping. By imposing a consistent rela-
tionship between static and dynamic features, this mapping
generates smooth trajectories.

III. GMR ADAPTATION: PRINCIPLES AND BASELINE METHODS

A. Principles

Let first define the following three random vectors: X and
Y which are respectively acoustic and articulatory feature vec-
tors of the reference speaker, and Z which is a corresponding
acoustic vector from the source speaker. In practice, X and Z are
composed of MFCC and A MFCC coefficients, and Y are EMA
articulatory vectors (see Section VII). As illustrated in Fig. 1, let
us assume that we have an extensive set of NV joint observations
{(%n, ¥n) -1 = {X1.~,y1.n} for the training of the reference
speaker GMM (using the EM algorithm for GMM). In the adap-
tation stage, the source speaker is asked to pronounce a subset
of the above dataset (typically a few minutes of speech). We
note Vg the number of acoustic features vectors in the adapta-
tion dataset which is noted here {zn}f:ril = 2., with indeed
Ny < N (in practice we can have Ny << N).

B. MAP and MLLR

Maximum-a-posteriori (MAP) [20] and maximum likeli-
hood linear regression (MLLR) [21] are two state-of-the-art
techniques used in automatic speech and speaker recognition to
adapt a GMM (or HMM) using a new set of observations. In the

2Notice that ~ refers to the MLPG estimator and " refers to the MSE esti-
mator.
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Fig. 1. Schematic representation of the key variables in the C-GMR framework
with missing data.

present study, the goal is to adapt the acoustic-articulatory (i.e.
X-t0-Y) GMR of the reference speaker using acoustic-only
(i.e. Z) observations of the source speaker. Therefore, we
propose to apply the MAP and MLLR methodology to adapt
the “acoustic part” of the X-Y GMM, i.e. ux , and Xxx m
for each component m.

The basic principle of the MAP adaptation is to find the model
parameter set @%, , , that maximizes the posterior probability
p(©%, ,»|z) considering ®x as prior knowledge over model
parameters. The parameter set @%; , , is determined using an
EM algorithm with the following re-estimation equation (to be
concise, we recall only the equation for the mean vectors; see
[20] for the update equations of priors and covariance matrices):

MAP _ THXm + Zgil p(m|z,, Oz)z,
:U‘X,m - Ng )
T+ Zn:l p(mIZTH GZ)
where 7 is a heuristic hyperparameter shared across all GMM
components, controlling the balance between the prior knowl-
edge and the adaptation data.

In MLLR, the model parameters are adapted using an
affine transform: u%ﬁlLR = Gux,m + q and B =
HExxmLHT. The adaptation data likelihood is maximized
with respect to the transform parameters (G, q, H) using an EM
algorithm. In our implementation, these transform parameters
are shared across all GMM components. Therefore, MLLR im-
poses the same affine transformation to all GMM components,
whereas MAP updates each component separately.

(10)

C. Cross-Speaker Acoustic-Articulatory GMR

Another straight-forward way to address the considered
problem is to directly model the statistical relationships be-
tween the source speaker’s acoustics Z and the reference
speaker’s articulation Y with a Z-Y GMM (and directly
derive the corresponding Z-to-Y GMR). This approach is
referred to as the “direct” cross-speaker acoustic-articulatory
GMR (D-GMR). Importantly, training this model requires to
associate the z;.y, adaptation data with “corresponding” y 1.,
articulatory data. This is done by time-aligning each adaptation
sentence pronounced by the source speaker, with the same
sentence pronounced by the reference speaker, using a dynamic
time warping (DTW) algorithm. After this procedure, the adap-
tation data zi.n, are assumed to be aligned with observations
X1.n,, and thus with corresponding articulatory data yi.n,
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(reordering of the vectors is arbitrary). The EM algorithm for
GMM is then applied to the set {z1.x,,¥1.5, }-

IV. SPLIT CASCADED GAUSSIAN MIXTURE REGRESSION

A. Motivation

One problem with the MAP and MLLR approaches is that
the adaptation of the acoustic parameters of the X-to-Y GMR
is done independently of the joint acoustic-articulatory and ar-
ticulatory parameters, leading to a potential mismatch. As for
the (cross-speaker) D-GMR, the estimated acoustic-articulatory
model relies on a limited number Ny of articulatory observa-
tions of the reference speaker (among the N available observa-
tions). Because of the complexity of acoustic-articulation rela-
tionships, this may lead to poor inversion performances, espe-
cially when considering small adaptation datasets.

These two limitations motivated the development of the pro-
posed Cascaded-GMR framework for the considered speaker
adaptation problem. Indeed, the first core motivation of this
framework is to develop an adaptation technique which benefits
from all the available articulatory data of the reference speaker.
In other words, the reference model should remain at the center
of the adaptation process, while exploiting the acoustic adapta-
tion data. In addition to that, the C-GMR aims at avoiding poten-
tial mismatch between adapted and original model parameters.
This can be achieved in two ways:

« either by keeping the complete X-to-Y reference GMR in-
tact and making the acoustic observation z compatible with
this model. This is the general idea of the split cascaded
GMR (SC-GMR) that we define in the next subsection.

* or by jointly modeling the statistical relationships of the
three vectors Z, X and Y. This is the spirit of the inte-
grated cascaded GMR (IC-GMR), that will be described
in Section V.

B. Definition

The split cascaded GMR (SC-GMR) consists of chaining two
separate GMRs: a Z-to-X spectral conversion module (sim-
ilarly to [30]) followed by a X-to-Y acoustic-to-articulatory
inversion module. As illustrated by Fig. 2, those two GMRs
are separated in the sense that the two successive mappings
are independent: the output of the first one is calculated be-
fore being injected as input of the second one. In other words,
we have § = E[Y|%, ®j] with * = E[X|z, Of] (being I =
[Z",X"]"), where both expectations follow (8) with their re-
spective parameters. Note that the two GMRs may have a dif-
ferent number of mixture components. The X-to-Y GMR pa-
rameters are estimated with the EM algorithm for GMM applied
on the complete {(x,,y,)})_, reference dataset, “as usual”.
The Z-to-X GMR parameters are estimated with the EM al-
gorithm for GMM applied on the aligned adaptation dataset
{(Zn,%,)}N°, (see Section III-C).

