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Introduction

INTRODUCTION

@ Historical perspective
o First use of the word Robot (means forced labor or
serf in Czech) in the play R.U.R. (Rossum's
Universal Robots) by Karel Capek (1890-1938) in
January 1921.

In R.U.R., Capek poses a paradise, where the machines

initially bring so many benefits but in the end bring an
Metropolis, Fritz

equal amount of blight in the form of unemployment and
Lang, 1927

social unrest
@ Science fiction

e Often a bad image: men against robots, dystopic society, etc.
More and more a good image.

Formal definition (Robot Institute of America)

A reprogrammable, multifunctional manipulator designed to move material,
parts, tools, or specialized devices through various programmed motions for the
performance of a variety of tasks
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Robotics
N. Marchand
Introduction @ Robots have a bad image (1930-1960)
o Robots take human works
o Robots are dangerous since potentially independent and
more intelligent than we are
Arm robots .
Inner-loop @ Robots have a better image (1960-today)
Geometrical
e o Robots can make things that human can not do (space,
e etc.)
Conclusion e Human can do things that robots can not do (we still are
e clever)
o};i‘miﬂ"él" o Robots can be games
path planning
o e Robots can be good or bad
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ROBOTICS INDUSTRY (1/MANY)

Number of robots for every 10 000 workers:
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oes

70% of robots in companies with more than 1000 employees
17% of robots in companies with less than 300 employees

In 2002, 95% of robots > 30k€ and 32% of robots > 60k€
79% of decrease of the mean price between 1990 and 2002
Big robots manufacturers: ABB (S), KUKA (G), Fanuc (JP),

etc.

Robotics
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Robotics
N. Marchand @ Where are the robots 7
Introduction ° France:
@ 61% in automotive industry

o 14% in chemical industry
o ...

R @ 4% in electricity industry
e 3% in food industry

Geometrical

odel @ What kind of robots 7

Kinematic model

Inner-loop

Dynamical

ool o Industry: ground fixed robots: manipulators, arm robots, . ..

Conclusion o Private individuals: mobile robots: service, games, ...
Worspace and @ Future of robots:
obstacles
path planning o Industrial mobile robotics
o Medical robotics
e Service robots (growing field)
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model Kuka robot for automotive industry
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Dynamical
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Hollywood robots

Surgical robot
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model
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Conclusion
Total Industrial and Non-Industrial Robotics Revenue, World Markets: 2015-2020
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Workspace and s
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path planning T 510000
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RoOBOTICS INDUSTRY: UAVS (5/MANY)
e UAV's Manufacturer

2016 &
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2013
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ROBOTICS INDUSTRY: UAVS (6/MANY)

@ Publications indicates future ?
6000

2012 2016

1996 2000 2004 2008 2012 2016

Année

Robotics

ENSE3-ASI 9 / 109



§(Bea-aly

OUTLINE

Robotics

N. Marchand

@ Basic mechanics for robotics

o Space representation

frames, coordinate transformation, etc.
o Force and torques

Outline

@ Modelisation
@ Control for robots

o All potential problems:

Oscillations, dry friction, saturations, etc.
o Linear approaches
o Nonlinear approaches
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OUTLINE
© Introduction
© Outline
© Mechanics basis
@ Kinematics and dynamics of robots
Arm robots
@ Inner-loop
@ Geometrical model
@ Kinematic model
o
o

Dynamical model
Conclusion
© Path planning
@ Workspace and obstacles
@ Path planning problem formulation

@ Mobile robotics
@ Visual servoing
@ Staubli RX90 robot
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@ The position of some point P in the fixed frame
F(o, €&, €, ¢€;) is the vector p = (x,y,z)"

Mechanics

Arm robots
Inner-loop

Geometrical
model

Kinematic model

Dynamical P
model

Conclusion
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i POSITION AND SPEED IN A FIXED FRAME
Robotics
N. Marchand
@ The position of some point P in the fixed frame
F(o, €&, €, €;) is the vector p = (x,y,z)"
Vechanice @ The speed of P in F is the vector s = p = (%, y,2)"
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o A rotation is represented by a 3 x 3 matrix R such that R” = R™! and detR =1

Robotics o A rotation of angle 6 around:
N. Marchand o axis & is given by:
1 0 0
0 cosf —sinf
0 sinf cosf
e axis &, is given by:
Mechanics cosf 0 sinf
0 1 0
Arm robots —sing 0 cosf
Inner-loop
Geometrical

model
Kinematic model

Dynamical
model

Conclusion
Workspace and
obstacles
path planning
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ROTATIONS AND ASSOCIATED TOOLS

o A rotation is represented by a 3 x 3 matrix R such that R” = R™! and detR =1

@ A rotation of angle 6 around:

e axis & is given by:

e axis €, is given by:

e axis €, is given by:

1 0 0
0 cosf —sinf
0 sinf cosf

cosf 0 sinf
0 1 0
—sinf 0 cosf

cosf) —sinf 0
sinf cosf 0
0 0 1
Robotics
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) o A rotation is represented by a 3 x 3 matrix R such that R” = R™! and detR =1
Robotics .
@ A rotation of angle 6 around:
N. Marchand o axis & is given by:
1 0 0
0 cosf —sinf
0 sinf cosf
o axis &, is given by:
Mechanics cosf® 0 sinf
0 1 0

—sinf 0 cosf

Arm robots

Inner-loop

Ceometrical e axis €& is given by:
model cosf —sinf 0O

Kinematic model sinf cosf 0O
Dynamical
model 0 0 1
Conclusion

o a unit vector & = (uy. uy, u)T

P4 (1- 1) ucuy (1 —cg) — uzsp  uxuz(1—cp) + uysy
ety (1 — cg) + uzsp uf +(1- uﬁ)ce uyu (1 — cg) — uxsp
ucuz(1—cp) — uyss  uyuz(1—cp) + uesg P+ (1-u?)e
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ROTATIONS AND ASSOCIATED TOOLS

o A rotation is represented by a 3 x 3 matrix R such that R” = R™! and detR =1
@ A rotation of angle 6 around:

e axis & is given by:

1 0 0
0 cosf —sinf
0 sinf cosf

o axis &, is given by:
cosf 0 sinf
0 1 0
—sinf 0 cosf

e axis €, is given by:
cosf) —sinf 0
sinf cosf 0O
0 0 1

. . T
o a unit vector & = (uy, uy, u,)":

P4 (1-ud)e ucty (1 —cg) — uzsp  uxuz(1—co) + uysy
ucty (1 — cg) + uzsp uf +(1- uﬁ)ce uyu (1 — cg) — uxsp
uuz(1—cp) —uyss  uyuz(1 —cp) + uesy P+ (1-ud)e

@ The coordinates g of point Q obtained by rotating P with rotation R is ¢ = Rp
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ROTATIONS AND ASSOCIATED TOOLS

o A rotation is represented by a 3 x 3 matrix R such that R” = R™! and detR =1
@ A rotation of angle 6 around:

e axis & is given by:

1 0 0
0 cosf —sinf
0 sinf cosf

o axis &, is given by:
cosf 0 sinf
0 1 0
—sinf 0 cosf

e axis €, is given by:
cosf) —sinf 0
sinf cosf 0O
0 0 1

o a unit vector & = (uy, uy, TALE
P4 (1-ud)e ucty (1 —cg) — uzsp  uxuz(1—co) + uysy

ucty (1 — cg) + uzsp uf +(1- uﬁ)ce uyu (1 — cg) — uxsp
uuz(1—cp) —uyss  uyuz(1 —cp) + uesy P+ (1-ud)e

@ The coordinates g of point Q obtained by rotating P with rotation R is g = Rp
@ The rotation resulting from 2 successive rotations Ry and then Ry is RyR;

Robotics ENSE3-ASI 13 / 109
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Robotics @ The scalar product < vy, vy > is defined by: < v, vp >:= vlTvz cR
@ The cross product v; X v, is defined by:

N. Marchand

VlyVQZ - Vlzv2y

vi X Vp = | vipvae — Vi, | € R?

