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INTRODUCTION

Some preliminary vocable and definitions

What is control ?

A very short review of the linear case (properties,

design of control laws, etc.)

Why nonlinear control ?

Formulation of a nonlinear control problem (model,
representation, closed-loop stability, etc.)?

Some strange possible behaviors of nonlinear systems

Example : The X4 helicopter
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Some preliminary vocable

Nonlinear
Control

N. Marchand ) .
@ We consider a dynamical system:

System

u(t) y(t)

— x(t) F—»

Linear/Nonlinear

where:
e y is the output: represents what is “visible” from outside
the system
e x is the state of the system: characterizes the state of the
system

o u is the control input: makes the system move
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Linear/Nonlinear

The 4 steps to control a system

Yd 3
!
EE— PN N l\f‘ v,
Controller _
R :‘
Observer

@ Modelization

o To get a mathematical representation of the system
o Different kind of model are useful. Often:

@ a simple model to build the control law
@ a sharp model to check the control law and the observer

@ Design the state reconstruction: in order to reconstruct
the variables needed for control

© Design the control and test it
@ Close the loop on the real system
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Linear dynamical systems
Some properties of linear system (1/2)

Nonlinear

o ines @ Definition: Systems such that if y; and y» are the
N. Marchand outputs corresponding to u; and up, then VA € R:
y1 + Ays is the output corresponding to u; + Aus
@ Representation near the operating point:
o Transfer function:

Linear/Nonlinear

o State space representation:

X = Ax + Bu
y = Cx(+Du)

@ The model can be obtained
o physical modelization (eventually coupled with
identification)
o identification (black box approach)

both give h(s) or (A, B, C, D) and hence the model.
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Linear dynamical systems

Some properties of linear system (2/2)

Nonlinear
Control x = Ax + Bu
N. Marchand {}/ = CX(+DU)
o Nice properties:
Unique and constant equilibrium
o Controllability (resp. observability) directly given by
Linear/Nonlinear rank(B, AB,...,A""1B) (resp. rank(C, CA,..., CA"1))
The X4 example Stability directly given by the poles of h(s) or the eigenvalues
of A (asymptotically stable R < 0)
S o Local properties = global properties (like stability,
Linarization stabilizability, etc.)
Gain scheduling The time behavior is independent of the initial condition
o Frequency analysis is easy
o Control is easy: simply take u = Kx with K such that
R(eig(A+ BK)) < 0, the closed-loop system X = Ax + BKx will

CLF .

Sliding mode be asymptotically stable

Geometric @ -

ontrol

Recursive o Mathematical tool: linear algebra

X4 stabilization @ This is a caricature of the reality (of course problems due to

uncertainties, delays, noise, etc.)
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Why nonlinear control 7

Why nonlinear control if linear control is so easy 7
Nonlinear

Control

@ All physical systems are nonlinear because of

Actuators saturations

Viscosity (proportional to speed?)
Sine or cosine functions in robotics
Chemical kinetic in exp(temperature)
Friction or hysteresis phenomena

N. Marchand

Linear/Nonlinear

@ More and more the performance specification requires
nonlinear control (eg. automotive)

@ More and more controlled systems are deeply nonlinear
(eg. p-nano systems where hysteresis phenomena, friction,
discontinuous behavior)

@ Nonlinear control is sometimes necessary (oscillators,
cyclic systems, ...)
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Nonlinear dynamical systems
How to get a model ?

Nonlinear

o ines o Representation:
N. Marchand o State space representation:
ODE Ordinary differential equation:

In this course, only:

= t
Linear/Nonlinear y(t) = h(x(t),u(t

1=

PDE Partial differential equation (traffic, flow, etc.):

0 = glx(t),x(t), Xt y(r))

0 h(y(t), x(t), u(t))
Algebraic differential equations (implicit), hybrid (with
discrete or event based equations), etc.

@ The model can be obtained

o physical modelization and then nonlinear identification of
the parameters (identifiability problems)
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Nonlinear dynamical systems

Open-loop control versus closed-loop control 7

Nonlinear

Control yd_) u >\i“ A y
k(x) —> yi  —
N. Marchand N j 1\
States: x
Controller
R :‘
Observer

Linear/Nonlinear

Open-loop control

find u(t) such that lim;— [ly(t) — ya(t)]| =0

Widely used for path planning problems (robotics)

Closed-loop control

find u(x) such that lim [|ly(t) — yq(t)|| =0

Better because closed loop control can stabilize systems and is robust w.r.t.
perturbation.

Only closed-loop control problems are treated
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Nonlinear dynamical systems

Aim of control ?

Nonlinear Xg =
Control —_— u \i? & y
k(x) —> X _—
N. Marchand j A‘\
States: x
Controller —<—|
R
Observer

Linear/Nonlinear

Tracking problem
find u(x) such that lim¢_ ||x(t) — x4(t)|| =0

Stabilization problem
find u(x) such that lim;—, ||x(t) — x4(t)|| = 0 for x4(t) = constant

Null stabilization problem
find u(x) such that lim;— ||x(t) — x4(t)|| = 0 for x4(t) =0

In any cases, a null stabilization problem of z(t) = y(t) — y4(t)

Only the stabilization problem will be treated.
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Some strange behaviors of nonlinear systems
The undersea vehicle

Nonlinear

s e Simplified model of the undersea vehicle (in one
N. Marchand direction):

v(t) = —viv|+u
Linear/Nonlinear ° Step answer:
The X4 example . )
u(s) = 5
. - _ 1
No proportionality : u(s) =3
between the input
and the output o L
u(s) = 1o05
CLF
Sliding mode o 1 2 3 4 5 6 7 8 9 10

Geometric

control

X4 stabilization
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Some strange behaviors of nonlinear systems
The Van der Pol oscillator (1/2)

Nonli .
Control e Van der Pol oscillator
N. Marchand .
X1 = X
X2 = —x1— eh(x1)x2

with h(x1) = —1 + x?
@ Oscillations: ¢ tunes the limit cycle

Linear/Nonlinear
The X4 example

Antiwindup
Linearization

Gain scheduling

CLF
Sliding mode

tric

Les

bilization
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Control
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Linear/Nonlinear
The X4 example

Antiwindup
Linearization

Gain scheduling

CLF
Sliding mode

Geometric

X4 stabilization

Some strange behaviors of nonlinear systems
The Van der Pol oscillator (2/2)

@ Oscillations: stable limit cycles, fast dynamics

—le =1, x(0)
e=1,x(0) = (5,
o 01 0. 0.4 05
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Some strange behaviors of nonlinear systems
The tunnel diode (1/2)

Contrar o The tunnel diode model
N. Marchand Z'L L @
dVe
C—+ir = i .
d di c ViR
. I
Linear/Nonlinear E - RIL - VC + Li +
The X4 example dt = =C GDVR
iR = h(vwg) T -
Antiwindup )
Linearization o It gives:
Gain scheduling
. 1
x(t) = E(_h(xl) + x2)

CLF . 1
Siding mode X(t) = Z(—Xl — Rxp + u)
Geometric
control
Recursive i )
e with x1 =ve, xo =i and u=E
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Some strange behaviors of nonlinear systems
The tunnel diode (2/2)

"Contrl e The tunnel diode behavior: bifurcation
N. Marchand Wlth

ir = 17.76vg — 103.79v3 +229.62v3 — 226.31v} + 83.72v3

14 13
x(0) =(0,1.23) 2 x(0) = (0,1.23)
; . 121% x(0) = (0,1.24) ’ x(0) = (0,1.24)
Linear/Nonlinear ‘\\ 1
The X4 example .
1 ~‘~‘~‘ 1
Sess ~ 0.9
08 N’s\- T - -]
\ntiwindup /s 08
X X
Linearization 06 S 20.7
Gain scheduling Sl
04 Sl 06
' 05
0.2
04
CLF 0 2 4 . 6 8 10 0 1
Sliding mode time

Geometric
ontrol

Recursive
techniques

X4 stabilization

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 19 / 174



GRENOELE 1

Some strange behaviors of nonlinear systems
The car parking

NCO"“t"eT' @ The car parking simplified model

ontrol

N. Marchand )-(1 =
5(2 = Uz
5(3 = XoUp

Linear/Nonlinear

@ System with a misleading simplicity

Theorem (Brockett (83))

There is no (u1(x), ua(x)) continuous w.r.t. x such that x is
asymptotically stable

@ In practice:
@ manoeuvres
e discontinuous control
e time-varying control

Marchand and Alamir (2003)

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 20 / 174



GRENOELE 1

Nonlinear dynamical systems
Everything is possible
Nonlinear
Control {X = f(X, U)

N. Marchand y = h(X, U)

o Everything is possible:

e Equilibrium can be unique, multiple, infinite or even not exist

o Controllability (resp. observability) are very hard to prove (it is
often even not checked)

e Stability may be hard to prove

o Local properties # global properties (like stability,
stabilizability, etc.)

e The time behavior is depends upon the initial condition

o Frequency analysis is almost impossible

o No systematic approach for building a control law: to each
problem corresponds it unique solution

° ---

Linear/Nonlinear
The X4 example

Line:

Gain

CLF
Sliding moc

e Mathematical tool: Lyapunov and differential tools

X4 stabilization
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How it works ?
4 fixed rotors with controlled rotation
speed s;
4 generated forces F;
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The X4 helicopter

How it works ?

Nontinear @ 4 fixed rotors with controlled rotation
ontrol
speed s;
N. Marchand
@ 4 generated forces F;
References @ 4 counter-rotating torques T;
Outline
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The X4 helicopter

How it works ?

@ 4 fixed rotors with controlled rotation
speed s;

@ 4 generated forces F;

@ 4 counter-rotating torques T

@ Roll movement generated with a
dissymmetry between left and right
forces:

Iy =1(Fs — F2)

Nonlinear Control

Master PSPI 2009-2010 23 / 174
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N. Marchand (gipsa-lab)

The X4 helicopter

How it works ?

4 fixed rotors with controlled rotation
speed s;
4 generated forces F;
4 counter-rotating torques T}
Roll movement generated with a
dissymmetry between left and right
forces:

Iy =1(Fs— F2)
Pitch movement generated with a
dissymmetry between front and rear
forces:

Ip=1(FL— F3)

Nonlinear Control

Master PSPI 2009-2010 23 / 174
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The X4 helicopter

How it works ?

Nontinear @ 4 fixed rotors with controlled rotation

N. Marchand Speed Si
@ 4 generated forces F;

References @ 4 counter-rotating torques T;
Outline @ Roll movement generated with a
Introduction dissymmetry between left and right
The Xs sample forces:
Linear I, =1(F4s—F)
“:":3“:? @ Pitch movement generated with a
R dissymmetry between front and rear
Stability forces:
Nonlinear o =1(F1—F3)
approaches o Yaw movement generated with a
Sking mode dissymmetry between front/rear and
e left/right torques:
tecnmiaes Ny=Ti4+T3—T—T

X4 stabilization

Observers
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The X4 helicopter
Building a model (1/3)

Ngg:t",ﬁ' o Electrical motor: A 2" order system with friction and saturation
N. Marchand usually approximated by a 1"t order system:
k2, 1 Km
§i = ——5Si— T —osaty (Up) i€{1,2,3,4) (1
’ GRS Read Ty sty (U T b ()

s;: rotation speed
The X4 example U;: voltage applied to the motor; real control variable
Tioad: Motor load: Tioad = Kgearbox K |Sj| Si with k drag coefficient

@ Aerodynamical forces and torques: Very complex models exist
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The X4 helicopter
Building a model (1/3)

Ngg:t"jj' o Electrical motor: A 2" order system with friction and saturation
N. Marchand usually approximated by a 1"t order system:
k2, 1 km
55 = — Si— —T ——saty (U;) 71€{1,2,3,4} (1
’ GRS Read Ty sty (U T b ()

s;: rotation speed
The X4 example U;: voltage applied to the motor; real control variable
Tioad: Motor load: Tioad = Kgearbox K |Sj| Si with k drag coefficient

@ Aerodynamical forces and torques: Very complex models exist
but overcomplicated for control, better use the simplified model:

F,' = bS-2

) Ib(s? — s3)

<

i€{1,2,3,4} (2)