Compared to the D-GMR, one key-point of the SC-GMR
is that the reference acoustic-articulatory model is trained
from all the N available acoustic-articulatory observations
of the reference speaker. The limited amount of N, data is
used to model the statistical relationships between source and
reference acoustic spaces. This spectral mapping is assumed
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Fig. 3. Graphical representation of IC-GMR.

to be simpler, or say, “better-posed,” than acoustic-articulatory
mapping, and may therefore require less training data.

V. INTEGRATED CASCADED GMR

We now present the integrated cascaded GMR (IC-GMR)
model, that we propose to address the present speaker adaptation
problem. Then, we discuss the specific way the EM algorithm
is to be used in this context. The technical derivation of this al-
gorithm is given in the next section.

A. Definition of the Mixture Model

The core idea of the IC-GMR model is to combine spec-
tral conversion and acoustic-articulatory inversion into a single
GMR-based mapping process. Very importantly, this is made
at the component level of the GMR, i.e. within the mixture,
as opposed to the SC-GMR of Section I'V. In other words, the
plugged “conversion + inversion” components share the same
component assignment variable m, as illustrated by the graph-
ical model shown in Fig. 3. The goal is to benefit from the
partitioning of the acoustic-articulatory space of the reference
speaker (i.e. X-Y ) which is assumed to be well estimated, when
proceeding to the source speaker adaptation. Contrary to the
SC-GMR, the structure of the Z-to-X conversion process is thus
here constrained by the structure of the X-to-Y GMR.

The statistical dependencies between X, Y and Z are here
defined as:

M
p(X:Yaz‘@) = Z p(m)p(Y‘my ®Y,m,)

m=1

XP(X|Y7m7 GX‘Y,N'L) xp(zlx,m, ®Z\X,'m)7 (11)
with

p(m) = mm (12)
(Y‘m ®Y m) N(Y\em, m) ’ (13)
(X|Yama G')X\Y nz) ,\/(XlAMY+bmaU ) (14)
( ‘X m, ®Z\Xm) N( ‘me"’_dmvv ) (15)
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For each component, 7, still represents the prior distribution,
e, and R,, are respectively the mean vector and covariance
matrix of the marginal Gaussian distribution of Y, A,,,, b,,, and
U,,, are respectively the transition matrix, constant vector and
covariance matrix of the linear-Gaussian conditional pdf model
in (X,Y), and the same for C,,,, d,,, and V,, with (Z, X).

B. Inference Equation

Similarly to Section II, the minimum MSE estimation ¥ of y
given z is given by its posterior mean3:

y=EX|s = [ pirla)dy. 16)
RPY
with
M
p(y|z) = / Z p(x,y, m|z)dx. 17)
RPx m=1
In the IC-GMR case we have:
p(X, y, m|z) = P(m\Z)P(Yl& z, m)p(x\z, m)

= p(m|z)p(y|x, m)p(x|z, m), (18)

since Y is independent of Z conditionally on X and m
[28—(Section VIII.2]). Therefore, we have:

M

p(vla) = Y plmla) [ plylxmpplxlzmidx. (19)

m=1

At this point, we can insert (19) into (16). But to go further,
we face a problem: the model is expressed in terms of the dis-
tributions p(y|m), p(x|y, m), p(z|x, m) and not the “inverse”
distributions p(z|m), p(x|z, m), p(y|x, m) as required in (19)*.
Fortunately, a linear-Gaussian model is “invertible”: knowing
the Gaussian PDFs p(y) and p(x|y), the PDFs p(x) and p(y|x)
are derived easily and form a linear-Gaussian model [28(p. 93)].
In the present case, we can chain the inversion across Y, X and
Z to obtain:

p(Y|X7m> ®Y\X,m) :N(y|A:LX+b:L7U:n) > (20)
p(x\m, ®X.m) = N(X‘ejn’R:Fn) ’ 2D
p(x|z,m,Oxz.,) =N x|Cz+d;,,Vy), (22)
p(zlm, Oz.m) =N (z[f;,, P}, , (23)

with

U, =R, +AU A,

A5, =Un AU b = UL (R e, — AU by,
R =U, +A,R,A e =A,e,+b,,

Vi, =®, 1+ CLV,IC)
C;, =V;C,V, !,

dy, = V5, (R, e, — CV, 1d,),
P;, =V, + Co,RLC,L L5 = Crel + dy,.

moomrTm

3In this subsection we omit the parameter set in PDF notation for clarity of
presentation.

4p(m|z) can be deduced from p(z|m) using Bayes formula (6).
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Now we can calculate (16) as:

/HDY yp(ylx, m)dy>

(A’ x + bl )p(x|z, m)dx

m

I
M>
=
El
N
T

m=1 RPx
M
= D p(m|z)(A},(Clz+d},) +b;,), (24)
m=1
and finally:
M
y= p(mlz)(A;,Chz+ ALd}, +b5). (29

m=1

Similarly to (7), it can be shown that C}, = EXZMEEE,W
dy, = px.m — C;, tiz.m. Therefore, (25) is equivalent to:

M
¥ =Y p(mlz)(pym
m=1
+ BvX,m Exx m ExZ2m S (2 — Hz,m)). (26)

The component weights p(m|z) are obtained by applying the
classical formula (6) with distribution (23).

Equation (26) was initially proposed in [27], but without the-
oretical support. It exhibits the chaining of Z-to-X and X-to-Y
linear regressions at the mixture component level. This results
into a Z-to-Y GMR with a specific form of the covariance ma-
trix Yyz,m = Syx7mz)—(§(’mzxz’m. Note that these param-
eters depend on the joint distribution of (X, Y, Z), and in prac-
tice they are estimated from all available (x,y,z) data (as we
will see below). Even if their inference equation has the same
general form, this makes the IC-GMR quite different from the
D-GMR of Section ITI-C: Remind that this latter was obtained
from a limited set of Ny(z,y) data only.