VixV2y — ViyVax
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model
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Robotics @ The scalar product < vy, vy > is defined by: < v, vp >:= vlTvz cR
@ The cross product v; X v; is defined by:

N. Marchand

VlyVQZ - Vlzv2y

vi X voi= [ viva, — vieve, | €R?

VixV2y — ViyVax

Mechanics

@ The skew-symmetric matrix associated to a vector p = (x,y,z)7 is:

Arm robots

Inner-loop 0 -z vy
x

Geometrical = z 0 —x

model p

Kinematic mode -y X 0

Dynamical

model

Conclusion

Workspace and

ob: s

path planning
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Robotice @ The scalar product < vy, vy > is defined by: < v, vp >:= vlTvz eRr
@ The cross product v; X v; is defined by:
N. Marchand
VlyVQZ - Vlzv2y
Vi X Vo= | vigvo,—vive, | € R3
VixV2y — ViyVax
Mechanics
o The skew-symmetric matrix associated to a vector p = (x,y,z)7 is:
Arm robots

) 0 -z vy

ec y pr=1z 0 -—x

model

Kinematic mode -y X 0

Dynamical

model

Conclusion @ The set of skew-symmetric matrix with the brackett [My, Mo] = My My — Mo My

is called SO(3) and forms an algebra

les

path planning
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PRrRoODUCTS AND

ASSOCIATED TOOLS

The scalar product < vy, v, > is defined by: < v, vp >:= vlTvz eR
The cross product v; X v; is defined by:

Vi X v =

ViyVoz — VizV2y

3
VizVax — VixVez | € R
VixV2y — ViyVax

The skew-symmetric matrix associated to a vector p = (x,y,z)7 is:

0 -z vy
z 0 —x
-y X 0

The set of skew-symmetric matrix with the brackett [My, Ma] = My My — My My
is called SO(3) and forms an algebra
Skew-symmetric matrices and cross product:

Robotics
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PRODUCTS AND ASSOCIATED TOOLS

@ The scalar product < vy, vy > is defined by: < v, vp >:= vlTvz eRr
@ The cross product v; X v; is defined by:

VlyVQZ - Vlzv2y
— 3
Vi X voi=|vizvo,—vi,ve, | €R

VixV2y — ViyVax

o The skew-symmetric matrix associated to a vector p = (x,y,z)7 is:

0 -z vy
p*=|z 0 —x
-y x 0

@ The set of skew-symmetric matrix with the brackett [My, Mo] = My My — My My
is called SO(3) and forms an algebra
o Skew-symmetric matrices and cross product:

viu=vXxu J
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Robotics @ The scalar product < vy, vy > is defined by: < v, vp >:= vlTvz eRr
@ The cross product v; X v; is defined by:
N. Marchand
VlyVQZ - Vlzv2y
Vi X Vo= | vigvo,—vive, | € R3
VixV2y — ViyVax
Mechanics . . X T
@ The skew-symmetric matrix associated to a vector p = (x,y,z)" is:
Arm robots
Inner-loop y 0 -z y
Geometrical p* = z 0 —x
Kinematic mode -y X 0
Dynamical
model
Conclusion @ The set of skew-symmetric matrix with the brackett [My, Mo] = My My — My My

is called SO(3) and forms an algebra
Skew-symmetric matrices and cross product:

viu=vXxu J

@ Skew-symmetric matrices and rotations
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PRODUCTS AND ASSOCIATED TOOLS

The scalar product < vy, v, > is defined by: < v, vp >:= vlTvz eR
The cross product v; X v; is defined by:

VlyVQZ - Vlzv2y
— 3
Vi X voi=|vizvo,—vi,ve, | €R

VixV2y — ViyVax

The skew-symmetric matrix associated to a vector p = (x,y,z)7 is:

0 -z vy
p*=|z 0 —x
-y X 0

The set of skew-symmetric matrix with the brackett [My, Ma] = My My — My My
is called SO(3) and forms an algebra
Skew-symmetric matrices and cross product:

viu=vXxu J

Skew-symmetric matrices and rotations

u*sinf + (I — uu")cosf 4+ uu” and exp((uf)*)
is the rotation of angle 6 leaving axis u fixed
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ATTITUDE REPRESENTATION

o equivalent of position for angles: what is the orientation of an object w.r.t. the ground ?
e gives the rotation that transforms the reference frame into the body frame
Many attitude representation

Robotics

W.R. Hamilton (1805-1865)
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o equivalent of position for angles: what is the orientation of an object w.r.t. the ground ?

N. Marchand o gives the rotation that transforms the reference frame into the body frame

o Many attitude representation

o Euler angles W.R. Hamilton (1805-1865)
o Quaternions
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o Many attitude representation
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o Euler angles W.R. Hamilton (1805-1865)
o Quaternions

e Rotation matrix

°
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o equivalent of position for angles: what is the orientation of an object w.r.t. the ground ?

N. Marchand o gives the rotation that transforms the reference frame into the body frame
o Many attitude representation

o Euler angles W.R. Hamilton (1805-1865)

o Quaternions

e Rotation matrix
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Robotics o Attitude:
o equivalent of position for angles: what is the orientation of an object w.r.t. the ground ?
e gives the rotation that transforms the reference frame into the body frame

e Many attitude representation .
o Euler angles W.R. Hamilton (1805-1865)
o Quaternions
°
°

N. Marchand

Rotation matrix

Mechanics Tait-Bryan angles, Fick angles, Helmholtz angles, dip-slip-rake, azimuth-elevation-skew, ...
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Mechanics

CONSERVATION OF LINEAR MOMENTUM

P::Zm;\ZGR3
i

where i denotes the index of the element composing the system, m;
it's mass and v; it's speed (in a fixed frame)

@ Single body system:

I. Newton (1643-1727)
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Robotics Angular Momentum
N. Marchand
L:=px PeR?
where p denotes the position vector and P the linear momentum
Mechanics

Conservation of the angular momentum
=%

T=—

dt

@ In a moving frame (Varignon's formula):

dLt  dLM
- == QxL
dt dr X

I. Newton (1643-1727)
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Robotics Inertia momentum

N. Marchand

dJ = r’dm

where r is the distance of the elementary mass dm to the rotation axis

Mechanics

One has:

Conservation of the angular momentum

with J = / dJ
rigid body

@ In a moving frame (Varignon's formula):

aQ’r  doM

I. Newton (1643-1727)
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Example: the X4 helicopter

How it works ?