I, = Ib(s?—s32)
Iy K(s%+532—522—s£)

b: thrust coefficient, k: drag coefficient

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 24 / 174
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The X4 helicopter

Building a model (2/3)

Nonlinear
Control

N. Marchand @ Two frames

e a fixed frame E(&, &, &3)
e a frame attached to the X4
T(t, b, 8)
@ Frame change

References
Outline

Introduction

Linear/Nonlinear

The X4 example e a rotation matrix R from T to E

Linear

approaches @ State variables:

Antiwindup o Cartesian coordinates (in E)

Linearization L. N

Gain scheduling @ position p

Stability o velocity V

N o Attitude coordinates:

onlinear

approaches e angular velocity @ in the moving frame T

;F; } o either: Euler angles three successive rotations about #3, f; and
iding mode < IV

Geometric t3 of angles angles ¢, 6 and V giving R

CRZXZIW e or: Quaternion representation (qo, ) = (cos /2, isin3/2)
techniques

represent a rotation of angle B about i
X4 stabilization

Observers
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The X4 helicopter
Building a model (3/3)

Nonlinear . .
Control o Cartesian coordinates:
N. Marchand IR .
= Vv
e L RT.FlelE (3)
myV = —mgé& + R(}_; Fi(si)ts)
e Attitude:
e Euler angles formalism:
Linear/Nonlinear
The X4 example { R — R®X 0 —ws W (4)
I - o with ©* = [ ws 0 —w;
JO = —@FJD + Tor —wy Wi 0
Antiwindup . ) ) .
Linearization @* is the skew symmetric tensor associated to ©
Gain scheduling e Quaternion formalism:
= 1 - =T
§g = gQ(w q Q@) = (9 "i’x)
- = . w —w
) = 5;[q)w with *‘3T (5)
CLF J(D = *(I’XJ(B + rtot =la) = (/3x3qo+ax>
Sliding mode
Geometric
control rr(52>54)
Recursiv; o
tochniqt where ot = — E L @*t35; +Tpert + Tp(s1,53)
i

X4 stabilization ry(sly 2,53, 54)

gyroscopic torque
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Antiwindup
Linearization

Gain scheduling

CLF
Sliding mode

Geometric
control

N. Marchand (gipsa-lab)

The X4 helicopter

Review of the nonlinearities

k2 kgearbo K k _
—ﬁsi - = ‘S,’| Si + ﬁ SatU;(Uf)

v

0
—mgés + R 0
> Filsi)

Rw*
0 I'r(s2,54)
—CBXJLB—Z,-/r(BX 0 + Fp(51,53)
DS Iy (s1,52,53,54)

In red: the nonlinearities
In blue: where the control variables act

Nonlinear Control Master PSPI 2009-2010 27 / 174
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The X4 helicopter
Identification of the parameters

Nonlinear o Electrical motor:

contre e For small input steps, the system behaves very close to a linear
first order system
e Hence, use linear identification tools
o U; is found on the data-sheet of the motor (damage avoidance)
@ Aerodynamical parameters: b and «

Linear/Nonlinear b and k measured with SpeCifiC test beds,
The X4 example

N. Marchand

Antiwindup
Linearization

Gain scheduling

CLF

Sliding mode
Geometric
control
Recursive
techniques

X4 stabilization
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The X4 helicopter

Identification of the parameters

Nonlinear o Electrical motor:

Control
e For small input steps, the system behaves very close to a linear

first order system
e Hence, use linear identification tools
o U; is found on the data-sheet of the motor (damage avoidance)
o Aerodynamical parameters: b and «

b and k measured with specific test beds, depends upon temperature,
distance from ground, etc.
@ Mechanical parameters:
I length of an arm of the helicopter, easy to measure
m total mass of the helicopter, easy to measure
J body inertia, hard to have precisely
I, rotor inertia, hard to have precisely

N. Marchand

The X4 example
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The X4 helicopter

Values of the parameters

Nontinear e Motor parameters:
ontrol
N. Marchand parameter description value unit
km motor constant | 4.3 x 107> | N.m/A
Jr rotor inertia 3.4 %1075 | Jgm?
R motor resistance 0.67 Q
kgearbox gearbox ratio | 2.7 x 1073 -
Ui maximal voltage 12 \%
The X4 example o Aerodynamical parameters:
parameter description value
b thrust coefficient | 3.8 x 1079
K drag coefficient | 2.9 x 107>

e Body parameters:

parameter description value unit
14.6 x 1073 0 0
J inertia matrix 0 7.8 x 1073 0 kg.m?
0 0 7.8x 1073
m mass of the UAV 0.458 kg
! radius of the UAV 22.5 cm
g gravity 9.81 m/s?
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The X4 helicopter

Open-loop behavior with roll initial speed

Nonlinear
Control

N. Marchand

Linear/Nonlinear
The X4 example

Antiwindup
Linearization

Gain scheduling

CLF
Sliding mode

Geometric
control

Recursive
techniques
X4 stabilization
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The X4 helicopter

Open-loop behavior with pitch initial speed

Nonlinear
Control

N. Marchand

Linear/Nonlinear
The X4 example

Antiwindup
Linearization

Gain scheduling

CLF
Sliding mode

Geometric
control

Recursive
techniques
X4 stabilization
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The X4 helicopter

Open-loop behavior with yaw initial speed

Nonlinear
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Linear/Nonlinear
The X4 example
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Linearization
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CLF
Sliding mode

Geometric
control

Recursive
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X4 stabilization
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The X4 helicopter

Open-loop behavior with roll and yaw initial speed

Nonlinear
Control

N. Marchand

Linear/Nonlinear
The X4 example

Antiwindup
Linearization

Gain scheduling

CLF
Sliding mode

Geometric
control

Recursive
techniques
X4 stabilization
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The X4 helicopter

Open-loop behavior with pitch and yaw initial speed

Nonlinear
Control

N. Marchand

Linear/Nonlinear
The X4 example

Antiwindup
Linearization

Gain scheduling

CLF
Sliding mode

Geometric
control

Recursive
techniques
X4 stabilization
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© Linear control methods for nonlinear systems
@ Antiwindup
@ Linearization
e Gain scheduling

Linear

approaches
Antiwindup
Linearization

Gain scheduling

CLF
Sliding mode

Geometric
control

Recursive
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X4 stabilization
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© Linear control methods for nonlinear systems
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Linear systems with saturated inputs
Impact of input saturations on the control of the X4's rotors (1/4)

Nonlinear
Control

N, Marchand @ We go back to the X4 example and focus on the rotors:

. ke 1 k
{s,- = —Jr—RS,' — ITIoad + Jr% SatUi(Ui)

o If one wants to act on the X4 with desired forces F¢, it
is necessary to be able to set the rotors speeds s; to s
Antiwindup with
1
d _ d
s5p = EF i
@ A usual way to control the electrical motor consist in

o taking Ticad @s un unknown load
o neglecting the voltage limitations U;
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Linear systems with saturated inputs

Impact of input saturations on the control of the X4's rotors (2/4)

Nonlinear
Control @ The so obtained system is linear
N. Marchand
1
si(s) o km _ G
Ui(s) 1+Jk’rzfs 1+7s
R @ Define a PI controller for it:
K.
Antiwindup C(S) — Kp + U
Linearization S
Gain scheduling
e Taking K; = ﬁ and K, = TKj, the closed loop system
is:
f LF
>V\::\‘H“i \’vm*k s’(s) 1

U;(s) 14+ 7T¢s
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Linear systems with saturated inputs
Impact of input saturations on the control of the X4's rotors (3/4)

Nonlinear

o ines @ Make a step that compensates the weight, that is such

N. Marchand that s,-d =/ 78 so that }_; F,-d =mg
@ Taking T, = 50 ms, one gets with saturations

600 ! . ! !
Z
Linear/Nonlinea
The X4 example 400+
S 200¢

Antiwindup
Linearization 0 . . .
Gain scheduling 0 1 2 3 4 5

80
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40t 1
CLF
Sliding mode Ui 20t 1
S A R
ontrol 0 -
Recursive ol NI R N ERRIRS
techniques o 1 2 3 2 5
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Linear systems with saturat

ed inputs

Saturation may cause instability

@ The result could be worse:

1

s1

Pulse Control  Saturation Transfer Fer

Generator

?*!

n

@ For u € [-1.2,1.2], the closed-loop behavior

25 with

without satur

is:

saturation

ation

o Saturations may lead to instability especially in the

presence of integrators in the loop
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Linear systems with saturated inputs
Key idea of the anti-windup scheme

Nonlinear
Control

N. Marchand o Consider a linear system with a PID controller:

Antiwindup

Yr +
Z/IT

@ The instability comes from the integration of the error

o Key idea: soften the integral effect when the control is
saturated
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Linear systems with saturated inputs

PID controller with anti-windup

Nontinear @ Structure of the PID controller with anti-windup:

Control
- Y
Linear system h—

N. Marchand

Anti Windup u {g
PID controller

|
YR+ e +3F
K )

<>
— P +

Antiwindup +o

o If u=u, that is if u is not saturated, then the PID
controller with anti-windup is identical to the classical
PID controller

o If u is saturated (u # u), Ks tunes the reduction of the
integral effect of the PID
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Linear systems with saturated inputs

General controller with anti-windup

@ Structure of the general dynamic controller:

D
J*F
e g + oy
G FO~ = C

@ with dynamics given by:

X = Fx.+ Ge
u = Cxc+ De
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Linear systems with saturated inputs
General controller with anti-windup

Nonlinear
Control

@ Anti-windup structure of the general dynamic controller:

N. Marchand

Antiwindup

@ with dynamics given by:

xc = Fxc+ Ge+ K(u— Cxc — De)
(F—KC)xc+ (G — KD)e + Ku

Choice of the antiwindup parameters
Take K such that (F — KC) is stable and |A,..(F — KC)| > [Ana(F)|
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Linear systems with saturated inputs
A short Lyapunov explanation of the behavior

Nonlinear

Control o Consider a stable closed loop linear system: it is
N. Marchand globally asymptotically stable. A saturation on the input
may:

o transform the global stability into local stability. In this
case, the aim of the anti-windup is to increase the radius
of attraction of the closed loop system

o keep the global stability property. In this case, the aim
of the anti-windup is to renders the saturated system

Antiwindup closer to its unsaturated equivalent

@ However, there is no formal proof of stability of
anti-windup strategies

Other approaches for saturated inputs

o Optimal control

o Nested saturation function (under development)
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Linear systems with saturated inputs

Back to the unstable case

Nonlinear @ The unstable case:
Control
N. Marchand 7st5 1
[ = B
Pulse Control  Saturation Transfer Fen
Generator
@ The closed-loop behavior is:
Linear/Nonlinea ,
The X4 example
35
3
25 withl saturation
Antiwindup ,
Linearization
Gain scheduling without saturation with saturatidn and anti-windup
1
0s f /
0
-05
CLF o 1 2 3 4 5
Sliding mode

@ However, nothing is magic and divergent behavior may occur
because of the level of the step input

X4 stabilization
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Linear systems with saturated inputs
Impact of input saturations on the control of the X4's rotors (4/4)

Nonlinear o Make a step that compensates the weight, that is such

Control

N. Marchand

that s,-d = \/Tif so that ) ; F,-d =mg

e Taking T, = 50 ms, one gets with anti-windup

Linear/Nonlinea
The X4 example
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Linearization of nonlinear systems

Impact of the load on the control of the X4's rotors

NCO:f:ISZTr o Make a step that compensates the weight, that is such that s = \/ij so
d _
N. Marchand that Z,- Fi =mg

@ Taking T, = 50 ms, one gets with load

600 T T T T
400 Bl
Linear/Nonlinea
The X4 example s 200 |
o . . .
0 1 2 3 4 5
Antiwindup
Linearization
Gain scheduling 20 . : . .
of N
0 ]
U;
CLF T 1
Sliding mode
Geometric -20 L L L L
control 0 1 2 3 4 5
Recursive .
techniques time
X4 stabilization @ The PI controller seems badly tuned: for t > 1.3 s, the control is not saturated

but the convergence is very slow. What’s wrong ?
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Linearization

Linearization of nonlinear systems

Impact of the load on the control of the X4's rotors

@ Back to the rotor dynamical equation:

2
km s — kgearboxK | ’ )
J.R i J, i | Si

éi:— Satu(U)

k

J R

@ Taking Tjpaq as unknown implies that the Pl control law
was tuned for:

k2 Km
S, —JrRs,—l—JrRsatU(U,)

o Implicitly, the second order terms were neglected

@ Unfortunately, these two systems behave similarly iff s; is

small, which is not the case for s = ’Zb 544 rads™!
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Linearization of nonlinear systems

Linearization at the origin

Nontinear Linearization at the origin

ontrol

N. Marchand Take a nonlinear system
x = f(x,u)
y = hix,u)

with £(0,0) = 0. Then, near the origin, it can be approximated by its
linear Taylor expansion at the first order:

L . of of
inearization X = —_— X + — u
0x (x=0,u=0) ou (x=0,u=0)
oh oh
y—h(0,0) = — X+ — u
0x (x=0,u=0) ou (x=0,u=0)
C D
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Linearization of nonlinear systems

Linearization at a point

Nonlinear Linearization at a point
Control

N. Marchand Take a nonlinear system

x = f(x,u)
y = hixu)

then, near the equilibrium point (xp, tg), it can be approximated by its
linear Taylor expansion at the first order:

' R e et )
e X = — X—Xxp) + — u— ug
tineariza \,./ aX (XO ,UO) H,.’_/ au (XO ,Ll()) H../_/
X X | u
B
oh
y —h(xo,u0) = 3% (X*Xo)+a* (u— up)
Xl(xo UO)T/ 4 (XO,UO)HE;_/
c D

which is linear in the variables x = x — xp and 0 = u — ug
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Linearization of nonlinear systems

Some properties of the linearization

Nc"g‘:t"j' Controllability properties
N. Marchand Take a nonlinear system
x = f(x, u) (6)
and its linearization at (xo, up):
X = Ax + Bii (7)

@ If (7) is controllable then (6) is locally controllable
Linearization @ Nothing can be concluded if (7) is uncontrollable

The car is controllable but not its linearization

5(1 = WU 5(1 10
).Q = linearization at the origin )_Q =101 (ul u2)
X3 = Xolp X3 00
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Linearization of nonlinear systems
Some properties of the linearization

Nonlinear
Control

N. Marchand Take a nonlinear system

Stability properties

x = f(x, u) (8)
and its linearization at (xp, ug):
X = A + B (9)

Linearization Assume that one can build a feedback law & = k(x) so that:
@ (9) is asymptotically stable (9% < 0): then (8) is locally
asymptotically stable with u = ug + k(X)
@ (9) is unstable (!R > 0): then (8) is locally unstable with
u = ug + k(x)
@ Nothing can be concluded if (9) is simply stable (9 < 0)
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Linearization of nonlinear systems

Impact of the load on the control of the X4's rotors

Nonlinear @ Back to the rotor dynamical equation:
Control
N. Marchand k2 k box K k
o m gearbox m
5 =— sj — —— |si| si + —= saty (U;
i J,R i -/r ‘ I| i JrR U(( I)

o Define Uf’, the constant control that keeps the steady state speed:

R kgearbox K

Sd
km

i

Linear/Nonlinea d d d
inear i Ui :kms,- + ¢

The X4 example

@ The linearization of the rotor dynamics near s,d gives:
\ntiwindup
Linearization 2
Gain scheduling . k 2Kgearbox K
§—— ( m | “KgearboxK

d

km ~ ~
) 5+ —— SatU’_(U,']

IR J i IR
with: B
CLF U= Ui — U,'d
;xwg mode 5; =5 — sd
i U if Ui € [=U;, U]
SétUi(U,') = U; if Ui > U;
—U; if Ui < —U;
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Linearization of nonlinear systems

Impact of the load on the control of the X4's rotors

NC""“t“eT' @ Make a step that compensates the weight, that is such that
ontro

d_ [mg d_
N. Marchand S = b so that E iFi =mg

o Taking T¢; =50 ms and a Pl controller tuned at s,-d on the system
with load, one has:

600 T T T T
Linear/Nonlineal
The X4 example 400 - i
Si 200f ]
Antiwindup
Linearization 0 L L L
i 0 1 2 3 4 5
Gain scheduling
20
CLF
Sliding mode U;
g e I T PP PPN 1
! -20 -
ues 0 1 2 3 4 5
bilization .
time
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Towards gain scheduling

Impact of a change in the steady state speed of the X4's rotors

N(‘:’(;‘r:'t“:j' o Take again T¢, = 50 ms and a Pl controller tuned at s?
o .
N. Morchand Make speed steps of different level
600 T T T T
400 - i
200+ / 1
S
Linear/Nonlinear ! 0 ~ 1
The X4 example
-200 : : : ‘
0 2 4 6 8 10
Antiwindup 20 T T T T

Linearization

Gain scheduling

CLF —20 . . . L
Sliding mode 0

time
fecuse @ The controller is well tuned near s,f" but not very good a large
X4 stabilization range of use
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Towards gain scheduling

Local linearization may be inadequate for large excursion

Nonlinear

Control The result could be worse:
N. Marchand @ Take the inverted pendulum
| 6
[
6 1 +M  —mlcos® mgl sin®
(y) ~Al0) (jﬂcose /nl :152 ) (u + ml§?sin@® — ky)
T where
—i{ff:a - 1 o
N/ o [ is the inertia of the pendulum
i § o A(0) = (I +mP)(m+ M) — m?I? cos® 0
Y Y
Gain scheduling

Mg
o Linearize it near the upper position (0 =0) withm=M =/=g=1,
k=0and x=(0,0,y,y):

X1 0 10 0\ /x 0
5<2:§000><2+—%u
X3 0 00 1[|xs 0
X4 -1 00 0/ \x 2
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Towards gain scheduling

Local linearization may be inadequate for large excursion

Nonlinear @ Build a linear feedback law that places the poles at -1
Control @ Starting from 0(0) = 7t/5, it converges, from 0(0) = 1.1 x 7t/5, it diverges
N. Marchand
15 T T 15 T T
In %ted pendulum Linearization of the
inverted pendulum
Initial condition:
X0) = (5/5,0,0,0)
10¢ 1 10} x(0) = (1.17/5,0,0,0) 1
Antiwindup [l Il
Linearization
Gain scheduling
5¢ 1 5t 1
CLF
Sliding mode
X4 stabiization 0 : 0 :
o e 0 5 10 15 0 5 10 15
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Gain scheduling
[ 24

N. Marchand (gipsa-lab)

Towards gain scheduling

For some systems, the radius of attraction of a
stabilized linearization may be very small (less than one
degree on the double inverted pendulum for instance)

Linearization is not suitable for large range of use of
the closed-loop system

For other systems, the controller must be very finely
tuned in order to meet performance requirements (e.g.
automotive with more and more restrictive pollution
standards)

Linearization is not suitable for high accuracy closed
loop systems

Either for stability reasons or performance reasons, it
may be necessary to tune the controller at more than
one operating point
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Towards gain scheduling

@ Gain scheduling uses the idea of using a collection of
linearization of a nonlinear system at different

operating points

Nonlinear Control
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Gain scheduling

Gain scheduling

@ Take a nonlinear system
x = f(x,u)
@ Define a family of equilibrium points
s = (Xeq) Ueq) such that f(Xeq, Ueq) =0

@ At each point s, linearize the system assuming s is
constant:

x=A(s)x + B(s)u

With X = X — Xeq and i = u — ueq
@ At each point s, define a feedback law:

u= Ueq(s) — K(s)(x *Xeq(s))
with R(Eig(A(s) — B(s)K(s))) <0
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Gain scheduling

The controller is then obtained by changing s in the a
Nontinear priori defined collection of points

N. Marchand @ The change of s can be done discontinuously or continuously
by interpolation
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Gain scheduling

@ Drawbacks of gain scheduling :

NCOQ:SZT X Convergence only if s varies slowly
N, Marchand X The performance within a linearization area may be poor
X The mapping may be prohibitive if the number of states is
large
X The stability issues are not clear
@ Recent evolution of gain scheduling:
e Dynamic gain scheduling: improve the transition between
the different controllers, limits the importance of the slow
motion of s
e LPV: Linear parameter varying methods considers the
Gain scheduling nonlinear system as

x = Alp(x))x+ Blp(x))u

and, under some conditions, uses LMI to build a feedback.
Improves the performance within a linearization area.
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Gain scheduling

Handling changes in the steady state speed of the X4's rotors

Ném'i"eTr @ Take again T, = 50 ms and a Pl controller tuned at s;
ontrol .
@ Make speed steps of different level
N. Marchand
600 u T T T
400 =
200+ 1
si
Linear/Nonlinear 0 ~ ]
The X4 example
2005 2 4 6 8 10
Antiwindup 20 : . , ,
Linearization
Gain scheduling
cLr 20, 2 3 6 8 10
Sliding mode
Ge time

Recursive @ The rotors are now well controlled

X4 stabilization
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Stability

Consider the autonomous nonlinear system:

Nonlinear

Control x = f(x,u(x)) = g(x) (10)

N. Marchand

System (10) is said to be stable at the origin iff:

VR > 0, dr(R) > 0 such that Vxg € B(r(R)), x(t;xp), solution
of (10) with xg as initial condition, remains in B(R) for all
t>0.

Attractivity

Stability The origin is said to be attractive iff:
lim: 00 X(t;x0) = 0.

System (10) is said to be asymptotically stable at the origin
iff it is stable and attractive
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Stability

Graphical interpretation

Nonlinear
Control
N. Marchand
[l [l
R /AN R _%
r(R) r(R)
t
Stability

@ For linear systems: Attractivity — Stability
B For nonlinear systems: Attractivity - Stability

o Stability and attractivity : properties hard to check ?
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Stability
Using the linearization

Nonlinear
Control

Consider x = g(x) and its linearization at the origin

X = g‘ x. Then:

ox |,
X

@ Linearization with eig< 0 = Nonlinear system is locally
asymptotically stable

@ Linearization with eig> 0 = Nonlinear system is locally
unstable

@ Linearization with eig= 0: nothing can be concluded on
the nonlinear system (may be stable or unstable)

Stability

Only local conclusions
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Stability

Lyapunov theory: Lyapunov functions

Aleksandr Mikhailovich Lyapunov

Markov’s school friend, Chebyshev’s student
Master Thesis : On the stability of ellipsoidal forms of equilibrium of a rotating liquid in 1884
Phd Thesis : The general problem of the stability of motion in 1892

6 June 1857 - 3 Nov 1918

Definition:

Let V :R" — R be a continuous function such that:
© (definite) V(x) =0 & x=0

@ (positive) Vx, V(x) >0

© (radially unbounded) limy 500 V(x) = +o00

Lyapunov functions are energies
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Stability

Lyapunov theory: Lyapunov theorem

Nonlinear
Contrel Aleksandr Mikhailovich Lyapunov
N. Marchand Markov’s school friend, Chebyshev’s student
Master Thesis : On the stability of ellipsoidal forms of equilibrium of a rotating liquid in 1884
Phd Thesis : The general problem of the stability of motion in 1892
6 June 1857 - 3 Nov 1918
Theorem:
If 3 a Lyapunov function V : R" — RT s.t.
. o (strictly decreasing) V/(x(t)) is strictly decreasing for all
tability

x(0) #£0

then the origin is asymptotically stable.

If 3 a Lyapunov function V : R" — R* s.t.