Similarly to Section II-C, we can derive the MLPG form for
the IC-GMR. The mean matrix E is here constructed from (25),
and the covariance matrix D is constructed from the conditional
covariance matrices:

EvYizm = BYY.m — BYZnDgz 0 Y m (27)
which can be shown to be equal to
2YY\z,m =R, - A:nC;LCmA7an (28)

The sequence ys.q is then estimated from sequence z by ap-
plying (9) with the constructed E and D matrices.

C. IC-GMR and EM for Speaker Adaptation

In order to infer the articulatory trajectory y from the acoustic
features of the source speaker z by means of (25), the parame-
ters of the joint model (11) need to be estimated from the data.
Since (11) is a mixture model, this naturally leads to an EM al-
gorithm [22], [28], whose derivation is given in the next section.
In general, the initialization of EM algorithms is known to be a
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crucial phase. In the present study, we propose the following
strategy:
* First, the reference GMR is obtained from an extensive set
of (x,y) data, using the EM algorithm for GMMs just as
in Section IV-B.
* Second, we note that the joint marginal distribution of
(X,Y) obtained by integrating (11) over z is given by:
M
)= > wmp(y|m, Oy m)p(xly, m, Ox|y.m). (29)

m=1

p(j|©1

Since for each m, both the marginal distribution of Y
and the conditional distribution of X|y are Gaussian,
(29) is equivalent to the standard GMM on (X,Y)
given in (1). Therefore, the parameters of (29), i.e
{7, €m. R, ,A,.. b, U,}? m , are computed from the
parameters of the reference GMRS.

* Third, {Cy,,dym, Vi }2,, iie., the parameters involving
Z, are initialized using the Ny aligned (z, x) data.

* Finally, after the initialization is done, both the V, aligned
(z,x,y) data and the remaining N — Ny(x,y) data are
used to train the IC-GMR. Most importantly, all data are
used to jointly update all IC-GMR parameters, as opposed
to the SC-GMR adaptation, where the reference model re-
mains unchanged, i.e. its parameters are not influenced by
the adaptation data z. .

VI. EM ALGORITHM FOR IC-GMR

In this section, we derive the exact EM algorithm associated
to the IC-GMR model presented in the previous section. The
aim of the EM algorithm is to maximize the expected complete-
data log-likelihood, denoted by Q). At each iteration, the E-step
computes ¢ and the M-step maximizes ¢ with respect to the
parameters ®@. The EM algorithm alternates between the E and
M steps until convergence.

A. E-step

Atiteration i+1, Q(®, ®(?)) is defined as the expected value
of the complete data log-likelihood with parameter set ®. The
expectation is taken accordingly to the posterior distribution of
latent variables given the observed data and the parameter set
at the previous iteration, @9 In order to derive the Q function
we follow the general methodology given in, e.g., [28]—(Section
9.4) and [23]. This leads to (30), where all pdfs are defined in
Section V-A, j, =[xy, ]", 0, = [x!y,)2!]" (see the de-
tails in Appendix A). For n € [1, No],

No
Q(e.e) =3 ZV(”” ) log p(0,,, m|©,,)

n=1m=1

+ZZ;

/ p (Om m|®£riz))
n=Np+1 m=1 P (.]n‘g ) RPz

X lng(On, m‘e)m)dzn

(i)
(i+1) _ p(on, m|Os)
Yo' (On) p(0,]O0)

(30)

(€2))

5The one-to-one correspondence between the parameters of the “compact”
GMM formulation (1) and the parameters of the “developed” formulation (29)
is similar to the one given with (7).
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are the so-called responsibilities (of component m explaining
observation 0,,) [28]. Note that (30) is valid for any trivariate
mixture model on (X,Y,Z) (or any bivariate mixture model
on (J, Z)) with partially missing z data and i.i.d. observations.
If we now extend the definition of responsibilities for n € [Ng+
1, N] with:

: Q)

'V(l+1)(.] ) _ p(-]n"m|®.],m)

p(inl©F)
and we use the IC-GMR definition (11)—(15), (30) becomes (see
Appendix A for details)'

(32)

No M
Q(® ®(Z Z z 'Ynffl) 210g T — log lRm‘
n=1m=1
—10g|Up| —10g| V| — Iy — emll,,
7Hxn - Amyn - m”%j - ||zn - men - dm”%/m)
LS S
n=Np+1m=1
x (2 log T, — log [Ryn| — log (U]
—log ‘Vm‘ —lyn — em”%{m —1%n — Ay, — bm”%m
| Cxn +d) = Coux — A}, = TV, VDY),
(33)

where ||x]|% = x"R~1x denotes the Mahalanobis distance of
x with matrix R and Tr stands for the trace operator. The sum
in the range [1, Ny] is a direct match of [28—(9.40)], i.e. the
classical EM for GMM, while the sum in [Ny + 1, N] results
from the expectation over the missing data z,, .

For n € [Ny + 1, N], let us denote the expected value of Z,
given x,, for the m-th model component by z/,,, = cix, +
dﬁ,? = (zl J;l) 1+ Lhis amounts to replace the missing data with
their condlti%hél mean given x,, and the current model param-
eters. For convenience, let us extend the notation z,,, to the
interval n € [1, Ny] with z!,,, = z, (which does not depend
on m here). If, in addition, we denote 7" = (i+1)(on) for

€ [1, Ny] and A = 'y,(ﬁﬂ) (jn) forn € [Ny + 1, N], then
Q((-)7 ©() can be rewritten as:

N M
Q(O,00) = Z D AGEY (2log m — log (R

n=1m=1

—[lyn — em”%{m —log|Up| — |Ixp — Apyn — bmH%Jm

_IOglvm‘ - HZ/ — Cpmxp — dm”%/'m)

N
X (3 ) mvavn
= n=No+1

(34)

B. M-step

In this subsection, we provide the M-step updates for the
IC-GMR parameters. The details of the derivations are given in
Appendix B. Three important properties of the update rules ap-
pear. First, they are all closed-form expressions, thus yielding
to an intrinsically efficient EM algorithm. Second, the depen-
dencies between the update rules do not form a loop. In other
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words, we first update the parameters that are independent, to
later on estimate the rest of them. Third, several auxiliary quan-
tities are shared between different updates, so that calculating
these quantities once for all saves computational power. Addi-
tionally, this allows to present the update rules more clearly, as
follows.