4 fixed rotors with controlled rotation

speed s;
4 generated forces F;
4 counter-rotating torques I';
Roll movement generated with a
dissymmetry between left and right
forces:

I =1(Fs— F2)
Pitch movement generated with a
dissymmetry between front and rear
forces:

Mp=I(F1— F3)
Yaw movement generated with a
dissymmetry between front/rear and
left/right torques:

Fy:F1+F3—F2—I’4

N. Marchand (gipsa-lab) Robotics

ENSE3-ASI 24 / 109
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Building a model (1/3)
Robotics
N. Marchand o Electrical motor: A 2" order system with friction and saturation
Mechanics

Arm robots

model
Kinematic mode

Dynamical
model

Conclusion
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path planning

N. Marchand (gipsa-lab) Robotics ENSE3-ASI 25 / 109



Glosain)

Example: the X4 helicopter
Building a model (1/3)

Robotics
N, Marchand o Electrical motor: A 2" order system with friction and saturation
usually approximated by a 1™ order system:
. k2, 1 Km .
S = ——"Lsi— —Tioad + —x saty (U;) 7€{1,2,3,4} (1
Mechanics ' JrR ' Jr . JrR U'( ,) B ( )
s;: rotation speed
U;: voltage applied to the motor; real control variable
Tioad: Motor load: Ticad = Kgearbox |Si| si With & drag coefficient
N. Marchand (gipsa-lab) Robotics
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Example: the X4 helicopter
Building a model (1/3)

Robotics
N. Marchand o Electrical motor: A 2" order system with friction and saturation
usually approximated by a 1™ order system:
. k2, 1 Km .
S§ = ——=S — —Tioad + sat (U;) 1€{1,2,3,4} (1
Mechanics ' JrR I Jr . JrR U'( ,) { B } ( )
s;: rotation speed
U;: voltage applied to the motor; real control variable
Tioad: Motor load: Ticad = Kgearbox |Si| si With & drag coefficient
@ Aerodynamical forces and torques: Very complex models exist
N. Marchand (gipsa-lab) Robotics
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Example: the X4 helicopter
Building a model (1/3)

Electrical motor: A 2"¢ order system with friction and saturation
usually approximated by a 1™ order system:
k2, 1

k .
7./,7:‘?5'. — J—rﬂoad + J,in;i’ satgl_(U,-) i€{1,2,3,4} (1)

s =

s;: rotation speed
U;: voltage applied to the motor; real control variable
Tioad: Motor load: Ticad = Kgearbox |Si| si With & drag coefficient

Aerodynamical forces and torques: Very complex models exist
but overcomplicated for control, better use the simplified model:

F,‘ = bS,2

M, = Ib(s? —s3) .

rp _ /b(512 o S%) I € {1,2,374} (2)
My = #(sf+55 -5 —s})

b: thrust coefficient, k: drag coefficient

Robotics ENSE3-ASI 25 / 109
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Example: the X4 helicopter
Building a model (2/3)

@ Two frames

o a fixed frame E(é}, &, &)
e a frame attached to the X4
T(t1, ta, t3)
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@ Two frames

Introduction

o a fixed frame E(é1, &, €3)
e a frame attached to the X4
Mechanics T(EZ'I.: Eé, t_'é)

Kinematics @ Frame change

Arm robots . .

Inner-loop e a rotation matrix R from T to E
Geometrical

model
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Kinematic model

Dynamical
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Example: the X4 helicopter
Building a model (2/3)

@ Two frames
o a fixed frame E(é}, &, &)
e a frame attached to the X4
T(f, b, 13)
@ Frame change
e a rotation matrix R from T to E

@ State variables:
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§ Example: the X4 helicopter
Building a model (2/3)

Robotics
N. Marchand
@ Two frames
Introduction . o o
o o a fixed frame E(é, &, &)
utline
e a frame attached to the X4
Mechanics T( ti, b, t3)
Kinematics @ Frame change
Arm robots . .
Inner-loop e a rotation matrix R from T to E
Geometrical i
model @ State variables:
Kinematic model . . .
Dynamical o Cartesian coordinates (in E)
model
Conclusion e position p
Path planning ° VEIOCity 4
Workspace and
obstacles

path planning

Mobile
robotics

Visual
servoing

RX90 robot
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§ Example: the X4 helicopter
Building a model (2/3)

Robotics
N. Marchand
@ Two frames
Introduction ) I
. o a fixed frame E(é, &, &)
utline
e a frame attached to the X4
Mechanics T(l’l, to, t3)
Kinematics @ Frame Change
Arm robots . .
Inner-loop e a rotation matrix R from T to E
Geometrical .
model @ State variables:
Kinematic model . . .
Dynamical o Cartesian coordinates (in E)
model
Conclusion e position p
Path planning o velocity v
Workspace and e Attitude coordinates:
obstacles
path planning e angular velocity & in the moving frame T
Mobile o either: Euler angles three successive rotations about 3, f; and
robotics t; of angles angles ¢, 6 and 1 giving R
Visual e or: Quaternion representation (qo, §) = (cos 3/2, 'sin 5/2)
servoing represent a rotation of angle 8 about
RX90 robot

=] 5 = = = DA
N. Marchand (gipsa-lab) Robotics ENSE3-ASI 26 / 109
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i Example: the X4 helicopter
Building a model (3/3)
Robotics
N. Marchand o Cartesian coordinates:
= v
= —mgé + R(Z Fi(si)3) ®)

i

<I- Tl
|

Mechanics

Arm robots
Inner-loop
Geometrical
model
Kinematic model

Dynamical
model

Conclusion

Workspace and
obstacles

path planning
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Robotics
N. Marchand o Cartesian coordinates:
ﬁ _
mv =
Mechanics

o Attitude:

Arm robots
Inner-loop
Geometrical
model
Kinematic model

Dynamical
model

Conclusion

Workspace and
ob:

path planning

N. Marchand (gipsa-lab)

Example: the X4 helicopter
Building a model (3/3)

—mg& + R(Z Fi(si)ts)

i

®)
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Mechanics

Example: the X4 helicopter

o Cartesian coordinates:

P
v

o Attitude:

Arm robots

Inn

-loop
Geometrical
model
Kinematic model
Dynamical
model

Conclusion

path planning

N. Marchand (gipsa-lab)

o Euler angles formalism:

R:
Jo =

R&
—&*JD + ot

v

Building a model (3/3)

—mgé; + R(Z Fi(si)t3)

X

0 —w3 Wy
with & = | ws 0 —w
—wy Wy 0

@™ is the skew symmetric tensor associated to &

Robotics

®3)

ENSE3-ASI
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Example: the X4 helicopter

o Cartesian coordinates:

P
v

o Attitude:

Arm robots
Inn op

Gec
model

etrical

Kinematic mode
Dynamical
model

Conclusion

path planning

N. Marchand (gipsa-lab)

o Euler angles formalism:

R:
Jo =

=X

Building a model (3/3)

v

= —mgé; + R(Z Fi(si)3) )

@ is the skew symmetric tensor associated to &

o Quaternion formalism:

i o=

R&Z* 0 —w3 Wy
ith @ = | 0 —w 4
R (ﬁ’; S‘) ®)
1o/~
29(@)a N
%_ th @)=z _a= (5)
3= B EUR
555+ Mot 3x3q0 + 4
Robotics ENSE3-ASI 27 / 109
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i Example: the X4 helicopter
Building a model (3/3)

Robotics
N. Marchand o Cartesian coordinates:
P o=
mv = —mg&+ R Fis)E) (3)
Mechanics '
o Attitude:
Arm robots o Euler angles formalism:
Inner-loop
Geometrical R = R~ 0 —ws w
model N iR . ith @ = | ¢ 0 —w 4
Kinematic mode {Jw = G AT (sz wi o )
Dynamical
‘(':";';:“SW @* is the skew symmetric tensor associated to &
o Quaternion formalism:
- 1. .
g = %Q(w)q o) = (0 47)
o h R
= 59 " 0= (07 ) ®)
5 X = - lix3qo + G
Jo = =07 JD + Tyt
I(s2,54)
where ot = 72 1,5 t3s; 4T pert + p(s1,3)

i Fy(51,52.53,54)

gyroscopic torque
N. Marchand (gipsa-lab) Robotics ENSE3-ASI 27 / 109
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Example: the X4 helicopter

Review of the nonlinearities

kr2n Kgearbox Km

_JrRSI. _ gT ‘S," S; + JriR SatUl_(U,')
v

0
-mgé&s + R 0

Z F,'(S,')
R&*™
0 [(s2,54)

U5 -3 [ 2 |+ [ Talsis)
i Si y(s1,52,53,54)

i

Robotics ENSE3-ASI 28 / 109
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Example: the X4 helicopter

Review of the nonlinearities

kr2n Kgearbox Km

_JrRSi — gT|5," s + JriR SatUi(U,‘)
v

0
-mgés + R 0

Z F,'(S,')
Ro*
0
M (s2,54)

—HXJLU—Z/ p(51,53)

i z :5’

y(s1, 52,53, 54)

In red: the nonlinearities
In blue: where the control variables act

N. Marchand (gipsa-lab)
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Example: the X4 helicopter

Identification of the parameters

o Electrical motor:

N. Marchand

Mechanics

N. Marchand (gipsa-lab)

e For small input steps, the system behaves very close to a linear
first order system
e Hence, use linear identification tools

e U; is found on the data-sheet of the motor (damage avoidance)

Robotics ENSE3-ASI 29 / 109
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Identification of the parameters
Robotics
e Electrical motor:
N. Marchand . .
e For small input steps, the system behaves very close to a linear
first order system
° I-_|ence, use linear identification tools
Vechani o U; is found on the data-sheet of the motor (damage avoidance)
echanics .
o Aerodynamical parameters: b and s
Arm robots b and k measured with specific test beds, depends upon temperature,
perlooe distance from ground, etc.

model
Kinematic model

Dynamical
model

Conclusion

Workspace and
obstacles

path planning
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e Electrical motor:
N. Marchand . .
e For small input steps, the system behaves very close to a linear
first order system
° I-_|ence, use linear identification tools
Vechani o U; is found on the data-sheet of the motor (damage avoidance)
echanics .
o Aerodynamical parameters: b and s
Arm robots b and k measured with specific test beds, depends upon temperature,
perlooe distance from ground, etc.

model
Kinematic model
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Conclusion

Workspace and
obstacles

path planning

N. Marchand (gipsa-lab) Robotics ENSE3-ASI 29 / 109



§(Bea-aly

Example: the X4 helicopter

Identification of the parameters

Robotics
@ Electrical motor:
N. Marchand . .
e For small input steps, the system behaves very close to a linear
first order system
° I-_|ence, use linear identification tools
Vechant e U; is found on the data-sheet of the motor (damage avoidance)
echanics
o Aerodynamical parameters: b and s
b and k measured with specific test beds, depends upon temperature,
distance from ground, etc.
@ Mechanical parameters:
N. Marchand (gipsa-lab) Robotics
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Example: the X4 helicopter

Identification of the parameters

Robotics
@ Electrical motor:
N. Marchand )
e For small input steps, the system behaves very close to a linear
first order system
e Hence, use linear identification tools
Vechanice o U; is found on the data-sheet of the motor (damage avoidance)
o Aerodynamical parameters: b and s
b and k measured with specific test beds, depends upon temperature,
distance from ground, etc.
@ Mechanical parameters:
I length of an arm of the helicopter, easy to measure
N. Marchand (gipsa-lab) Robotics
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Example: the X4 helicopter

Identification of the parameters

Robotics
@ Electrical motor:
N. Marchand )
e For small input steps, the system behaves very close to a linear
first order system
e Hence, use linear identification tools
Vechanice o U; is found on the data-sheet of the motor (damage avoidance)
o Aerodynamical parameters: b and s
b and k measured with specific test beds, depends upon temperature,
distance from ground, etc.
@ Mechanical parameters:
I length of an arm of the helicopter, easy to measure
m total mass of the helicopter, easy to measure
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Example: the X4 helicopter

Identification of the parameters

Robotics
@ Electrical motor:
N. Marchand )
e For small input steps, the system behaves very close to a linear
first order system
e Hence, use linear identification tools
Vechanice o U; is found on the data-sheet of the motor (damage avoidance)
o Aerodynamical parameters: b and s
b and k measured with specific test beds, depends upon temperature,
distance from ground, etc.
@ Mechanical parameters:
I length of an arm of the helicopter, easy to measure
m total mass of the helicopter, easy to measure
J body inertia, hard to have precisely
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Example: the X4 helicopter

Identification of the parameters

Robotics
e Electrical motor:

N. Marchand . .

e For small input steps, the system behaves very close to a linear

first order system

° I-_|ence, use linear identification tools

e U; is found on the data-sheet of the motor (damage avoidance)
Mechanics

o Aerodynamical parameters: b and s
b and k measured with specific test beds, depends upon temperature,
distance from ground, etc.
@ Mechanical parameters:
I length of an arm of the helicopter, easy to measure
m total mass of the helicopter, easy to measure
J body inertia, hard to have precisely
I, rotor inertia, hard to have precisely

N. Marchand (gipsa-lab) Robotics ENSE3-ASI 29 / 109
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Example: the X4 helicopter

[
Values of the parameters
Robotics
o Motor parameters:
N. Marchand
parameter description value unit
km motor constant | 4.3 x 10° [ N.m/A
Jy rotor inertia 3.4x107° | Jgm?
] R motor resistance 0.67 Q
Mechanics Kgearbox gearbox ratio | 2.7 x 1073 -
U; maximal voltage 12 \Y
Arm robots
Inner-loop
Geometrical
model
Kinematic mode
Dynamical
model
Conclusion
W ce and
obstacles
path planning
N. Marchand (gipsa-lab)