@ (decreasing) V/(x(t)) is decreasing

then the origin is stable.
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Stability

Lyapunov theorem: a graphical interpretation

x(t)

{z;V(z) =V(z®)}
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Stability

Stability and robustness

Nonlinear

Control
N. Marchand

@ Stability holds robustness:
Linear '!\Jér\\\r‘c‘ka" . . ov
X =glx) stable = V= ——g(x) <0
X

Antiwindup oV
i = ——(gx)+elx)) <0
Gain scheduling aX
Stability = X =g(x)+ e(x) stable

CLF
Sliding mode

Geometric
control

Recursive
techniques
X4 stabilization
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The X4 helicopter

The control problems

Nonlinear
Control
N. Marchand
. 2 Kaearbox K
S; _ km g  Keewto® o) oy kmogat o (1)
-, S v ‘ Hsition trol problem
P = v osItion con p
Linear/Nonlinear 0
The X4 example I o
mvV = —mgé&+R 0
> Filsi)
Antiwindup - = "
Linearization R = R®&* Attitude control problem
Gain scheduling 0 ]"r(52) 54)
5 % - -
' JO = —@&Jo -5 Lwr | o0 |+ Tp(s1,53)
Nonlinear
approaches Z,’ S ry(51» 52, 53, 54)
CLF

Sliding mode

Recursive
techniques
X4 stabilization
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Control Lyapunov functions
Characterizing property (1/3)

Nontinear e Control Lyapunov functions (CLF) where introduced in the 80's
o CLF are for controllability and control what Lyapunov functions

are for stability
@ Lyapunov: a tool for stability analysis of autonomous
systems
o Take

N. Marchand

).(1 = X2

X2 = —Xx1— X2

o Take the Lyapunov function

V(x) = gxlz+x1x2+x22

CLF . .
o Along the trajectories of the system:

Vix() = VV(x).Fx) =~
hence, V 0 and the system is asymptotically stable
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Control Lyapunov functions
Characterizing property (2/3)

Nonlinear

Control @ Control Lyapunov Functions: a tool for stabilization of
N. Marchand controlled systems

o Take now the controlled system
X1 = X
X = —Xx1+u

o Take the Lyapunov function

V(ix) = gxlz + x1x0 + x22

o Along the trajectories of the system:

CLF

V(x(t),u(t) = VV(x).f(x,u)

= —X12 + X1 —|—x22 + (x1 + 2x0)u
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Control Lyapunov functions
Characterizing property (3/3)

Nonlinear

Control e Control Lyapunov Functions: a tool for stabilization of
N. Marchand controlled systems

o Along the trajectories of the system:
V(x(t),u(t)) = VVI(x).f(x,u)
= —X12 + x1x0 + X22 + (x1+ 2x)u

o hence

o if x1 +2x2 # 0, there exists u such that V ~
o otherwise (if x1 + 2x; = 0)

V(X(t), u(t)) = —4x2—2x3+ x2 = —5x2

. . . o _ 1 .
e which is negative unless x; =0 = —35x1: V %

In conclusion: characterizing property of CLF

For any x # 0, there exists u such that V(x(t),u(t)) <0
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Nonlinear
Control

N. Marchand

CLF

Control Lyapunov functions

Formal definitions

Definition: Lyapunov function
A continuous function V' : R” — R is called a Lyapunov
function if
@ [positive definiteness| V/(x) > 0 for all x and V/(0) = 0 if and
only if x =0
@ [radially unbounded] limy_ o V/(x) = +o00
or:
@ [positive definiteness] V/(x) > 0 for all x and V/(0) =0 if and
only if x =0
@ [proper] for each a > 0, the set {x|V/(x) < a} is compact

or, alternatively:

(Fo, @ € Koo)  alllx]) < VI(x) <&([[x]]) Vx eR"
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Control Lyapunov functions
Formal definitions
NConIineTr
ontrol . .. 2
A differentiable control Lyapunov function denotes a
differentiable Lyapunov function being infinitesimally
decreasing, meaning that there exists a positive continuous
definite function W : R" — R>q and such that:

sup min VV(x)f(x,u)+ W(x) <0
xXERN ueRm

@ Roughly speaking a CLF is a Lyapunov function that one
can force to decrease

@ Extensions to nonsmooth CLF exist and are necessary for
the class of system that can not be stabilized by means of
smooth static feedback

CLF
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Control Lyapunov functions

Control affine systems

Nonlinear Definition: Directional Lie derivative

C | . N . . . . .
onere For any f and g with values in appropriate sets, the Lie derivative of g along f is
N. Marchand defined by:

Lrg(x) = Vg(x) - f(x)

Iteratively, one defines:
Lig(x) == LeLfg(x)

Consider a control affine system x = go(x) + > I u;gi(x) with f smooth and
f(0) = 0. Assume that the set

S = {X\L,cV(x) = 0 and L’;Lg,.V(x) =0forall k e N, /€ {1,...,m}} = {0}

then, the feedback

CLF

k(x) == (VV() - G())T = (Lg V(X) -+ Lg,VI(x)T

globally asymptotically stabilizes the system at the origin.
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Control Lyapunov functions

Control affine systems

Nonlinear Sontag's universal formula (1989)
Control :
N. Marchand Consider a control affine system x = go(x) + > uigi(x) with f smooth and

f(0) = 0. Assume that there exists a differentiable CLF, then the feedback

ki(x) = =bj(x)@(a(x), B(x)) (=0 for x =0)

@ a(x):=VV(x)f(x) and b;(x) := VV[ )gi(x) for i =1,.
o B(x) = (bi(x) -+ ba(x)) and B(x) = |B(x H
@ g:R — R is any real analytic functlon with g(0) = 0 and bg(b) > 0 for any

@  is the real analytic function:

a+y/a2+bq(b) .
a,b) = e if b#£0
ol ) { 0 ifb=0
CLF

is such that k(0) = 0, k smooth on R"\0 and

sup VV/(x)f(x, k(x)) + W(x) <0
xERN
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Nonlinear
Control

N. Marchand

CLF

Control Lyapunov functions

Control affine systems

Definition: Small control property

A CLF V is said to satisfies the small control property if for any ¢,
there is some 0 so that:

sup min VV(x)f(x,u)+ W(x) <0
xEB(8) ueB(e)

The small control property implicitly means that if ¢ is small (hence the
control), the system can still be controlled as long as it is sufficiently close to

the origin

Sontag's universal formula (1989)

Consider an control-affine system % = go(x) + >_ i = 1"u;g;(x)
with f smooth and f(0) = 0. Assume that there exists a
differentiable CLF, then the previous feedback k with q(b) = b is
smooth on R™\0 and continuous at the origin
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Control Lyapunov functions
Robustness issues

Nonlinear
Control

Model Real system

N. Marchand x = f(X,Ll) x = f(X,U)+£
u = k(x)

u = k(x+9)

Definition: Robustness w.r.t. model errors

A feedback law k : R” — R™ is said to be robust with respect to model errors if
lim_ 00 x(t) G B(r(e)) with lime_,o r(e) =0 (x(t) denotes the solution of

X = f(x, k(x)) +¢)

Definition: Robustness w.r.t. measurement errors

A feedback law k : R” — R™ is said to be robust with respect to measurement
errors if limy_ x(t) € B(r(8)) with lims_o r(d) = 0 (x(t) denotes the solution
of x = f(x, k(x +5)))

Smooth CLF = robust stability (1999)

The existence of a feedback law robust to measurement errors and model errors
is equivalent to the existence of a smooth CLF

CLF
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Nonlinear
Control

N. Marchand o
o

CLF

N. Marchand (gipsa-lab)

Control Lyapunov functions

Conclusion

A CLF is a theoretical tool, not a magical tool
A CLF is not a constructive tool

Finding a stabilizing control law and finding a CLF are at
best the same problems. In all other cases, finding a
stabilizing control law is easier than finding a CLF

Even if one can find a CLF for a system, the universal
formula often gives a feedback with poor performances

However, this is an important field of research in the
control system theory community that proved important
theoretical results, for instance the equivalence between
asymptotic controllability and stabilizability of nonlinear
systems (1997)
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Other structural tools

Passivity
Nonlinear s e i - -
Control Definition: Passivity
N. Marchand A System
X = f(x,u)
y = h(x, u)

is said to be passive if there exists some function S(x) > 0 with
5(0) = 0 such that

@ Roughly speaking, S(x(0)) (called the storage function)
cLF denotes the largest amount of energy which can be extracted
from the system given the initial condition x(0).
@ Passivity eases the design of control law and is a powerful tool
for interconnected systems
@ Important literature
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Other structural tools
Input-to-State Stability (ISS)

Nonlinear Class I A continuous function v : R>g — Rx¢ is said in K if it is strictly increasing
Control and y(0) =0
N. Marchand Class KL A continuous function  : R>¢ X R>0 — R is said in ICL if B(-,s) € K for

each fixed s and B(r, ) is decreasing for each fixed r and lims— o0 B(r,s) =0

Definition: Input-to-State Stability

A system

X = f(x,u)

is said to be input-to-state stable if there exists functions 3 € L and y € K
such that for each bounded u(-) and each x(0), the solution x(t) exists and is
bounded by:

Ix(0)F < BIx(O)I, 1) +v( sup [lu(T)]])
0<t<t

CLF @ Roughly speaking, ISS characterizes a relation between the norm of the
state and the energy injected in the system: the system can not diverge in
finite time with a bounded control

@ ISS eases the design of control law
@ Important literature
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OUTLINE

Nonlinear
Control

N. Marchand

Linear/Nonlinear

The X4 example

Antiwindup

A @ Nonlinear control methods

Gain scheduling

@ Sliding mode control

CLF

Sliding mode
Geometric
control

Recursive
techniques

X4 stabilization
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Sliding mode control

An introducing example

Nonlinear H H
Gt @ Take again the linear system
N. Marchand .
X1 = X2
X = —x1+u

@ Assume u is forced to remain in [—1,1]
In practical applications, u is always constrained in an interval [u,u]. We will
see later on how to handle it. To begin, we take the above simplified

constraint.

@ Take the CLF

3 3 1
V(x) = §x12 +xx0+ X3 =x" (f i) X
2

Sliding mode

Find v in [—1,1] that makes V decrease as fast as possible
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Sliding mode control

An introducing example

Nonlinear @ Making V decrease as fast as possible is equivalent to minimizing V:
Control
N. Marchand u = Argmin{ V}
uel-1,1]

= Argmin{ — x12 + x1x2 + X22 + (x1 +2x0)u
—_

uel[-1,1]
. can not be changed minimal for u=—sign(x;+2x2)
= —sign(x; +2x

@ Simulating the closed loop system with initial condition x(0) = (2, —3), it gives:

X2,

o

-2 X1

“o 2 4 6 8 10
1

1

05

0 u
05

Sliding mode "
- o 2 4 6 8 10
o Why does it work ?
Nonlinear Control Master PSPI 2009-2010 92 / 174
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Sliding mode control

An introducing example

Ng;rlrri?r @ Define o‘(x) = x1 + 2x2. The set
. {S(x) ={xlo(x) = 0}} N{|x1| < 0.6, |x2| < 0.3} is attractive:
References
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Antiwindup
Linearization
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Sliding mode control

An introducing example

Ncogr:i:rﬁr o Define o(x) = x1 + 2x2. The set
N. Marchand {S(x) = {xlo(x) = 0}}N{|x1| < 0.6, |x2| < 0.3} is attractive:
References ’~\
Outline > &\\,4/
Introduction —f}

Linear/Nonlinear
The X4 example

Linear
approaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear
approaches
CLF

Sliding mode

Geometric
control

Recursive
techniques
X4 stabilization

Observers
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Sliding mode control

An introducing example

Nc"gr:'t“:j' @ The set {S(x) ={x|o(x) =0} N{|x1| < 0.6,|x2| <0.3}is
N. Marchand attractive L. . )
@ Once the set is joined, the control is such that x remains on
S(x), that is:
S(X) =0=x14+2% =x—x1+ U
Linear/Nonlinea
ez eample @ Hence, on S(x), u = —sign(x; + 2x2) has the same influence
on the system as the control ueq = x1 — X2
Antiaindup. @ On S(x), the system behaves like:
Gain scheduling
5(1 = X2
X = —x1+u=—x
CLF ) )
Sliding mode @ x» and hence also x; clearly exponentially go to zero without

comol leaving {S(x) = {x|x1 + 2x> = O}} N {|x1| < 0.6, |xs| < 0.3}

Recursive

techniques

X4 stabilization
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Sliding mode control

Principle of sliding mode control

Nonlinear
Control
N. Marchand Principle:
@ Define a sliding surface S(x) = {x|o(x) = 0}
@ A stabilizing sliding mode control is a control law
e discontinuous in on S(x)
e that insures the attractivity of S(x)
e such that, on the surface S(x), the states “slides” to
the origin
Main characteristic of sliding mode control:
v/ Robust control law
X Discontinuities may damage actuators (filtered versions
Sliding mode

exist)
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Sliding mode control

Notion of sliding surface and equivalent control

Nconlit"eTf e With a sliding mode control, the system takes the form:
N. Marchand 5= f+(X) if o(x) >0
T F(x) if o(x) <0