Auxiliary variables are weighted sums of the observations
and their outer-products:

Z+1) = Z’Ynl;gl »
ji:'vl+l’xn

The definition of the variables Sg}ti), S(Zl,ti), Sgé;}l,)n, ng{{lzn,

Sél&l 1, and S;l,;,?m follows the same principle.

Priors: Maximization of Q(®,®)) with respect to the
priors is trivial, since it is identical to the GMM case [28]
(with of course the responsibilities being calculated from the
IC-GMR’s PDF). For m € [1, M], we have:

1 .
—gli+1),
N m

z+1

j{:'vﬁiil

and S (35)

i+1)
7T1(’n )*

(36)
Constant vectors and transition matrices: For m € [1, M],
we have:

1 (i+1)

eq(H_l) = Y.,m ?

- S,(ffl)

(37

and A,,, b,,, C,, and d,,, are updated with (38) and (39).
Note that A% and b have the form of the standard
weighted-MSE estimates of A,, and b,, given the (x, y)
dataset and using the responsibilities as weights. C(iH) and

d(’+1) have a similar form but take into account partially
missing z data.
(i41) G+ 1 (1) o+ T
Am (SXY m S(i+1) X,m SY,1n )

1 —1
1+1 (i+1) z+1 T
(S(YY 7)n - S(l+1) SY ,m S( ) > ’

i 1 i1 i i1
b{FY = SG (S)((,rn) - A£n+1)S(Y,m)) (38)
i+1) _ [ oli+D) 1 (i+1) Qi+ 1) T
C'sn (SZ’X m 57(2+1) SZ’,qn SX,7n >
o (gith _ 1 Gl gl D) T -
XX, m S(i+1) Xm “Xm ?
Qi — L (o G0 _ gt gty
Sm
Covariance matrices: For m € [1, M], we have:
R%ﬂ) _ e(i+1) (i+1)T
i 1 i+1 i+1
(Sgr$ - S( + ) e£n+ ))
+ (40)

S(erl ?
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Uq(riL+1) — bq(;ll-&-l)b%-&-l)‘l'

1 1+1 3 1+1 3
+ W (S§(X7)n + Aanrl)S(YY.v)nAgnJrl)T

S l+1 A(H»l)

. (Sgt,}) _ Al (41)

d(z+1 d(z+1)T

+ ﬁ (ng;)m + COTY S Cu

)Sgﬁi)) *bS:erl)) :

V 1+1

(i+1) (i+1)
7SZ’X m Cm

— (85 — sy ) sali )

Vet NH%%H),
n=Ny

where P+Q = PQ'" + QP ' denotes the symmetrized outer
product of P and Q. Interestingly, (37), (40), (38) and (41) cor-
respond to the classical two-variable GMM, whereas (39) and
(42) encode the effect of the missing data. Indeed, all statistics
related to Z are computed using the actually observed z,, for
n € [1, No] and the expectedvalue,u( Y forn e [No+1, N].

Z|Xy,m

(42)

C. Complete EM Algorithm

The main steps of the initialization of the EM algorithm have
been given in Section V-C. We complete this description here
by formalizing the initialization of the subset of parameters re-
lated to Z, i.e. {C,,, dsm, Vi }i.— . Basically, this is done by
evaluating (39) with the aux111ary variables involving Z being
calculated using observed z data only, i.e. z;.n,, corresponding
x data, i.e. X1.n,, and responsibilities for n € [1, Ny] given by
(31). The complete EM algorithm for the IC-GMR, including
the initialization step, is schematized in Algorithm 1. The E-step
boils down to the calculation of the responsibilities (31) and
(32). The M-step computes the auxiliary quantities defined in
(35) that speed up the update of the parameters (36)—(42).

VII. EXPERIMENTS

In this section, we describe the experiments we conducted
to evaluate and compare the five adaptation techniques consid-
ered in this study (MAP-based and MLLR-based adaptation,
D-GMR, SC-GMR and IC-GMR), and we discuss the results.

A. Data

The articulatory data of the reference speaker were recorded
synchronously with the audio signal using the Carstens 2D
EMA system (AG200). Six coils were glued on the tongue
tip, blade, and dorsum, and on the upper lip, the lower lip
and the jaw (the position of the velum was not recorded). 2D
positions of the 6 coils were concatenated in 12-dimensional
feature vectors. The sequences of articulatory feature vectors
y were recorded at 200 Hz and downsampled to 100 Hz. The
recorded database consists of two repetitions of 224 VCVs
(Vowel-Consonant-Vowel sequences such as [apa], [ata], etc.),
two repetitions of 109 pairs of CVC real French words (such
“balle,” “pomme,” etc.), and 88 sentences. Silence and long
pauses were removed from the data set, which finally contains
16 minutes of speech.
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Algorithm 1 EM algorithm for integrated cascaded-GMR
(IC-GMR) with partially missing data Z.

| Initialization |

Use EM for GMM over {x,,,y,}"_, to compute @ ;™
{ﬂ-m7 %’Rm Am bm Um}n;{:l'
forn:=1: Ny do

z,,. = Zn, Vm.
end
form:=1: M do

forn := 1 : Ny do
Set 7“‘ using (32) with @f]“.
end

Z’ m Zn 1’Ynm nm

_ T
Z’X m Zn 1 /ern nrnxn

111 N in
SZ’Z’,m = Zno 1 Ynm% Irnn(zlnm)T
end
Use (39), (42) with the A/Prewous auxiliary variables to
compute {Ci2 dir vinl

Set @) = @ and; = 1.

while Not convergence do

forn :=1: Ny do

m=1-

p(0,]0D) =M p(0,, m|®)), using (11).
form:=1: M do
i 0,.m|@
o = R en
end
end

forn:= Ng+1: N do

. i M i
p(.]n‘@)( )) = Zm 1p( 79 m|®.(J,)m
form :=1: M do

), using (29).