Robotics

ENSE3-ASI
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Example: the X4 helicopter

Values of the parameters
Robotics
o Motor parameters:
N. Marchand
parameter description value unit

km motor constant | 4.3 x 10° [ N.m/A
Jy rotor inertia 3.4x107° | Jgm?
R motor resistance 0.67 Q

Mechanics Kgearbox gearbox ratio | 2.7 x 1073 -
U; maximal voltage 12 \Y

@ Aerodynamical parameters:

parameter description value
b thrust coefficient | 3.8 x 107°
K drag coefficient | 2.9 x 1075
N. Marchand (gipsa-lab)
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Mechanics

Example: the X4 helicopter

Values of the parameters

o Motor parameters:

parameter description value unit
km motor constant | 4.3 x 10° [ N.m/A
Jy rotor inertia 3.4x107° | Jgm?
R motor resistance 0.67 Q
Kgearbox gearbox ratio 2.7 %1073 -
U; maximal voltage 12 \Y
@ Aerodynamical parameters:
parameter description value
b thrust coefficient | 3.8 x 107°
K drag coefficient | 2.9 x 1075
o Body parameters:
parameter description value unit
14.6 x 1073 0 0
J inertia matrix 0 7.8x1073 0 kg.m?
0 0 7.8 x 1073
m mass of the UAV 0.458 kg
/ radius of the UAV 22.5 cm
g gravity 9.81 m/s?
Robotics ENSE3-ASI 30 / 109
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OUTLINE
@ Introduction

© Outline

© Mechanics basis

@ Kinematics and dynamics of robots
Arm robots

@ Inner-loop

@ Geometrical model

@ Kinematic model
o
°

Dynamical model
Conclusion

© Path planning
@ Workspace and obstacles

@ Path planning problem formulation
@ Mobile robotics
@ Visual servoing
© Stiubli RX90 robot
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o Jointed-arm robot: A robot whose arm is constructed of rigid members connected by
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rotary joints
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o Jointed-arm robot: A robot whose arm is constructed of rigid members connected by
Robotics .
rotary joints
N. Marchand @ Two possible rotary joints:

Arm robots
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Dynamical
model

Conclusion
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o Jointed-arm robot: A robot whose arm is constructed of rigid members connected by
Robotics .
rotary joints
N. Marchand @ Two possible rotary joints:
e rotary around the arm

Arm robots

Kinematic mode
Dynamical
model

Conclusion
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Roboti o Jointed-arm robot: A robot whose arm is constructed of rigid members connected by
obotics rotary joints
N. Marchand @ Two possible rotary joints:
e rotary around the arm
e rotary perpendicular to the arm
Arm robots

Inner-loop
eometrical

model

Kinematic mode

Dynamica
model

Conclusion
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a JOINTED-ARM ROBOTS
Roboti o Jointed-arm robot: A robot whose arm is constructed of rigid members connected by
obotics rotary joints
N. Marchand @ Two possible rotary joints:
e rotary around the arm
e rotary perpendicular to the arm
Arm robots
Inner-loop
Geometrical
model
Kinematic mode o Each possible movement is called a degree of freedom (dof)

Dynamical
model

Conclusion
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o Jointed-arm robot: A robot whose arm is constructed of rigid members connected by
rotary joints
N. Marchand @ Two possible rotary joints:
e rotary around the arm

Glosain)

Robotics

e rotary perpendicular to the arm

Arm robots

o Each possible movement is called a degree of freedom (dof)
@ Sometimes movements are coupled (more than 1 dof/articulation)
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o Jointed-arm robot: A robot whose arm is constructed of rigid members connected by
rotary joints
N. Marchand @ Two possible rotary joints:
e rotary around the arm
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Robotics

e rotary perpendicular to the arm

Arm robots

o Each possible movement is called a degree of freedom (dof)
@ Sometimes movements are coupled (more than 1 dof/articulation)
o A “universal” robot has 12 dof:
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o Jointed-arm robot: A robot whose arm is constructed of rigid members connected by
rotary joints
N. Marchand @ Two possible rotary joints:
e rotary around the arm
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Robotics

e rotary perpendicular to the arm

Arm robots

o Each possible movement is called a degree of freedom (dof)
@ Sometimes movements are coupled (more than 1 dof/articulation)
o A “universal” robot has 12 dof:

o 6 for spatial position (vehicle)
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JOINTED-ARM ROBOTS

o Jointed-arm robot: A robot whose arm is constructed of rigid members connected by
rotary joints
N. Marchand @ Two possible rotary joints:
e rotary around the arm

Glosain)

Robotics

e rotary perpendicular to the arm

Arm robots

o Each possible movement is called a degree of freedom (dof)
@ Sometimes movements are coupled (more than 1 dof/articulation)
o A “universal” robot has 12 dof:

o 6 for spatial position (vehicle)
e 3 for the arm
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JOINTED-ARM ROBOTS

o Jointed-arm robot: A robot whose arm is constructed of rigid members connected by
rotary joints
N. Marchand @ Two possible rotary joints:
e rotary around the arm

Glosain)

Robotics

e rotary perpendicular to the arm

Arm robots

o Each possible movement is called a degree of freedom (dof)
@ Sometimes movements are coupled (more than 1 dof/articulation)
o A “universal” robot has 12 dof:

o 6 for spatial position (vehicle)

o 3 for the arm

o 3 for the terminal tool
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Arm robots

JOINTED-ARM ROBOTS

o Jointed-arm robot: A robot whose arm is constructed of rigid members connected by

rotary joints
Two possible rotary joints:

e rotary around the arm

e rotary perpendicular to the arm

Each possible movement is called a degree of freedom (dof)
Sometimes movements are coupled (more than 1 dof/articulation)
A “universal” robot has 12 dof:

o 6 for spatial position (vehicle)

o 3 for the arm

o 3 for the terminal tool

In the industrial context, a polyvalent robot will have 6 dof

N. Marchand (gipsa-lab) Robotics
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JOINTED-ARM ROBOTS

o Jointed-arm robot: A robot whose arm is constructed of rigid members connected by

rotary joints
N. Marchand @ Two possible rotary joints:
e rotary around the arm
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Robotics

e rotary perpendicular to the arm

Arm robots

o Each possible movement is called a degree of freedom (dof)
@ Sometimes movements are coupled (more than 1 dof/articulation)
@ A “universal” robot has 12 dof:
o 6 for spatial position (vehicle)
e 3 for the arm
e 3 for the terminal tool
@ In the industrial context, a polyvalent robot will have 6 dof
@ 6 dof are sufficient for any position and orientation of the terminal tool in the
reachable space
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JOINTED-ARM ROBOTS

o Jointed-arm robot: A robot whose arm is constructed of rigid members connected by

rotary joints
N. Marchand @ Two possible rotary joints:
e rotary around the arm

Glosain)