Linear/Nonlinear o(x) >0
The X4 example

Antiwindup
Linearization

Gain scheduling
olx) =

‘S'IFdr_ } @ What happens for o(x ) =07

rg‘\ @ The solution on o(x) = 0 is the solution of X = af T(x) + (1 — &)f (x)

S where o satisfies af,"(x) + (1 — o), (x) = 0 for the normal projections of

techniques + _

X4 stabilization f* and f
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Sliding mode control

A sliding mode control for a class of affine systems

Nonlinear
Control Sliding mode control for a class of nonlinear systems
N. Marchand
@ Take the nonlinear system:
X1 fi(x) + g1(x)u
X2 X1
= = f(x) +g(x)u
Xn Xn—1
@ Choose the control law
-
p’ f(x) L
u=— — sign(o(x))
pTe(x) pTg(x)
Siding mode with p >0, o(x) =p'xand p" = (p1 -+ pn) is a stable
polynomial (all roots have strictly negative real parts)
@ Then the origin of the closed loop system is asymptotically
stable
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Sliding mode control

Sliding mode control for some affine systems: proof of convergence

Nonlinear PrOOf:
Contrel @ Take the Lyapunov function
N. Marchand
1
V(x) = EprpTx
L e Note that V(x) = <4
The X4 example @ Along the trajectories of the system, one has:
Vix) =0T (x)5(x) =xTp (pTF(x) + pglx)u)
Linearization
Gain scheduling
with the chosen control, it gives:
V(x) = —po(x) sign(o(x)) = —pt |o(x)|

Sliding mode
seom @ x tends to S = {x|o(x) =0}
@ 1 tunes how fast the system converges to S = {x|o(x) = 0}

X4 stabilization
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Sliding mode control

Sliding mode control for some affine systems: proof of convergence

Nonlinear @ On S, the system is such that
Control
N. Marchand o(x)=0=pix1+ -+ pp_1Xn—1 + PnXn
e But:
Xp-1 = Xp
. _ 2
Linear/Nonlinear Xp—2 = Xp—1=Xn
The X4 example
. (n—1)
X]. f— X2 = e — Xn
Antiwindup
Linearization . . i
Gain scheduling @ That can be written with z; = x,_;+1 in the form:
0 1 0 0
0 0 1
CLF s .
Sliding mode z= : U 0 z
Geomet
ometi 0 e e 0 1
Recursive P2 _pP3 .. ... _Pn
techniqu P1 p1 P1
X4 stabilization
@ Hence, x asymptotically goes to the origin |
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Sliding mode control

Sliding mode control for some affine systems: time to switch

Contral
N. Marchand o Consider an initial point xg such that o(xg) > 0.
@ Since
0(x)o(x) = —po(x) sign(o(x))
Linear/Nonlinea it follows that as long as o(x) > 0

The X4 example

o(x) =—p

@ Hence, the instant of the first switch is

CLF
Sliding mode u

@ Moreover, ts - 0 as © — oo

X4 stabilization
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Nonlinear
Control

N. Marchand

Sliding mode

Sliding mode control

Robustness issues

@ Assume that one knows only a model
x =F(x)+g(x)u
of the true system
x=1f(x)+g(xju

@ The time derivative of the Lyapunov function is:

o If sign(p”g) = sign(p’g) and p > 0 sufficiently large, V < 0
@ The closed-loop system is robust against model errors
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OUTLINE

Nonlinear
Control

N. Marchand

Linear/Nonlinear
The X4 example

Antiwindup

Linearization @ Nonlinear control methods

Gain scheduling

cLr @ State and output linearization

Sliding mode

Geometric
control

Recursive
techniques

X4 stabilization
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State and output linearization

Introducing examples

Nonlinear @ Consider nonlinear the system
Control
N. Marchand X1 = —2x3+ axp + sin(x1)
X» = —xpcos(xy)+ ucos(2xy)
o Take the new set of state variables
Linear/Nonlinea
The X4 example zZ1 = X1 X1 = 1
2 = axy+sin(xy) X2 %"(Zl)
tiwindup .
e @ The state equations become:
Gain scheduling
21 = 271+
zy = —2z1cos(z1)+ cos(zi)sin(z1) + aucos(2z)
CLF . L. 3
Sliding mode @ The nonlinearities can then be canceled taking the new control v:
Geometric
control 1
u = ————— (v—cos(z)sin(z1) + 2z cos(z1))
stabilization acos(2z)
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State and output linearization

Introducing examples

Nonlinear
Control

N. Marchand L 2 1 . 0 .
N 0 0 1

@ Taking v = —22z, places the poles of the closed-loop in {—2,—2}
Linear/Nonlinea @ Hence, lim; 4,00 z=0
e example @ Looking back to the transformation:

@ The system then becomes linear:

X1 = 1
Gain scheduling 2o —sin(z;)
X2 = —
a
one also have lim;_,oo x =0
f‘L‘f , @ In the original coordinates, the control writes:
éeom;tric ‘
control 1
e U= —————[-2axo—2sin(xo)—cos(x7) sin(xy)+2x1 cos(x1)]

X4 stabilization acos(2xy)
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Nonlinear

o
Control
N. Marchand
Linear/Nonlinea °

The X4 ex:

\ntiwindup
Linearization

Gain scheduling

CLF

Sliding mode

Geometric

control

Recursive
Wniques

X4 stabilization

N. Marchand (gipsa-lab)

State and output linearization

Introducing examples

Consider nonlinear the system

X1 = sin(xo) + (x2+ 1)x3
Xy = X15 + X3
3 = X2 +u

Take x1 as "output”: y = xq
When not imposed, the choice of the appropriate output is often delicate
Compute the first time derivative of y:

vy =x1 =sin(x2) + (x2 + 1)x3

Compute the second time derivative of y:

Taking u =

v—m(x)
xa+1

7= 0o+ 1)u+ (3 +x3)(x3 + cos(x2)) + (x2 + 1)x2

gives the linear system:

Nonlinear Control

m(x)

j=v

Master PSPI 2009-2010 105 / 174
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State and output linearization

Introducing examples

Contrar X Potential problem if x, = —1
N. Marchand @ Here again, take the linear feedback v = y + 2y that

places the poles of the closed loop system in {—1,—1}

@ Hence, y and y asymptotically converges to the origin

@ The state of the system is of dimension 3. Only two
variables have been brought to the origin, what about the
third one ?

@ Write the system with the new coordinates
(z1,22,23) = (y,y,x3):

. . z1 = Zz
Linearized sub-system: { 1 2
Z2 =V
Geometric
control . . 2
Internal dynamics: { 3 = z{ +u(z)
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State and output linearization

Introducing examples

Nc"g‘:t"rﬁ' @ One has to check that the internal dynamics is stable. For this, we
N, Marchand assume that y = y = 0 (which happens asymptotically):
—0 —0
-0 ’j& PNy —_
. 3 V(2 +z8)(z3 + cosx) + (x2 +1)77)
zz3 = z +
x4+ 1

z3(z3 + cos x»)
xo+1

o If xo and z3 are small enough, z3 &~ —z3(z3 + 1) & —2z3: the internal
dynamics is locally asymptotically stable

@ The approach can be applied if and only if the internal dynamics is
stable
@ If the internal dynamics is unstable, the system is called non-minimum
Geometric phase

control

o Change the input
o Use additional inputs to stabilize the internal dynamics
o Other approach in the literature like approximate linearization
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State and output linearization

Introduction

Ncog:t"rﬁ' o Consider again nonlinear systems affine in the control:
N. Marchand { X = f(X) + g(X)U
y = h(x)

@ The linearization approach tries to find
e a feedback control law

u=o(x)+p(x)v

e and a change of variable
z=T(x)

that transforms the nonlinear systems into:

Input-State linearization Input-Output linearization
Geotmeltric z=Az + Bv y(r) =V
X No systematic approach v/ Systematic approach
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State and output linearization
The SISO case

Nonlinear Y Ta ke

Control

N. Marchand { x =f(x)+g(x)u
y = h(x)

@ The time derivative of y is then given by:

. Oh

= ox

e If Lgh(x) # 0, the control is
1

Lgh(x)

(f(x) +g(x)u) = Leh(x) + Lgh(x)u

(—Leh(x) + v)

u =

yielding y = v
@ Otherwise (that is Lgh(x) = 0), differentiate once more:

Soomstrie ) o
= T;(f(x) + g(x)u) = L2h(x) + LgLeh(x)u
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State and output linearization
The SISO case

el o If LgLrh(x) # 0, the control is
N. Marchand 1 L2h
U= ToLehp )

yielding to y = v
° ...

Definition: Relative degree

There exists an integer r < n such that LgL;}h(x) = 0 for all
ie{l,...,r—2}and LgL}_lh(x) # 0 that is called the relative degree of

the system

@ The control law

Geometric o 1

contro —————(—L7h(x) +
trol u LgL;_lh(X)( Fh(x) +v)

yields the linear system y") = v
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Nonlinear
Control

N. Marchand

CLF

Sliding mode

Geometric
control

Recursiv

State and output linearization
The MIMO case

o Take
x = f(x)+ gi(x)u1 + g2(x)u2
y1 = h1(x)
y2 = ha(x)

@ The relative degree {r, rn} is then given by:

L L thi(x) = Lg Lt h(x) =0 Vi<n
Lo Litho(x) = Lg, L tha(x) =0 Vi< n

@ Assume that the Input-Output decoupling condition is
satisfied, that is:

Lo L2772 hi(x) Lo, L Lhi(x)
k(& f 1 g -f 1 -2
ran (LglL?lhg(x) L, L2 hy(x)
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State and output linearization
The MIMO case

Nonlinear @ One has:
Control
N. Marchand no= Lm(x)+ Lg1h1(x) u + nghl(x) uz
N— —
=0 =0
Vo= LEh() 4 LgLeh(x) un + L Leh(x) w2
—_— (e
v =0
Linear/Nonlinear ’
The Xé example = Uy (x) + Ly Ly (x) g + Ly L by (%)
either #£0 or #0
Antiwindup
Linearization @ Make the same for y»:
Gain scheduling
yo = Leha(x)+ Lg ha(x) up + Lg, ho(x) u2
— —
=0 =0
¥o = L2hy(x) + Ly Leha(x) ug + Lg,Leho(x)
CLF N——— ———
Sliding mode =0 =0
Geometric
control :
Recursive
techniques W = LPhy(x) + Ly L2 ho(x) ug + Lgy L2 ha(x) up
X4 stabilization
either #0 or #0
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State and output linearization
The MIMO case

Nontinear @ Hence, one has:
N. Marchand ) . o .
iy (L;hl(x)> N (LglL; h(x) Lglp hl(X)> <U1>
() - () (oot ) (s
blx) Al i

@ Thanks to the decoupling condition, one can take:
u=—Ax)"1h(x)+ A(x) v

which gives two chains of integrators:

W mn A =

@ This approach can be extended to any output and input sizes

Geometric
control
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Nonlinear
Control

N. Marchand

State and output linearization

A block diagram representation

Linearization techniques can be interpreted as:

Geometric
control

N. Marchand (gipsa-lab)

® Linear

control

Linear loop

v+
?—»

Lih(z)

1 & Nonlinear Y
LgLy™ h(x) system
Linearizing r
feedback

Nonlinear Control

Master PSPI 2009-2010 114 / 174
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Nonlinear
Control

N. Marchand

x NN N No

Geometric
control

X X

N. Marchand (gipsa-lab)

State and output linearization

The general case

The internal dynamics or zero-dynamics is then of dimension
n — r; its stability has to be checked
For linear systems r =number of poles-number of zeros

This approach took a rapid development in the 80’s

Maybe the only “general” approach for nonlinear system with
predictive control

Can be extended to MIMO systems with a decoupling
condition

Many extensions in particular with the notion of flatness
Power tool for path generation

Non robust approach since it is based on coordinate changes
that can be stiff

The control may take too large values

“Kills" nonlinearities even if they are good
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OUTLINE

Nonlinear
Control

N. Marchand

Linear/Nonlinear
The X4 example

Antiwindup

Linearization @ Nonlinear control methods

Gain scheduling

CLF
Sliding mode

Geometri @ Backstepping and feedforwarding

control

Recursive
techniques
X4 stabilization
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Backstepping

Main results

Nonlinear backstepping design

Control Assume that the system x = f(x, v) with £(0,0) = 0 can asymptotically be stabilized with
N. Marchand v = k(x). Let V denote a C* Lyapunov function (definite, positive and radially
unbounded) such that %f(x, k(x)) < 0 for all x # 0. Then, the system

X = flx &
& = hx, &) +u
with h(0,0) = 0 is also asymptotically stabilizable with the control:

T

w3, E) = —h(x, E) + 2K (3, £) — £4 k(o) — | X G, £ — k()

ax x

with

1
G, &) = JO g{(x, K(x) + AE)dA

The Lyapunov function

1
Wix, &) = V(x) + 5 €= k()|

techniques

is then strictly decreasing for any (x, &) # (0,0)
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Nonlinear
Control

N. Marchand

Linear/Nonlinear
The X4 example

Antiwindup
Linearization

Gain scheduling

CLF

Sliding mode
Geometric
control
Recursive
techniques

X4 stabilization

Backstepping

Main results

The theorem can recursively be applied to

X
&1
€2

énfl
En

N. Marchand (gipsa-lab)

f(X,E,l)
ai(x, &1) + bi(x, &1) &2
ax(x, &1, &2) + ba(x, &1, &2)&3

an-1(X,&1,&2, ..., En2) + boo1(X, &1, &2, .o+, En—2)En1

an(x, &1, &2, ..., &n1) + balx, &1, &2, . .