iy _ p(jn,M\@ﬁi,)m)
T o)
z! - C'SfL)XH + d1(TZL)
end
end
for m := 1 : M compute

Auxiliary variables using (35)
751 and el using (36) and (37)
A%H and bsfzﬂ) using (38)
and di"Y using (39)
RUETD U and VY using (40), (41) and (42)
end
i+ +
end

C%ﬂ)

In order to evaluate and compare the five adaptation tech-
niques considered in this study, a second database of audio data
only was recorded by two other speakers: one male (M1) and
one female (F1). Both were asked to pronounce the same corpus
as the one recorded by the reference speaker. All audio speech
signals (from the reference speaker and the two source speakers)
were sampled at 16 kHz. Audio feature vectors (x and z data)
consisted of 13 MFCC coefficients extracted from 25 ms-frames
(weighted with the Hamming window) every 10 ms (therefore,
audio and articulatory vectors are synchronized at 100 Hz). To
capture the dynamics of speech articulation, both acoustic and
articulatory feature vectors were completed by their first deriva-
tive. This resulted in 26-dimensional acoustic vectors and 24-di-
mensional articulatory vectors).

B. Evaluation Protocol

A 5-fold cross-validation technique was employed for evalu-
ation. For each source speaker (M1 and F1), the acoustic-articu-
latory database was divided into 5 subsets of approximate equal
size, each one representing about 3 min of speech. At each trial,
4 subsets were used for training the reference speaker model
(i.e. the x-to-y inversion), and the remaining subset was used
for test. Also at each trial, 10 experiments were conducted by
varying the amount of adaptation data. Depending on the ex-
periment, an adaptation subset was extracted randomly from the
training set, with a size equal to k£/20 of the size of the training
set with k& € [1,10], i.e. approximately 0.7, 1.4, 2.1, 2.8, 3.4,
3.9, 4.5, 4.9, 53 and 6 min of speech signals. For all adap-
tation schemes, no significant improvement was observed for
larger datasets. Therefore, we report here only the results ob-
tained when using less than 6 min of adaptation data, out of the
16 min available for each source speaker. This results in 50 ex-
periments, for each of the two source speakers M1 and F1 (i.e.
100 experiments in total).

C. Metrics

In a practical context, the articulatory movements estimated
from the source speaker’s acoustics occur in the vocal tract
space of the reference speaker (displayed via a virtual talking
head). For each test sequence, the original articulatory move-
ments recorded on the reference speaker were therefore consid-
ered as the target.

Two metrics were used to evaluate the accuracy of the esti-
mated articulatory trajectories. The first one is the Root Mean
Squared Error (RMSE) between the articulatory feature vectors
of the reference speaker and those estimated from the source
speaker’s acoustics. A paired ¢-test was used to estimate a 95%-
confidence interval for each RMSE measure. For each experi-
ment (i.e. for each size of adaptation dataset), paired t-test were
also used to determine if the performances given by two adapta-
tion techniques were significantly different from each other. Be-
fore calculating the RMSE, a DTW-based procedure was used
to align the signals of reference and source speakers. In contrast
to the training step, we here warped the audio signals produced
by the reference speaker onto the audio signals produced by the
source speaker, and then we warped the articulatory movements
of the reference speaker accordingly. This way, the articulatory
movements of the reference speaker matched the speech rate of
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the source speaker. This enables the generation of audiovisual
sequences of the talking head displaying the estimated articu-
latory trajectories synchronously with the voice of the source
speaker. Such sequences are provided with this paper as sup-
plementary material.

The second metric used for evaluation was derived from the
so-called articulatory recognition paradigm [7], [31], [32]. This
metric aims at evaluating the estimated trajectory at the phonetic
level and can be summarized as follows. First, a HMM-based
phonetic decoder was trained on the articulatory data of the
reference speaker. A standard training procedure based on tri-
phone modeling was used (with a 3-state left-to-right HMM, and
a tree-based state-tying strategy, using the HTK toolkit [33]).
For each test utterance, the Viterbi algorithm was then used to
decode at phonetic level the articulatory trajectories estimated
from the source speaker’s acoustics. In order to alleviate the
problem of insertion/deletion errors due to the absence of a
language model, this evaluation procedure was used only on
VCV and CVC sequences (the decoder being forced to recog-
nize VCV and CVC only). The phone error rate (PER) was used
as a measure of the accuracy of the estimated articulatory trajec-
tories. It is here defined as PER = 100%((N,—5S,)/N,), where
N, is the total number of phones in the test set, and .S, is the
number of substitution errors. The 95% -confidence interval of
each PER measure was defined as the Wilson score interval. For
each experiment, statistical significance between two adaptation
methods in term of PER was assessed using the non-parametric
Wilcoxon test (which was preferred to paired t-test because of
the non-Gaussian form of errors distribution).

D. Implementation Details

The number of mixture components of the different models
were optimized at each trial of the 5-fold cross-validation, using
a subset of the training set. As for the reference acoustic-articu-
latory GMR, we tested A/ € {16, 32, 64,128, 256}. In most ex-
periments, the optimal number was found to be 64 or 128. Since
the performance obtained with these two values were very close,
we selected M = 64 to limit the number of parameters for the
different models (we recall that all GMR and C-GMR models
involve full covariance matrices). As for the first stage of the
SC-GMR (i.e. the spectral conversion GMR) and the D-GMR,
and for each size of the adaptation dataset, a cross-validation
procedure was used to determine the best number of mixture
components K among 8,16,32 and 64. For D-GMR, SC-GMR
and IC-GMR, the number of EM iteration was fixed empirically
to 50. In practice, we observed no significant evolution of model
parameters with more iterations. As for the MLLR-based adap-
tation scheme, we adopted the formulation of [34]. Best perfor-
mance was obtained when adapting px ,», and keeping the orig-
inal value of ¥xx ,, and prior 7,,, for each component m. As
for the MAP-based adaptation scheme, both px ,, and ¥xx m
were adapted, but best performance was obtained when keeping
the original value of 7,,.