Robotics

e rotary perpendicular to the arm

Arm robots

o Each possible movement is called a degree of freedom (dof)
@ Sometimes movements are coupled (more than 1 dof/articulation)
@ A “universal” robot has 12 dof:
o 6 for spatial position (vehicle)
o 3 for the arm
o 3 for the terminal tool
@ In the industrial context, a polyvalent robot will have 6 dof
@ 6 dof are sufficient for any position and orientation of the terminal tool in the
reachable space
@ Many tasks can be performed with less than 6 dof: “pick and place” needs only 4 dof

N. Marchand (gipsa-lab) Robotics ENSE3-ASI 32 / 109
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@ Characteristic variables:
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Robotics
N. Marchand
@ Characteristic variables:
o Actuator control u; of the joint /
Arm robots

Inner-loop

Kinematic mode
Dynamical
model

Conclusion

path planning
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N. Marchand

@ Characteristic variables:

o Actuator control u; of the joint /
o Actuator torques C; of the joint /

Arm robots

N. Marchand (gipsa-lab) Robotics
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JOINTED-ARM ROBOTS

Robotics

N. Marchand

o Characteristic variables:
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@ Characteristic variables:

Actuator control u; of the joint /

Actuator torques C; of the joint /

Angles 6; of the joint

Spatial position X; of the extremity of the joint

Arm robots

@ Controlling a robot is equivalent to mastering the relation
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Actuator control u; of the joint /

Actuator torques C; of the joint /
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@ Characteristic variables:

Actuator control u; of the joint /

Actuator torques C; of the joint /

Angles 60; of the joint

Spatial position X; of the extremity of the joint

® 6 o

Arm robots

e Controlling a robot is equivalent to mastering the relation

U,'<:’ C,-<:>6,-:>X,-

e Actuator's dynamics O
o Robot's dynamics
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@ The actuator is usually a first (electric) or second order
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@ Enables to force 6 to follow the reference 6,
@ The actuator is usually a first (electric) or second order
system (pneumatic)
@ Usually controlled with a PID controller with
o filtered derivative action
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@ Inner control loop:

Disturbances

|

0r e
4,@_.

07

Controller

ui

Actuator-++Robot

@ Enables to force 6 to follow the reference 6,

@ The actuator is usually a first (electric) or second order
system (pneumatic)
@ Usually controlled with a PID controller with

o filtered derivative action

e anti-windup to tackle saturations
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@ We go back to the X4 example and focus on the rotors:

, k2 1 Kim
i = ——"55 — 7 Tload + 5 sat g, (Ui
{s JrRS JrTI d+JrRsa U,(U)

@ If one wants to act on the X4 with desired forces F,-d, it
is necessary to be able to set the rotors speeds s; to s’

;
with
/1
Sld = B Fid
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Robotics

N Marchand @ We go back to the X4 example and focus on the rotors:
k2 1 Kim
S = — Si— — ——sat g (U;
{ i IR i JrTIoad + JR Ui( /)
Inner-ioop o If one wants to act on the X4 with desired forces F¢, it

is necessary to be able to set the rotors speeds s; to s,d

with
/1
Sld - BFI-d

@ A usual way to control the electrical motor consist in

o taking Tjpad @s un unknown load ~
o neglecting the voltage limitations U;
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@ Define a Pl controller for it:
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Anti-windup PID

Robotics

N. Marchand @ The so obtained system is linear
1
sis) _ ke G
Ui(s) 1_|_Jkr£’5 14 7s

@ Define a Pl controller for it:

Inner-loop

K.

C(s) = Kpt+—
s

) 1
e Taking Ki = —— and K, = 7K;, the closed loop system
TG
is:
si(s) 1
U,'(S) 1 + TcLS
N. Marchand (gipsa-lab) Robotics ENSE3-ASI 37 / 109



Glosain)

Robotics

N. Marchand

Inner-loop

INNER CONTROL LOOP
Anti-windup PID

o Make a step that compensates the weight, that is such

that s-d—w m sothatZFd—mg
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o Make a step that compensates the weight, that is such

that s¢ = w/% so that Z F = mg
i

N. Marchand

o Taking 7¢; = 50 ms, one gets without saturations

600 T
Inner-loop {'
400 -
Sj 200
0 .
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0
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time
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o Make a step that compensates the weight, that is such

that s¢ = w/% so that Z F = mg
i

N. Marchand

o Taking ¢, = 50 ms, one gets with saturations
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T
Inner-loop
400 -

Si 200f
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@ The result could be worse:
N. Marchand
ﬂ_ﬂ 7s+5 i
s s1
Pulse Control Saturation Transfer Fen
Generator
e For u € [-1.2,1.2], the closed-loop behavior is:
.
Inner-loop as
3
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@ The result could be worse:

Robotics

N. Marchand

INNER CONTROL LOOP

7s+6 1
sl
Control Sal“'ﬂ‘w" Transfer Foi
Generalov

H

@ For u e [—1.2,1.2], the closed-loop behavior

Inner-loop

25 with

without satur

is:

saturation

ation

e Saturations may lead to instability especially in the

presence of integrators in the loop
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o Consider a linear system with a PID controller:

Yr + e u Y
—P?—v{ PID controller }—“ Linear system h—'

Inner-loop
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o Consider a linear system with a PID controller:

Inner-loop

@ The instability comes from the integration of the error
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INNER CONTROL LOOP
Anti-windup PID

Robotics

N. Marchand
o Consider a linear system with a PID controller:

Inner-loop

@ The instability comes from the integration of the error

o Key idea: soften the integral effect when the control is
saturated
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N. Marchand @ Structure of the PID controller with anti-windup:

Anti Windup | ¥ p
PID controller

Inner-loop

o If u= u, that is if u is not saturated, then the PID
controller with anti-windup is identical to the classical
PID controller

N. Marchand (gipsa-lab) Robotics ENSE3-ASI 41 / 109



INNER CONTROL LOOP
Anti-windup PID

§(Bea-aly

Robotics

N. Marchand @ Structure of the PID controller with anti-windup:

Anti Windup | ¥ p
PID controller

Inner-loop

o If u= u, that is if u is not saturated, then the PID
controller with anti-windup is identical to the classical
PID controller

o If u is saturated (u # i), K tunes the reduction of the
integral effect of the PID
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o Make a step that compensates the weight, that is such

that s-d—w m sothatZFd—mg
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o Make a step that compensates the weight, that is such

that s¢ = w/% so that Z F = mg
i

N. Marchand

o Taking 7¢; = 50 ms, one gets without anti-windup
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o Make a step that compensates the weight, that is such

that s¢ = w/% so that Z F = mg
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N. Marchand

o Taking 7¢; = 50 ms, one gets with anti-windup
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o Take again 7¢, = 50 ms and a Pl controller tuned at s;

@ Make speed steps of different level

Arm robots
Inner-loop
Geometrical
model
Kinematic mode
Dynamical
model

Conclusion

path planning

N. Marchand (gipsa-lab)

600
400
200

Si
0

-200
0

d

Robotics

time

ENSE3-ASI 43 / 109



F INNER CONTROL LOOP

@

Towards gain scheduling
Robotics

@ Take again 7¢; = 50 ms and a Pl controller tuned at s,d
@ Make speed steps of different level