Nonlinear Control

.y ‘C—»nfl)u

Master PSPI 2009-2010 118 / 174
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Forwarding

Strict-feedforward systems

Nonlinear
Control

M. Marchand e Consider the class of strict-feedforward systems:

X1 = X2—|—f1(X2,X3,...,Xn,U)

5(2 = X3+f2(X3,...,Xn,U)
Xp-1 = Xp+ fo1(xp, u)

Xp = u

@ Strict-feedforward systems are in general no feedback
linearizable

@ Backstepping is not applicable

Recursive
techniques
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Forwarding
Forwarding procedure
Nonlinear o At step 0: Begin with stabilizing the system X, = u,.
Control Take e.g. u, = —x, and the corresponding Lyapunov function V, = %Xﬁ
N. Marchand o At step 1: Augment the control law
Un-1(Xp-1,%0) = Un(Xn) + Va-1(Xa—1,Xn)

such that u,_; stabilizes the cascade

Linear/Nonl

Xp—1 = Xnt f,,71 (Xm Unfl)

Xn = Up—1

@ At step k: Augment the control law

Antiwindup

Linearization

Gain scheduling Un—k(Xn—ky---y Xn) = Un—k+1 (Xn—kt1y oy Xn) + Vo k(Xn—ky -+ Xn)

such that u, , stabilizes the cascade

or Enk = Xn—k+1 t fook(Xn—kt1, -+ s Xny Un—k)
Sliding mode

Recursive Xp—1 = Xp+ fnfl(xm Unfk)

techniques .

X4 stabilization Xn = Up—k

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 120 / 174



GRENOELE 1

Nonlinear

Control )
N. Marchand
"]
]
]
Recursive
techniques o

N. Marchand (gipsa-lab)

Forwarding

Forwarding procedure

The control law u,_, always exists for all
ke{l,...,n—1}
The Lyapunov function at step k can be given by:

Vik = Vi +

2 0

L J D i1 (T - ()

To avoid computations of the integrals, low-gain control
can be used. It gave rise to an important litterature on
bounded feedback control (Teel (91), Sussmann et al.

(94))

Various extensions for more general system exist but are
still based on the same recursive construction

Forwarding can be interpreted with passivity, ISS or

optimal control

Nonlinear Control

Master PSPI 2009-2010 121 / 174
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Backstepping /Forwarding

An interpretation of the names

Nonlinear .
Control Backstepping structure

N. Marchand

U Eﬂ £n—1

— | -
References

Outline

Introduction

Linear/Nonlinear *’*

The X4 example - ' m

H>

Linear
approaches
Antiwindup

Linearization

Gain scheduling Feedforward structure
Stability

u L Lp—1

Nonlinear f f - -
approaches

CLF

Sliding mode

Geometric

control

Recursive

techniques — __ffI

X4 stabilization

Observers
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OUTLINE

Nonlinear
Control

N. Marchand

Linear/Nonlinear
The X4 example

Antiwindup

Linearization @ Nonlinear control methods

Gain scheduling

CLF
Sliding mode

Geometric
control

Recursive @ Stabilization of the X4 at a position

techniques
X4 stabilization
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Nonlinear °
Control
N. Marchand

]
]
]
o
o

X4 stabilization

N. Marchand (gipsa-lab)

The X4 helicopter
X4 position stabilization

The aim is now to apply nonlinear control techniques to the stabilization
problem of an X4 helicopter at a point

Input-Ouput Linearization techniques can not be applied since the system
is non minimum phase

The backstepping approach is inspired from

S. Bouabdallah and R. Siegwart, °‘Backstepping and sliding-mode
techniques applied to an indoor micro quadrotor’’, at the EPFL
(Lausanne, Switzerland) presented at the International Conference on
Robotics and Automation 2005 (ICRA’05, Barcelonna, Spain)

The PVTOL control strategy comes from

A. Hably, F. Kendoul, N. Marchand and P. Castillo, Positive Systems,
chapter: "Further results on global stabilization of the PVTOL
aircraft", pp 303-310, Springer Verlag , 2006

The saturated control law is taken in:

N. Marchand and A. Hably, "Nonlinear stabilization of multiple
integrators with bounded controls", Automatica, vol. 41, no. 12, pp
2147-2152, 2005.

Revealing example of what often happens in nonlinear: a solution comes
from the combination of different methods
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The X4 helicopter

A two steps approach

Nonlinear
Control
N. Marchand
. 2 Kaearbox K
S; _ km g  Keewto® o) oy kmogat o (1)
- S 7 ‘ Hsition | problem
B o= v osition control pro
Linear/Nonlinear O
The X4 example kN .
mvV = —mgé&+R 0
> Filsi)
Antiwindup - — .
Linearization R = R®&* Attitude control problem
Gain scheduling 0 ]"r(52) 54)
JO = —®*JD ) w0 |+ To(s1, 3
i Pz
Z,’Sf ry(51,52,53,54)
CLF

Sliding mode

Recursive
techniques

X4 stabilization
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The X4 helicopter: attitude stabilization
A backstepping approach

o @ The aim of this first step is to be able to bring (¢,0,10) to
N. Marchand any desired configuration (g4, 04,04)
@ Attitude equations (with an appropriate choice of Euler
angles):
)'(1 = X2
X2 = aixaxe + b1l
5(3 = X3
X4 = 32X2X6—|-b2rp
X5 = X6
Xe = a3X2X4+b3r
with (., %) = (&, $,0,0,0,1), a1 = #5352y = A7,
a3 =25%, by =, by =  and b3:}3
@ The system would be trivial to control if (x2, X, Xg) was the
control instead of (T, T}, T))
X4 stabilization @ This is precisely the philosophy of backstepping
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The X4 helicopter: attitude stabilization

Recall of backstepping main result

Nonlinear backstepping design

Control Assume that the system x = f(x, v) with £(0,0) = 0 can asymptotically be stabilized with
N. Marchand v = k(x). Let V denote a C* Lyapunov function (definite, positive and radially
unbounded) such that %f(x, k(x)) < 0 for all x # 0. Then, the system

x = f(x 8
£ = hix,&)+u

with h(0,0) = 0 is also asymptotically stabilizable with the control:

k 1% v
o6 &) = 0, E) + xFlx, &) — &+ ki) — [ 27 Glx, &~ k(x)
X ox

with

1
G, &) = JO g{(x, K(x) + AE)dA

The Lyapunov function

Wix,£) = Vix) + 5 s — k0ol

X4 stabilization

is then strictly decreasing for any (x, &) # (0,0)
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The X4 helicopter: attitude stabilization
A backstepping approach

Nonlinear
Control
N. Marchand @ Define first the tracking error:
71 = xx1—x;, = ¢—dbyg
Z2 = X3 — X34 — G—Gd
Linear/Nonlinear 3z = xs—x5, = VP—1y
The X4 example
@ It gives the subsystem
Antiwindup
Linearization . .
Gain scheduling 4l = X2 — de
22 X4 — >.<3d
3 = Xg— Xs,
CLF
S where, at this step, (x2,xs, xg) is the control vector
control
fechnidues o Take first V4 = 22,

X4 stabilization
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The X4 helicopter: attitude stabilization
A backstepping approach

Nonlinear 1 H
onlines ° AIong the_trajectorles of the system, the Lyapunov
N. Marchand function gives: ‘
Vi =zi(x2 — x1,)
@ Hence taking as fictive control xo = X1, — x121 with
1 > 0 insures the decrease of Vi:
Linear/Nonlinea

The X4 example

CLF *]

Sliding mode
Geometric
control
Recursive
techniques

X4 stabilization

N. Marchand (gipsa-lab)

’ 2
V1 = —X12Z7

x1 will asymptotically converge to xq, ... unfortunately x;
is not the control and we have to build thanks to
backstepping approach “the I', that will force x» to make
x1 converge to xi,”

For this, define the tracking error for xs:

2 =x0— (X1, —x121)
—_————

input of subsystem in z;
we would like to put

Nonlinear Control Master PSPI 2009-2010 129 / 174
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The X4 helicopter: attitude stabilization
A backstepping approach

Nonlinear

@ One has
Control . . .
N. Marchand Zp = a1 XaXe + b1l —X1, + X1X2 — X1X1,
5(2 0(121
@ Recall we have to build “the T, that will force x, to make x; converge
to x1,”. For this, we use the formula of the backstepping theorem:
backstepping design
ok (1% T
ulx, &) = —h(x, &) + 32F(x, &) = &+ k(x) — | 36 (x, & = k(x))
X 0x
with in our case:
X = 2 k = x,—ouz
X4 stabilization & = 2 . ] fo= )1(2 ; X1q
h = aixaxg — X1, + X1x2 — X1 X1, vV = 521
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Nonlinear
Control

N. Marchand

Linear/Nonlinea
The X4 example

\ntiwindup
Linearizatic

Gain scheduling

CLF
Sliding mode

ues

X4 stabilization

The X4 helicopter: attitude stabilization
A backstepping approach

@ Or more simply, we construct it:

1 . 1
W(z1,20) = V(z) + 5 e — (i, —oaz)|* = 5 (2 + 23)

@ Along the trajectories of the system:

control

p . ,-/\ . .
W = z1(x — de) + 2o | aixaxe + b1l —X1, + x1x0 — X1 X1,

@ Taking v as new control variable:

v arxaxg + b1l — )'?1d + xX1x0 — 061)'(1d

bl = v—aixaxs + de — X1X2 + 0(1)'(1d

gives: '
W = zi(x2 — X1,) + 22V
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The X4 helicopter: attitude stabilization
A backstepping approach

Nonlinear H H
o ines @ Trying to write
N. Marchand . .
xo—x1;, = —oqzi +?(x — X, + x121)
— N ——
ideal case difference between real
and ideal cases
= —ouzi+x—x1, +ox1z1
—_————
Linear/Nonlinea 2
The X4 example
@ Hence, it gives:
\ntiwindup .
tion W = —oqu + z120 +20v

Gain scheduling

can be compensated with v
o Taking:

V=—21 — Xp2»

CLF . .