E. Results

First, we report the performance of the acoustic-to-articu-
latory inversion by the reference X-Y GMR, using reference
speaker speech signals as inputs. This provides an upper bound
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for the five adaptation schemes considered in this study (i.e. the
best possible result). In terms of RMSE, we obtained an error
of 1.8 mm using GMR-MSE, and 1.5 mm using GMR-MLPG.
These results are consistent with the literature on acoustic-artic-
ulatory mapping, e.g. [12], [15]. In terms of PER, we obtained
6% for the GMR-MSE, and 3.1% for the GMR-MLPG.

On the other extreme side, we report the performance obtained
by the reference speaker X-Y GMR (in MLPG implementation)
when processing speech inputs z from source speakers F1 and
M1, with no adaptation. This provides a lower bound for the five
adaptation schemes (i.e. the worst possible results). As expected,
the performance decreased drastically compared with the upper
bound, with RMSE = 3.8 mm/PER = 67% for speaker M1, and
RMSE = 4.4 mm/PER = 80% for speaker F1 (we recall that
speaker M1 and reference speaker are male, whereas speaker F1
is a female). These results confirm the strong need to adapt the
reference speaker model.

Let us now present the results obtained for the source
speakers M1 and F1, for all adaptation schemes (MLLR, MAP,
D-GMR, SC-GMR and IC-GMR). Fig. 4 and 5 show the RMSE
and PER obtained for speakers M1 and F1 respectively, as a
function of the amount of adaptation data, and for both MSE
and MLPG implementations. These results can be discussed
from different perspectives.

First of all, the adaptation of the reference model to the source
speaker’s acoustics drastically reduces both RMSE and PER. As
an example, let us consider the IC-GMR technique in MSE im-
plementation when considering 2 min of adaptation data. Com-
pared to the lower bound, the relative improvement for speaker
M1 is 29% for RMSE and 50% for PER (with 2.7 mm RMSE
and 32% PER). For speaker F1, it is 34% for RMSE and 57%
for PER (with 2.9 mm RMSE and 34% PER). This shows the
global efficiency of the proposed C-GMR framework.

As expected, the MLPG implementation of each adaptation
scheme systematically outperforms the corresponding MSE im-
plementation (solid vs. dashed curves), for both source speakers,
and all sizes of adaptation dataset. As mentioned in [15], the
statistical smoothing of MLPG is of particular interest for the
acoustic-to-articulatory inversion given the slow-varying nature
of the EMA data. Using MLPG, the mapping is achieved ut-
terance-by-utterance and not frame-by-frame as in MSE imple-
mentation. All acoustic feature vectors of an input sequence
z contribute to the estimation of each output vector y;. As a
consequence, the mapping can benefit from contextual infor-
mation, which is also important to tackle the ill-posed nature
of acoustic-articulatory inversion. However, in its standard im-
plementation, MLPG estimation can not be done in real-time,
which remains an important issue for the present system.

Let us now describe in more details the RMSE results for the
five adaptation schemes (Fig. 4). In all experiments, MAP-based
adaptation significantly outperforms MLLR. As a possible ex-
planation, let us recall that MLLR imposes the same transfor-
mation to all GMM components, whereas MAP updates each
component separately, leading potentially to better flexibility
and accuracy. Experimental results show very distinct error pat-
terns between MAP and MLLR on the one hand, and D-GMR,
SC-GMR and IC-GMR on the other hand. Surprisingly, the per-
formance of MAP and MLLR are quite stable with the size of the
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Fig. 4. Performance obtained with MLLR, MAP, D-GMR, SC-GMR and
IC-GMR (for both MSE and MLPG implementations) as a function of the
amount of adaptation data, in terms of RMSE, for speaker M1 (top) and F1
(bottom). Error bars represent 95% confidence intervals of RMSE.

adaptation dataset. Best performance is almost already obtained
with less than 1 min of adaptation data (training with a smaller
size was not feasible). As already mentioned in Section IV-A,
this may be explained by a potential mismatch between the
adapted acoustic parameters and the original acoustic-articula-
tory parameters of the X-Y reference GMR. In contrast, per-
formances of D-GMR, SC-GMR and IC-GMR increase with
the size of the adaptation dataset (for both MSE and MLPG
implementations).

Now we detail the differences between D-GMR, SC-GMR
and IC-GMR. In MSE implementation, SC-GMR and IC-GMR
significantly outperform D-GMR for less than 2.1 min of adap-
tation data for speaker M1 and 2.7 min for speaker F1. For larger
adaptation datasets, D-GMR, SC-GMR and IC-GMR give
similar performances. As already mentioned in Section IV-A,
D-GMR exploits only the reference speaker’s articulatory
data that can be associated with the source speaker’s audio
data. Hence, training the D-GMR on a limited dataset leads to
low performances. This result tends to validate the proposed
C-GMR models (SC-GMR and IC-GMR). We recall that these
techniques exploit all available data from the reference speaker
when training the acoustic-articulatory model. Regarding the
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Fig. 5. Performance obtained with MLLR, MAP, D-GMR, SC-GMR and
IC-GMR (for both MSE and MLPG implementations) as a function of the
amount of adaptation data, in terms of phone error rate, for speaker M1 (top)
and F1 (bottom). Error bars represent 95% confidence intervals of PER.

MLPG implementations, the differences between D-GMR on
the one hand and SC-GMR/IC-GMR on the other hand are
smaller compared to the MSE implementation (for both source
speakers). The smoothing effect of MLPG seems to alleviate
the impact of errors on the estimated articulatory targets.