N. Marchand

600 T T T T

400 2

200 1

Si

0 A

Inner-loop

-200
0

time
@ The controller is well tuned near s,f" but not very good a large
range of use
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@ Take again 7¢; = 50 ms and a Pl controller tuned at the current s;
N. Marchand

@ Make speed steps of different level
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@ Take again 7¢; = 50 ms and a Pl controller tuned at the current s;
N. Marchand .
archan @ Make speed steps of different level
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Arm robots
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@ The rotors are now well controlled
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@ Characteristic variables:

Actuator control u;
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@ Characteristic variables:

Actuator control u;
Actuator torques C;
Angles 6;

Spatial position X;

@ Controlling a robot is equivalent to mastering the relation

Geometrical
model

u,-:’C,-;’H,-;’X,-
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@ Characteristic variables:

Actuator control u;
Actuator torques C;
Angles 6;

Spatial position X;

@ Controlling a robot is equivalent to mastering the relation

Geometrical
model

u,-;’C,- <:>9,-:’X,-

o Actuator dynamics
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@ Characteristic variables:
e Actuator control u;
o Actuator torques C;
o Angles 6;
o Spatial position X;
P @ Controlling a robot is equivalent to mastering the relation

model

U,'<:’ C,-<:>6,-:>X,-

o Actuator dynamics @)
e Robot dynamics
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(GEOMETRICAL MODEL OF ROBOTS

@ Consist in finding the relations X; = (0;)

@ Sometimes called “forward kinematics”

@ That gives X, = f(0;,...,0,), the position of the extremity of
the arm as a functions of the control angles (and of the robot
parameters)
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(GEOMETRICAL MODEL OF ROBOTS

@ Consist in finding the relations X; = (0;)
@ Sometimes called “forward kinematics”

@ That gives X, = f(0;,...,0,), the position of the extremity of
the arm as a functions of the control angles (and of the robot
parameters)

@ The aim is then to deduce the #!'s using f~ (inversion)
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Consist in finding the relations X; = (6;)

Sometimes called “forward kinematics”

That gives X, = f(0;,...,0,), the position of the extremity of
the arm as a functions of the control angles (and of the robot
parameters)

The aim is then to deduce the 7's using f ! (inversion)
Assumptions:
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Sometimes called “forward kinematics”

That gives X, = f(0;,...,0,), the position of the extremity of
the arm as a functions of the control angles (and of the robot

parameters)

The aim is then to deduce the 7's using f ! (inversion)

Assumptions:
o The model must be quite precise
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Robotics @ Consist in finding the relations X; = (0;)
N, Marchand @ Sometimes called “forward kinematics”

@ That gives X, = f(0;,...,0,), the position of the extremity of
the arm as a functions of the control angles (and of the robot
parameters)

@ The aim is then to deduce the #!'s using f~ (inversion)

@ Assumptions:

o The model must be quite precise
Geometrical @ no friction, no drift, no backlash, no dead zone, ...

model
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(GEOMETRICAL MODEL OF ROBOTS

Robotics @ Consist in finding the relations X; = (0;)
N, Marchand @ Sometimes called “forward kinematics”

@ That gives X, = f(0;,...,0,), the position of the extremity of
the arm as a functions of the control angles (and of the robot
parameters)
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Robotics @ Consist in finding the relations X; = (0;)
N, Marchand @ Sometimes called “forward kinematics”

@ That gives X, = f(0;,...,0,), the position of the extremity of
the arm as a functions of the control angles (and of the robot
parameters)

@ The aim is then to deduce the #!'s using f~ (inversion)

@ Assumptions:

o The model must be quite precise
Geometrical @ no friction, no drift, no backlash, no dead zone, ...

model

e The dynamical phenomena must be negligible

@ mass effect fully compensated by the inner-loop
o few flexibility of the arms (not for spatial robotic arms !)

o Sufficiently simple model to be online inverted
o The model must be invertible

@ Despite the limitations, this approach is widely used (oversized
robots)
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o Let X be the orientation and position of the last segment in Rq (usually
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, o Let X be the orientation and position of the last segment in Rq (usually
moder < variable to control)
o Orientation: for any v

o V(Rj) = R,'i_1‘7(7—\"i71)

o ¥(Ri) = [ [ RE17(Ro) = R§¥(Ro)
k=1
@ Position: for any point C
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Combination of rotations and translations
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Robotics
N. Marchand
Roloy O
Ry .
o Let X be the orientation and position of the last segment in Rq (usually
Geometrical

model variable to control)
o Orientation: for any v
° \7(72,) = R{_IV(R,‘,l)
o WRi) =[] RE_17(Ro) = R§¥(Ro)
k=1
@ Position: for any point C
@ 0yC(Ro) = 000}(Ro) + O,C(Ra) = 00 0}(Ro) + RO C(R))

@ 0yC(Ro) = 000;(Ro) + ROO1O5(Ra) + -+ + RY 101 10/(Ri1) + ROO;C(R;)
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COMPUTATION OF THE GEOMETRICAL MODEL

o Let X be the orientation and position of the last segment in Rq (usually

Robotics
N. Marchand
Geometrical
model
°
°

variable to control)
Orientation: for any v

o V(Rj) = Rl,'i_1‘7(7—"'i*1)

° V(R,) = H R,i(_IV(Ro) = Ré\?(Ro)
k=1

Position: for any point C

0 0,C(Ry) = 000;(Ro) + 0:C(Ro) = 0o0i(Ro) + RYOIC(R))

® 03C(Ro) = 0004 (Ro) + ROO1O5(Ra) + - -+ RY,

0i-10;

(Ri-1) + RPW(RO

@ where Rf“ is the rotation matrix from R; to Rj41:
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Combination of rotations and translations

L]

Robotics
N. Marchand
Roloy O
Ry .
o Let X be the orientation and position of the last segment in Rq (usually
Geometrical

model variable to control)
o Orientation: for any v
° \7(72,) = R,-’_l\_/a(R,‘,l)

° V(R,) = H R,i(_IV(Ro) = Ré\?(Ro)
k=1

@ Position: for any point C
@ 05C(Ro) = 000}(Ro) + 0,C(Rq) = 00(Rq) + RIOIC(R;)

® 0yC(Ro) = 0004(Ro) + ROO104(Ry) + - - + R® 1 0, 10(Ri1) + ROO,C(Rs)

@ where Rf“ is the rotation matrix from R; to Rj41:
T

o RIFI =R, detRit! =1
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COMPUTATION OF THE GEOMETRICAL MODEL

Combination of rotations and translations

Voot

Robotics

@ Easy way to compute the geometrical model:

N. Marchand
homogeneous coordinates
o Let V:= (w1 v» v3), then it is equivalent to the
4-dimension vector V with w = 1:

viw

V= Vow

Geometrical vsw

w

model
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COMPUTATION OF THE GEOMETRICAL MODEL