Sliding mode where oo > 0 in order to insure

Geometric

control i s )

Recursive W =—x122 — apz2 < 0

techniques

X4 stabilization

@ Repeating this for 6 and 1 gives the wanted control law
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The X4 helicopter: attitude stabilization
A backstepping approach

i Attitude stabilization

N. Marchand The control law given by

bil, = —z1 — ooz — a1xaxe + 55151 — X1X2 + O(15<1d
boly, = —z3— agzy — axxoxe + X3, — X3X4 + X3X3,
b3Fy = —Z5 — (XgZg — A3XoX4 + X5, — X5Xp + X5X5,

with z1 = x1 — X1y, 22 :XQ*)'(]_d + X121, 23 = X3 — X3,,
Z4 = X4 — X3, + X323, 25 = X5 — X5, and Zg = Xg — X5, + X525
asymptotically stabilizes (xi, x3, x5) to their desired position

(X14, X34, X5,)

@ This kind of approach appeared in the literature in the last

90’s
o Now better approach based on forwarding are appearing
X4 siabilization taking into account practical saturation of the control torques
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The X4 helicopter: attitude stabilization
A backstepping approach

Nonlinear
Control
N. Marchand @ Simulations: apply successive steps of 45 in roll, pitch and
yaw
60 : : : : : :
40 T
20t ! 1
Linear/Nonlinea . .
The X4 example Op=r=i=0 bmrmimimimimim s s
20 ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 70
60 :
Antiwindup w0l o -
Linearization 200 1 I
Gain scheduling 1
Ofm = Limm oo
~20 ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 70
60
40+ =TTy
CLF 200 1 1
Sliding mod e e e R
20 ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 70

tec ues
X4 stabilization
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The X4 helicopter: attitude stabilization
A backstepping approach

Nonlinear
Control
N. Marchand } R , .
@ Adjusting the 's: with o; = 0.2
1
40
20 0
0 /\/\"7
Linear/Nonlinear “o -1 e e m w o o
The X4 example 05
40
20 0
o e —
Antiwindup - 70 0% 10 20 30 20 50 60 70
€ or 1
Gain scheduling W .
20
Aa V
0 10 20 30 70 >20 10 20 30 40 50 60 70
o Roll, pitch and yaw answers I, Tp and T, controls

Sliding mode

X Too many oscillations

techniques
X4 stabilization
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The X4 helicopter: attitude stabilization
A backstepping approach

Nonlinear
Control
N. Marchand ) ) , )
o Adjusting the o's: with o; =2
5
40 i
20 Y [
.
Linear/Nonlinear o 10 20 30 40 50 60 70 0
The X4 example )
40 Iy
20 ! I
'
Antiwindup o 10 20 30 40 50 60 70 )
Linearization )
Gain scheduling 40 |
20 [ i
'
-2
o 10 20 30 0 50 60 70 o

Roll, pitch and yaw answers

v Seems to be a good choice

Recursive
techniques

X4 stabilization

N. Marchand (gipsa-lab) Nonlinear Control
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I, Tp and Ty, controls
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Nonlinear
Control

N. Marchand

Linear/Nonlinea
The X4 ex:

\ntiwindup
Linearization

Gain scheduling

CLF
Sliding mode
Geometric

ontrol

ursive

techniques

X4 stabilization

@ Adjusting the o's: with ; =10

The X4 helicopter: attitude stabilization
A backstepping approach

40

20
0 10 20 30 40 50 60 70

a0

20
) 10 20 30 40 50 60 70

40

20
0 10 20 30 40 50 60 70

Roll, pitch and yaw answers

10 20 30 40 50 60 70
10 20 30 40 50 60 70
10 20 30 a0 50 60 70

I, T and Ty, controls

X The controls are too large, may be two fast to consider

N. Marchand (gipsa-lab)

the rotors as instantaneous

Nonlinear Control

Master PSPI 2009-2010 137 / 174
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The X4 helicopter: attitude stabilization
A backstepping approach

Nonlinear
Control

N. Marchand

Linear/Nonlinear

The X4 example

Antiwindup
Linearization

Gain scheduling

CLF
Sliding mode

Geometric
control

Recursive
techniques

X4 stabilization

Successive steps of 45 in roll, pitch and yaw with o; =2
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The X4 helicopter: attitude stabilization
A backstepping approach

Nonlinear @ The saturation of the possible control torques I, T}, T,

Control

N. Marchand

X4 stabilization

N. Marchand (gipsa-lab)

may be problematic
On the X4 system, the maximum speed of the rotors is
given by the solution of:

krznsmax + kgearboxKRsmax2 - kmU =0

which gives: sphax = 604 rad.s!

The maximum roll and pitch torques are when one rotor is
at rest, the other one at is maximum speed (we assume
that the rotation is in only one direction):

M = Ibsy,, = 0.31 N.m

max

The maximum yaw torque is obtained when two opposite
rotors turn at the smax the two others are at rest:

M = 2ksh, = 21.2 N.m

max

Nonlinear Control Master PSPI 2009-2010 139 / 174



GRENOELE 1

The X4 helicopter: attitude stabilization
A backstepping approach

Nonlinear

Control
N. Marchand
U @ Adapt the parameters to the saturation:

o Take larger a5 6 than the otq, 4

s o Take small enough «; to fulfill the saturation constraint
Linearization
Gain scheduling
CLF

Sliding mode
:

techniques
X4 stabilization
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Nonlinear
Control

N. Marchand

Linear/Nonlinea
The X4 example

\ntiwindup
Linearizatic

Gain scheduling

CLF
Sliding mode

ues

X4 stabilization

The X4 helicopter: attitude stabilization
A backstepping approach

@ Adjusting the o's: with o1, 4 =0.4 and a56 =8

40 Ll 3
20 ' !
i
-1
0 10 20 30 40 50 60 70 0
05
40 1 )
20
J '
- -0.5
0 10 20 30 40 50 60 70
40
20
0 10 20 30 40 50 60 70 0

Roll, pitch and yaw answers

X The controls are still too large

N. Marchand (gipsa-lab) Nonlinear Control

I, and T, controls
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The X4 helicopter: attitude stabilization
A backstepping approach

Nonlinear
Control
N. Marchand ) ) , )
@ Adjusting the o's: with o1, 4 =0.2 and a5 6 =8
40 [l R
20 ! :
0 f\/\.——i
Linear/Nonlineal 0 0 20 20 20 50 7y 70
The X4 example
40 N
20 : :
(. W U
Antiwindup o 10 20 30 40 50 60 70
Linearization
Gain scheduling © [_I
20
o 10 20 30 40 50 60 70 o 10 20 30 40 50 60 70
o Roll, pitch and yaw answers I, Tp and T, controls

Sliding mode

X Oscillations are now present

tec ues
X4 stabilization
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The X4 helicopter: attitude stabilization
A backstepping approach

Nonlinear
Control
N. Marchand H — — H H
e Taking a1,.4 = 0.2 and a5 6 = 8 and applying it on the
system with saturations, it gives:
40 1 R
Linear/Nonlinea » ; i
The X4 example
0 10 20 30 40 50 60 70
05
40 ==
20 ! !
\ntiwindup . [ 0.
‘(‘L’yy\%“’:‘r}n :;\‘\“Hw, 0 10 20 30 40 50 60 70 o [ 10 20 30 40 50 60 70
Z‘; i | —
B 0 10 20 30 40 50 60 70 - 0 10 20 30 40 50 60 70
CLF i
Sliding mode Roll, pitch and yaw answers I, T and Ty, controls

v’ Seems to work

ues

X4 stabilization
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The X4 helicopter: attitude stabilization
A backstepping approach

Nonlinear
Control

N. Marchand

Linear/Nonlinear

The X4 example

Antiwindup
Linearization

Gain scheduling

CLF
Sliding mode

Geometric
control

Recursive
techniques

X4 stabilization

The control law with the saturated system
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The X4 helicopter: position control
Simplification of the problem

Nonlinear
Control

@ First use the attitude control to adjust the X4 in the right
direction:

N. Marchand

Linear/Nonlinear
The X4 example

Antiwindup
Linearization

Gain scheduling

CLF

Sliding mode
Geometric
control
Recursive
techniques

X4 stabilization
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The X4 helicopter: position control

Simplification of the problem

Nontinear @ There exists a relation between («, 3,1) and (¢,0,V) (a
N. Marchand rotation about the yaw axis)

@ Use the attitude control to drive and keep « and 1 to the

@ Take now the system in the plane:

Linear/Nonlinea
The X4 example

CLF

Sliding mode

X4 stabilization

N. Marchand (gipsa-lab)

origin

Nonlinear Control
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The X4 helicopter: position control

Simplification of the problem

Nonlinear
Control

N. Marchand

@ This problem is referred in the literature as the PVTOL
aircraft stabilization problem (Planar Vertical Take Off
and Landing aircraft)

@ The “generic”" equations are:

X = —sin(0)u
y = cos(0)u—1 Y
0 = v

where '-1" represent the normalized gravity, v represents
the equivalent control torque.

X4 stabilization
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The X4 helicopter: position control

A saturation based control

NCOS:SZT" @ Define z £ (Z]_, 22,23, 24, Zs, ZG)T £ (Xa X»% }7» 9) G)T
N. Marchand @ The system becomes:
Translational part:
2 = 2 Rotational part:
z = —usin(zs) s = Z
Linear/Nonlinea 3 = z Ze = Vv
The X4 example 24 — u COS(Z5) 1

@ The idea is to use v to drive z5 to z¢ such that:
Antiwindup

Linearization

rn+1

Gain scheduling

z5, £ arctan(

)

with ¢ < % (tuning parameter) and o(-) = max(min(-,1),—1):
CLF
Sliding mode

n = —eo(zn)-— 820'(621 + 2)

rn = —eo(z)— e20(ezz + z3)

X4 stabilization
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The X4 helicopter: position control
A saturation based control

Nonlinear

Cortrel @ When z5 reaches zs, and applying the thrust control input u
N. Marchand
u=/r2+(rn+1)2
the translational subsystem takes the form of two independent
second order chain of integrators
il = 22 2'3 = Z4
Z = n Zy = N
@ If we could prove that
n = —co(zn)—¢lolen + 2)
rn = —eo(zy) — e20(ezz + za)
insures (z1,2»,23,24) — 0
@ Then, it will follow that once (z1, 25, z3,24) =0, z5, = 0 and
X4 stabilization z5, = 26, = 0 hence also (z5,25) — 0

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 149 / 174



GRENOELE 1

Nonlinear
Control

N. Marchand

Linear/Nonlinea
The X4 example

Antiwindup
Linearization

Gain scheduling

CLF

Sliding mode
Geometric
control

F ive
techniques

X4 stabilization

The X4 helicopter: position control

A saturation based control

Remain two problems:
@ Prove that

n = —80'(22) — 826(821 + 22)

2

rn = —to(z) —e“0lezz + z4)

brings (z1, 20, z3, z4) to zero

@ Build a control so that (z5, z5) tends to (zs,, Z5, = z,)
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The X4 helicopter: position control

A saturated control law for linear systems

Nonli . . .
Control @ An integrator chain is defined by:
N. Marchand
001 0 ... 0 0
T - :
x=|: AR RS (11)
: o1
Linear/Nonlinea 0 ... ... ... 0 1
The X4 example [ — ~—~
=A =B
Antiwindup e Problem: stabilizing (11) with
Linearization
Gain scheduling
—u<u<u
and u is a positive constant
CLF

Sliding mode

tec ues
X4 stabilization
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The X4 helicopter: position control

A saturated control law for linear systems

Nonlinear .
Control @ First compute
N. Marchand n
[IA+e)=po+pA+--+ppaA™ A7
i=1

@ Apply the coordinate change

Linear/Nonlinea
The X4 example n ) T, - B

>iqe ) Tos = (A+p,a)B

y===—"—Tx with Toz = (A4p1A+p,2l)B
Antiwindup u :
Linearization T = (A4 p, A2+ p)B
Gain scheduling
@ The system becomes normalized in
0 et g2 L e 1

CLF 0 0 "2 ... ¢ :
Sliding mode y = : - R :
Geometric 'y R ) : ° 'y + . v
control 0 0 ¢ :
Recursive 0 0 0 1

techniques

X4 stabilization

with =Y 7 ef<v<Y? ¢
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The X4 helicopter: position control
A saturated control law for linear systems

Nonlinear
Control

N. Marchand

An efficient saturated control

@ Let €(n) denote the only root of ¢” —2e¢ +1 =10 in]0, 1[.
@ Then for all € with 0 < € < g(n),

— n
u .
U=—cn z " " saty (y;)
21 €4
i=1

globally asymptotically stabilizes the integrator chain.