We now compare the performance of SC-GMR and IC-GMR.
As shown in Fig. 4, IC-GMR outperforms slightly SC-GMR
for MSE implementation in RMSE terms (i.e. the solid red
curve is most often slightly below the solid blue curve). In
order to test if the difference between the two techniques
was statistically significant over all experiments (i.e. not for
a specific size of adaptation dataset), we conducted a 3-way
ANOVA test based on a mixed model (using the /me package
of the R software). The variable to explain was the RMSE
whereas the explicative variables were: a 2-level categorical
factor method (SC-GMR/IC-GMR), another 2-level categor-
ical factor speaker (M1/F1), a 10-level categorical factor for
the size of the adaptation corpus, and a random effect of the
test sentence to account for data pairing. For both MSE and
MLPG implementations, the factor method did not interact
significantly with any of the two other factors. For MSE
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implementation, its effect was significant on the RMSE mea-
sure which is lower for IC-GMR compared to SC-GMR, by
0.008 with F(1,21976) = 221 and p < 0.001. Therefore,
IC-GMR outperforms slightly, but significantly, SC-GMR for
MSE implementation. An opposite tendency was observed for
MLPG implementation. Here, SC-GMR outperforms slightly
IC-GMR by 0.002, but this main effect is weakly significant
(F(1,21976) = 10 and p = 0.0016). Therefore, performances
of SC-GMR and IC-GMR in MLPG implementation should be
considered as equivalent.

Similar general trends are observed for the PER (Fig. 5).
As expected, the curves are less regular than for RMSE since
a difference in terms of RMSE does not necessarily lead to a
phonetic decoding error (in other words, PER metric is less
fine-grained than RMSE). For MSE implementation, SC-GMR
and IC-GMR outperform D-GMR almost always significantly.
Similarly to RMSE results, IC-GMR outperforms slightly
SC-GMR. However, the difference is here almost never signifi-
cant. Again, the MLPG implementations of D-GMR, SC-GMR
and IC-GMR (dashed curves) lead to similar performances
(with 20% PER in average).

F. Discussion

To summarize the previous results, the proposed C-GMR
framework most often outperforms the other adaptation tech-
niques when considering the conventional MSE estimator.
This is true for both RMSE and PER metrics, for both source
speakers M1 and F1, and more importantly for small adaptation
datasets. A good trade-off between the amount of adaptation
data and the performance can be found between 1.5 and 2.5 min,
depending on the speaker and on the implementation (MSE
or MLPG). The performance for small datasets validates the
benefit of introducing an intermediate spectral conversion stage
(i.e. Z-to-X) in the acoustic-articulatory inversion process.
This allows the model to rely on a well-estimated acoustic-ar-
ticulatory model of the reference speaker.

For both SC-GMR and IC-GMR, the performances decrease
significantly for very small datasets (say, less that 1 min). For
both techniques, we can conjecture different explanations for
this result. As concern the SC-GMR, one characteristic of this
model is its flexibility, in the sense that the number of compo-
nents of the Z-to-X GMR can be set independently from the
X-to-Y GMR. Consequently, the Z-to-X model can adapt to
the structure of the adaptation set. This is suitable when dealing
with a dense adaptation set. However, it can be problematic for
a very small and potentially too sparse dataset. Indeed, some
regions of source and reference speaker’s acoustic space which
are not represented in the adaption dataset may not be correctly
covered by the model.

This problem is theoretically tackled by the IC-GMR. As
an example, let us consider a component of the X-to-Y GMR
for which no corresponding z observation is available in
the adaptation dataset. Thanks to the integrated structure of
the IC-GMR, this component should be preserved and even
slightly adapted using the estimated missing data (as detailed
in Section VI). Therefore, the accuracy of the mapping in this
area of the acoustic space will depend only on the distance of
the z observation to the mean of the considered component.
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Therefore, the IC-GMR should achieve better generalization
than the SC-GMR. However, our experiments did not confirm
such property for the smallest adaptation datasets. Among the
possible limitations of the IC-GMR, we can conjecture two.
For very small adaptation datasets (i.e. Ny < N), the amount
of data available to correctly bootstrap the proposed IC-GMR
training algorithm may not be sufficient: in the initialization
stage, the statistics Sizn,m, S% < and S¥., . are calculated
from available adaptation data z;.y, and xy. }VO. This may de-
liver poorly reliable estimations of parameters Ci2, diZ* and
Vin “and thus poorly estimated missing data z' and so forth in
the following EM iterations. In other words, there may exist a
limit on the amount of adaptation data above which the proposed
EM algorithm and associated initialization work as a virtuous
circle. A second limitation could be related to the ratios between
data amount and number of model parameters. The number of
free parameters that have to be estimated in any of the consid-
ered training processes is significantly lower for the SC-GMR
than for the IC-GMR. Indeed, the SC-GMR is a chain of two
independent 2-vector GMRs, whereas the IC-GMR is basically
a 3-vector GMR. When the amount of training/adaptation data
gets too limited, models with a larger number of parameters are
generally penalized. This is a remaining issue of the proposed
IC-GMR framework which should be addressed in future work.

VIII. CONCLUSION

This article addresses the problem of how to adapt an
acoustic-articulatory GMR trained on a reference speaker, to
another (source) speaker, using a limited amount of audio-only
speech data. First, we investigated standard adaptation tech-
niques for GMM such as MLLR and MAP, to modify the
acoustic component of the acoustic-articulatory GMR. We
tested also the performance of a standard GMR, which
models directly the statistical relationships between the source
speaker’s acoustics, and the reference speaker’s articulation
(referred to as D-GMR). Then, we introduced a new general
framework called cascaded Gaussian mixture regression. This
approach aims notably at exploiting all information available
about the acoustic-articulatory relationship of the reference
speaker. To that purpose, it decomposes the conversion process
in two steps, 1) a spectral mapping step which models the
statistical relationships between source and reference speaker’s
acoustics, and 2) an acoustic-articulatory inversion step. Two
versions of the C-GMR have been proposed. The first one is a
straightforward chaining of two GMRs (SC-GMR), achieving
respectively the spectral mapping and the acoustic-articula-
tory inversion. The second one (IC-GMR) integrates the two
regressions in a single joint probabilistic model. The EM
algorithm associated to the IC-GMR has been derived within
the framework of missing data to deal with limited adaptation
datasets. In line with the existing literature on conventional
GMR, we derived two mapping procedures for the IC-GMR,
based respectively on MSE estimator and MLPG algorithm
(the latter including an explicit smoothness constraint).

Experiments have shown that both SC-GMR and IC-GMR
outperform MAP, MLLR and D-GMR, and were able to recover
phonetically consistent articulatory trajectories, from as few
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as 3 min of adaptation data. Besides, IC-GMR outperformed
slightly (but significantly) SC-GMR in MSE implementation.

Further experiments should be conducted in order to val-
idate the proposed system in a realistic applicative context.
To that purpose, the performance of the C-GMR framework
when adapting to disordered or non-native speech should be
evaluated. In such cases, the pronunciation differences between
source and reference speakers can be notable. This may occur
when the reference speaker’s language contains a phoneme
which does not exist in the source speaker’s language, or when
the source speaker’s production is altered by an articulatory
disorder. To address this challenge, the proposed training algo-
rithm of IC-GMR should be extended to the case of non-parallel
corpus as considered in [35]. Moreover, the use of the C-GMR
framework (and notably the IC-GMR approach) could be envi-
sioned in other speech processing areas, such as silent speech
interfaces [36] which are devices converting speech-related
biosignals (e.g. articulatory movements, electrical activity of
face muscles, etc.) into audible speech. The C-GMR techniques
could be used to adapt an articulatory-to-acoustic GMR trained
with vocalized data but used with silent speech and possible
altered articulation [37].

IX. SUPPLEMENTARY MATERIAL

A video showing the articulatory talking head animated auto-
matically from the speech audio signal of speakers F1/M1, for
different VCV sequences, using SC-GMR and IC-GMR tech-
niques is provided as supplementary material. The MATLAB
source code of IC-GMR training and mapping algorithms is
available at http://www.gipsa-lab.fr/~thomas.hueber/cgmr/.

APPENDIX A
DERIVATION OF Q(®, ®®)

@ is classically computed by taking the expectation of the
complete-data log-likelihood with respect to the posterior dis-
tribution of the hidden variables given the observations (and the
parameters at previous iteration):

0(0.09) = 353 » (nlon,0)

n=1m=1

x log p(0n, m|@),)

cy

n=Np+1m=1

Zn: m‘jrm 6(1))

x log p(0y,, m|@,,)dz,.

With definition (31) and multiplying and dividing the terms of
the second double sum by p(j,, @#), (30) follows immedi-
ately. Injecting (11)—(15) into the first double sum of (30) leads
to the first double sum of (33). As for the second double sum,
we remark that:

[, #(00m®4) ogp(0,,m[@,,)dz,
zZ

=p (Jn» m|®£;i1)) [logp (Jm m|®m)

+ [ b (i 0)
RPz

X logp (Zn, m|jn, @) dz,] .
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Factor p(j,|@?) together with p(j,,, m| @5,?) form the respon-
sibilities (32), and the integral term is responsible for the term
CW %y + A — Coxn — dilE — TV, V] of (33),
that is equivalent in the case of missing data to the term —||z,, —
Cx, —d,, ||%,m present in the first double sum of (33).

APPENDIX B
MAXIMIZATION OF Q(®, ©())

In this appendix we present the derivations for the M-step.
All formulas start by taking the derivative of () as expressed in
(34).

Constant vectors and transition matrices: Form € [1, M],
we have:

9Q(®,0) 1 (1)
Tm - m Z’Ymn

Setting this expression to zero leads to:

N i1
e — En:l ’77(1177, )Yn

m = N it1)

Zn:l ’YSLm )

from which we obtain (37). This expression is very similar to

the classical GMM case (see [28]), except for the specific defi-

nition of the responsibilities for n € [Ny + 1, N]. In the same

line, taking the derivative of Q(®, ®*)) with respect to b,,, and
setting the result to zero leads to:

— em)-

(43)

(i+1)

N
nm n Am n
b, — =1 72 - (X(m) Yn) (44)
n=1"Tnm
Besides, for m € [1, M], we have:
2Q(©, ®4) .
(aT =U,.} Z Vi (%0 = ApYn — bm)Y, -
Setting this expression to zero leads to:
(Z YD (%5 — b)y s >
n=1
-1
(Z A ynyn> : (45)

With the notation introduced in (35), Equ. (44) and (45) write:

1 (i4+1) (i+1)
b, = W (SX,m AmSY m ) (46)
and
A = (S50~ buSTE ) SET @)

Replacing (46) into (47) we can deduce the final result for A,
and b, given by (38)¢. The optimal expression for C,,, and d,;,
in (39) are obtained in the same manner.

6Alternately one can solve for A, first and place the result in (46) to obtain
b.... The two solutions are equivalent, including in terms of computational cost.
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Covariance matrices: For m € [1, M|, we have:
aQ(®9 ®( Z (i+1)
8R;L1 ’771177
X (Rm - (yn - eM)(Yn
Setting this expression to zero leads to:
(z+1)
ALt
ZnN 1 "/nlf;lq nzl

1 (i+1) (i+1) T
= S(i+1) (SYY m SY m *€py £ emem) .

—emn)').

R,, = )T

- em)(yn —€en

We recall that P+Q = PQ' + QP denotes the symmetrized
outer product of P and Q. From these equations the result in
(40) follows immediately. In the same line, taking the derivative
of Q(®, ®) with respect to U, ! and setting the result to zero
leads to:

N

1
_ E (i+1) _ _
X (Xn - AmYn - bm)Tv

which drives us to (41). These expressions are of course empir-
ical covariance matrices weighted by specific responsibilities.
As for the maximization of Q(®, @) with respect to V,,,
we have the additional contribution of the Trace term due to
the missing data. Setting the corresponding derivative to zero
yields:

1 N
- (i+1) ()
m n=Ng+1
+ Z %(lz;:l = Cinxp — din)
X (Z,nm - men - dm)T

The second term on the right side is an empirical covariance
matrix and, again, it is similar to the classical GMM case [28]
except for the specific definition of observation vectors and re-
sponsibilities for n € [Ny + 1, N]. The first term accounts for
the missing data, i.e. z,, for n € [Ny + 1, N]. From this last
equation (42) follows easily.
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