X4 stabilization
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The X4 helicopter: position control

A saturated control law for linear systems

Nonlinear o Sketch of the proof:
N. Marchand o Assume that |y,| > 1 and take V, := %YE
o Then

Vi = —yn esaty(yn) —ya| €2sat1(yn—1) + - + €"sat1(y1) |
—_————

= [-|<e2+---+en

So V is decreasing if

e>?+ 4" & 1-2e4¢">0 & ¢ <E(n)

yn joins [—1, 1] in finite time and remains there

During that time, y,_1 to y1 can not blow up

Repeating this scheme for y,_1 to y; gives y € 3(1) after
some time

In B(1), the system is linear and stable = GAS

@ The construction of this feedback law is based on feedforward

X4 stabilization

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 154 / 174



GRENOELE 1

The X4 helicopter: position control
A saturation based control

Nonlinear

Control Remain two problems:
N. Marchand @ Prove that
n = —eo(z)—e?olez + )
rn = —eo(zs) — e20(ezz + za)
Linear/Nonlinear
The X4 example
brings (z1, 22, z3, 23) to zero
Antiwindup » direct application of the saturated control law
Linearization
Gain scheduling @ Build a control so that (zs, ) tends to (z5,, 25, = z,)
»> take:
, . . 2 .
S v=0p(z,) —eo(zs — z5,) — e“0(e(z5 — z5,) + (26 — Z5,))
Geometric
ontrol
Recursive that work applying the saturated control law on the
X4 stabilization variables z5 — z5, and z — Z5,
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The X4 helicopter
Second step: position control

Nonlinear
Control

N. Marchand

Linear/Nonlinear
The X4 example

Antiwindup
Linearization

Gain scheduling

CLF
Sliding mode

Geometric

control

Recursive

techniques i pi pi

X4 stabilization o (cby e,ll),X,y,Z) = (%) % ’ %)5)5)5)

® (b,8,9,x,y,2)=(0,0,0,1,2,0)
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The X4 helicopter

Second step: position control

Nonlinear
Control

N. Marchand

Linear/Nonlinear
The X4 example

Antiwindup
Linearization

Gain scheduling

CLF

Jding mode Zoom on the 10 first seconds with a snapshot every second
Recursive . e

techniques Initial conditions:

X4 stabilizati [ opiopi
stabilization ° ((I),G,I]),X,yyz):(%?%7%’5’5’5)

@ ($,6,1,x,y,2)=(0,0,0,1,2,0)
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OUTLINE
o Introduction

Nonli . .
et @ Linear versus nonlinear
N. Marchand @ The X4 example
References @ Linear control methods for nonlinear systems
Outline @ Antiwindup
Introduction @ Linearization
Linear/Nonlinear . R
The X4 example @ Gain scheduling
Linear o
approaches o Sta b|||ty
Antiwindup
S @ Nonlinear control methods
Gain scheduling
Stability @ Control Lyapunov functions
Nonlinear @ Sliding mode control
approaches . R R
cLF @ State and output linearization
Slidi d . .
Geonnilt:f ) @ Backstepping and feedforwarding
control
Recursive @ Stabilization of the X4 at a position
techniques

X4 stabilization

Observers e Observers
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Nonlinear observers

Nonlinear =
Control Yd > u A y
k(x) —> J | —
N. Marchand i

>

Controller
R :‘

<
<

Observer

@ Modelization

o To get a mathematical representation of the system
o Different kind of model are useful. Often:

@ a simple model to build the control law
@ a sharp model to check the control law and the observer

@ Design the state reconstruction: in order to reconstruct
the variables needed for control

© Design the control and test it

Observers @ Close the loop
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@ Linear systems: Simple observer

Nonlinear
Control
N. Marchand X(t) = AX(t) + Bu(t)
(t) = Cx(t)
o Observability given by rank(C, CA,..., CA" 1)
e oy ‘”Hf_ o Once the observability has been checked, define the
observer:
R(t) =A%+ B () + L(P(t) —y(t)
y(t) = Cx(t)

with L such that R(eig(A+ LC)) <0
o Then R tends to x asymptotically with a speed
related to eig(A+ LC)

Observers
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Nonlinear
Control

N. Marchand

Linear/Nonlinea
The X4 example

Line:

Gain

CLF
Sliding moc

X4 stabilization

Observers

e Linear systems (cntd.):

e convergence of the observer
Define the error e(t) := X(t) — x(t). Then:

é(t) = Ae(t) + L(y(t) — y(t)) = (A+ KC)e(t)

Hence, if R(eig(A+ LC)) <0, lim;_ o X(t) = x(t)

o Separation principle: the controller and the observer can
be designed separately, if each are stable, their association
will be stable
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@ Linear systems (cntd.): Kalman filter

Nonlinear Q(t) = A?(t) + Bu(t) + L(y(t) - Y(t))
Control y(t) — CQ(t)
N. Marchand
o The way to chose L proposed by Kalman is:
AP 4+ PAT — PCTW™ICP+V +8P =0
W=wT"=>0
L=—PC"W™!
with & > 2[|All or V = VT > 0.
o 0 enables to tunes the speed of convergence of the
observer
o The observer can also be computed as L = —-S~1CT W1
where
ATS +SA—C"TWIC+SVS+65=0
Observers
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e Time-varying linear systems:

Nonlinear {X(t) = A(t)x(t) + B(t)u(t)
y(t) = C(t)x(t)

Control

N. Marchand

o Kalman filter:

% =Alt)R(t) + B(t)u(t) + L(£)(9(t) — y(t))
y(t) = Ct)x(t)

with: P=AP+ PAT —PCTWICP +V + 5P
P(0) =Py =Py >0
W=wT>0
L=—PCTW
§>2||A or V=VT >0

@ b enables to tunes the speed of convergence of the
observer

Observers
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@ The observer can also be computed as L = —S~1CTW~!
where

Nonlinear
Control

N. Marchand _S == ATS + SA - CTw—].C + SVS ‘I— 65
5(0)=5=5/ >0

@ The observer is optimal in the sense that it minimizes

j [C(0)z(1) — y ()T WL [C()z(t) — y(x)] +

B(t)u(t)]T V1 B(T)u(t) dt +
(x0 —R0) T Pyt (x0 — Ro)

@ The observer is also optimal for

o x is affected by a white noise w, of variance V
e y is affected by a white noise w, of variance W
e w, and w, are uncorrelated

Observers
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@ Nonlinear systems:

Contral x(t) = f(x(t), u(t))
N. Marchand y(t) — h(X(t))
o Observability
o Linked with the notion that for two trajectories of the
system x; and x, defined on [0, t], we must have
t
J ||h(X1(T)) — h(XQ(T))” dt>0if x 7é X2
0
o Linked with the input:
. 0 u
X = <0 O>X y:(l O)X
is observable for any u(t) # 0 but not for u(t) =0
Observers
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e Extended Kalman filter (EKF):
N. Marchand

"Contrl {9( — F(x(t), u(t)) — L(t
(

with P=AP+PAT — PCTW™ICP + V + 6P
P(0)=Py=PJ >0

w=w’=>o0
L=pPCcTw
§>2||A or V=VT >0
of . oh .
A= —(R(t),u(t)) C=——(X(t))
ox 0x

e No guarantee of convergence (except for specific
structure conditions)

Observers
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@ Luenberger-Like observers
o For a system of the form:

Nonlinear {X(f):AX(f)+¢(CX(t),U)
Control y(t) — CX(t)

with (A, C) observable, if A— KC is stable, an observer is:

N. Marchand

R(t) = AR(t) + dly(t), u(t) — K(CR(t) — y(t))
e For a system of the form:

{k(t) = Aox(t) + d(x(t), u(t))
y(t) = Gox(t)

with (Ag, Co) are in canonical form, if Ag — Koy is stable, A
sufficiently large, ¢ global lipschitz and

0d;

0x;

(x,u)=0forj>i+1

an observer is:

R(t) = AR(t) + d(R(1), u(t)) — diag(A,A%,..., A" Ko(CoR(t) — y(t))

Observers
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e Kalman-Like observers
o For a system of the form:

Contrar
N. Marchand {X(t) :A(U(t))X(t)“rB(U(t))
y(t) = Cx(t)
an observer is:
R(t) = Alu(t))R(t) + B(u(t)) — K(t)(CR(t) — y(t))
with
P=A(u(t))P+ PAT (u(t)) — PCTW™ICP 4 V + 6P
P(0)=Py=P) >0, W=WT >0
&> 2[|A(u(t))] or V=VT >0
L=PCTW!
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e Kalman-Like observers (cntd.)

Nonlinear
Control

N. Marchand

Linear/Nonlinea
The X4 example

\ntiwindup
Linearization

Gain scheduling

CLF
Sliding mode

Geometric
ontrol

Recursive
techniques

X4 stabilization

Observers

N. Marchand (gipsa-lab)

o For a system of the form:

{X(t] = Ao(u(t), y(£))x(t) + ¢ (x(t), u(t))
y(t) = Gox(1)

with:
0 an(uy) 0
Ao(u,y) = . bounded
anfln[uyy
0 0
G = (1L 0 - 0
ad"’(x,u) = Oforj>i+1
0xj

an observer is:

R=Alu,y)R + (&, u) — diag(A, A%, ..., A")Ko(t)(CoR — y)

with P =A(A(u(t))P + PAT (u(t)) — PCTWLCP + §P)
PO)=Py=P] >0, W=WT >0
&> 2||A(u(t))]| and A large enough
L=PCTW™

Nonlinear Control

Master PSPI 2009-2010 169 / 174



GRENOELE 1

Nonlinear
Control

N. Marchand

Linear/Nonlinear
The X4 example

Antiwindup
Linearization

Gain scheduling

CLF

Sliding mode
Geometric
control
Recursive
techniques

X4 stabilization

Observers

Not mentionned:
e Optimal observers (robust, very efficient and easy to
tune but costly)
Based on something like:

t1

% = Argmin | lx(x) - y(0)] e

to

@ Sliding mode observers
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Observers

Application to the attitude estimation

Nconlit"eTr o Application: attitude estimation
ontrol
e 9 sensors:
N. Marchand i
@ 3 triax accelerometers
@ 3 triax gyrometers
o 3 triax magnetometers
o The accelerometers give:
bacc = C(CI)( \3/ + \g;) +laﬁ
acceleration  grayity noise
where C(q) = (g2 —G" )k +2(dg" — qgog*) is called the
Rodrigues matrix, that is the rotation from the fixed frame to the
mobile one.
e The magnetometers give:
bmag = C(q)hmag + NMmag
"
noise
where l_;mag are the coordinates of the magnetic field in the fixed
Observers

frame.
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Observers
Application to the attitude estimation

Nonlinear

Control @ The gyrometers give:

N. Marchand

-

bgyr = W + Ngyr, +Veyn
= =

noise bias

where Emag are the coordinates of the magnetic field in
the fixed frame.

@ The bias drift is the main error and it deteriorates the
accuracy of the rate gyros on the low frequency band.

e We take: .
bgyr = W + Mgy, + Veyn
Veyrn = —3Veyn 1 Ngyn
~——
noise

Observers
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Nonlinear
Control

N. Marchand

Observers

Observers

Application to the attitude estimation

Nonlinear observer for attitude estimation

An observer of the attitude can be:

{ a - %Q(Bgyr _ngrl aF Kla)a

Y = —TLQ— KQE

where T is a diagonal matrix of time constant, K; are positive

definite matrices, ¢ is given by:

5= Sign(Qeo)

where ge = (gey, Ge) is the quaternion error between the
estimate § and a direct projection obtained with b,z and bacc
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Nonlinear
Control

N. Marchand

Observers

Application to the attitude estimation

@ Block diagram of the observer

Linear/Nonlinear
The X4 example

Antiwindup

Linearization

Gain scheduling

CLF
Sliding mode

Recursive
techniques
X4 stabilization

Observers

N. Marchand (gipsa-lab)

Rate Gyros

Accelerometers
Magnetometers

S qm
r*q=projection —»tT

Nonlinear Control

Master PSPI 2009-2010 174 / 174



	References
	Outline
	Introduction
	Linear versus nonlinear
	The X4 example

	Linear control methods for nonlinear systems
	Antiwindup
	Linearization
	Gain scheduling

	Stability
	Nonlinear control methods
	Control Lyapunov functions
	Sliding mode control
	State and output linearization
	Backstepping and feedforwarding
	Stabilization of the X4 at a position

	Observers