Combination of rotations and translations

@ Easy way to compute the geometrical model:
homogeneous coordinates

o Let V:= (w1 v» v3), then it is equivalent to the

4-dimension vector V with w = 1:

V =
e Translation: a translation of vector (a b c¢) is given by:

Trans =

[eNeNen
o O =
o = o
=0 oo

N. Marchand (gipsa-lab) Robotics ENSE3-ASI 49 / 109



§(Bea-aly

Robotics

N. Marchand

Geometrical
model

COMPUTATION OF THE GEOMETRICAL MODEL

Combination of rotations and translations

@ Easy way to compute the geometrical model:
homogeneous coordinates

o Let V:= (w1 v» v3), then it is equivalent to the
4-dimension vector V with w = 1:

%1%

e Translation: a translation of vector (a b c¢) is given by:

Trans =

[N o)
o = oo
=0 oo

1
0
0
0

@ Rotation: a rotation of matrix R is given by:

03x1
Rot =
© <01><3 >

Note that still R = R" and det(R) = 1
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Denavit-Hartenberg's convention
Robotics

N. Marchand

Geometrical
model

@ Consider two successive articulations
@ Then, to go from Ok to Ok41 and from Ry to Ry41, one
does successively:
e One rotation around z, of angle 01
o One translation along z, of distance dky1
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@ Consider two successive articulations
@ Then, to go from Ok to Ok41 and from Ry to Ry41, one
does successively:
e One rotation around z, of angle 01
o One translation along z, of distance dky1
o One translation along xx,1 of distance ajy1
o One rotation around xi1 of angle a1
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Denavit-Hartenberg's convention
Robotics
N. Marchand

Geometrical
model

@ Consider two successive articulations
@ Then, to go from Ok to Ok41 and from Ry to Ry41, one

does successively:
e One rotation around z, of angle 01
o One translation along z, of distance dky1
o One translation along xx,1 of distance ajy1
o One rotation around xi1 of angle a1
@ The DH parametrization always exists and is unique
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e Compute the set of 6] corresponding to the reference X"

@ 0; as a function of X' is often called “inverse kinematics”
e The model must be invertible (for any X", there is some

07)

o We talk about resolvable robots

o Can be inverted using a optimization procedure

Geometrical @ Make a step in the inner control loop to go from 0? to 0f
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CONTROL WITH THE GEOMETRICAL MODEL

Robotics

N Marchand e Compute the set of 6] corresponding to the reference X"
@ 0; as a function of X' is often called “inverse kinematics”
e The model must be invertible (for any X", there is some
07)
e We talk about resolvable robots
o Can be inverted using a optimization procedure
Geametrica @ Make a step in the inner control loop to go from 0? to 0f
@ Drawbacks: the actuators are in closed loop but the

robot is in open-loop
o what about the speed ?
o the trajectory is not well defined (obstacle avoidance, etc.)
o dry friction if multiple X¢
o what about the influence of the weight (that depends upon
the configuration)
e inertia may cause overshoot or oscillations
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Exercise

convention

e One rotation around z of angle x1:

Ri=

Robotics

cOt1
SOk41
0
0

—50kt1
cOxi1
0
0

o= oo

= o oo
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i Exercise
Robotice e Compute the matrix transformation of the Denavit-Hartenberg's
convention
N. Marchand .
arenan e One rotation around z of angle x1:
Cﬂk+1 *5Hk+1 0
R — sOky1 ki1 O
! 0 0 1
0 0 0
e One translation along z, of distance di41
100 0
010 0
=10 01 ds
Geometrical 00 0 1
model
Robotics
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convention
e One rotation around z of angle x1:
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e One translation along z, of distance di41
100 O
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000 1
e One translation along xx41 of distance ax41
1 0 0 akn
010 0
2=log01 o
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model

Exercise

@ Compute the matrix transformation of the Denavit-Hartenberg's
convention
e One rotation around z of angle x1:

clry1 —sbkrr 0 O
R — sOky1 Ok 00
! 0 0 10
0 0 01
e One translation along z, of distance di41

100 0
10 0
0 1 de
00 1

0
=1,

0
e One translation along xx41 of distance ax41
1
0
0
0

0 0 akq1

10 0

2=log01 o

00 1

e One rotation around xx11 of angle ak41

1 0 0
0 cokyr  —saksr

0 Ssay+1  Cogs
0 0 0

R =

—~ o oo

N. Marchand (gipsa-lab) Robotics ENSE3-ASI 52 / 109



Exercise

§(Bea-aly

@ Compute the matrix transformation of the Denavit-Hartenberg's

Robotics A
convention
N. Marchand .
e One rotation around z of angle x1:

clry1 —sbkrr 0 O
R — sOky1 Ok 00
! 0 0 10
0 0 01

e One translation along z, of distance di41

100 0
10 0
0 1 de
00 1

0
=1,

0
e One translation along xx41 of distance ax41
1
0
0
0

Geometrical
model

0 0 akq1

10 0

2=log01 o

00 1

e One rotation around xx11 of angle ak41

1 0 0
0 cokyr  —saksr

0 Ssay+1  Cogs
0 0 0

e The matrix transformation of the Denavit-Hartenberg's convention
is: R2~T2'T1-R1

R =

—~ o oo
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a KINEMATIC MODEL OF ROBOTS
do
Roboti @ Express the infinitesimal mouvement dX as a function of speed of the actuators —
obotics dt
o Sometimes called “velocity kinematics”
N. Marchand o Assumes that, thanks to inner-loops, actuators speeds can be assumed to be control
variables
o The kinematic model is “simply” the derivation of the geometric model
X = f(90,01, e ,9,,):
Arm robots

Geometrical

model

Kinematic model

Dynamical
model

Conclusion

c les

path planning

N. Marchand (gipsa-lab) Robotics

ENSE3-ASI

54 / 109



J‘g gipsa-lab

a KINEMATIC MODEL OF ROBOTS
do
Roboti @ Express the infinitesimal mouvement dX as a function of speed of the actuators —
obotics dt
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N. Marchand o Assumes that, thanks to inner-loops, actuators speeds can be assumed to be control
variables
o The kinematic model is “simply” the derivation of the geometric model
X = f(90,01, e ,9,,):
. Of .
X=—0
00
) of . .
Arm robots 0 J = T is called the Jacobian of the robot
Inner-loop

Geometrical
model
Kinematic model
Dynamical
model

Conclusion
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o Sometimes called “velocity kinematics”
N. Marchand @ Assumes that, thanks to inner-loops, actuators speeds can be assumed to be control
variables
o The kinematic model is “simply” the derivation of the geometric model
X = f(00,01, e ,9,,):
x=2
00

e J:= g is called the Jacobian of the robot

o J represents the instantaneous transformation between a vector of joint velocities and

. ) the linear and angular velocities of the end-effector
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P . do
@ Express the infinitesimal mouvement dX as a function of speed of the actuators o

Robotics

o Sometimes called “velocity kinematics”
N. Marchand @ Assumes that, thanks to inner-loops, actuators speeds can be assumed to be control
variables
o The kinematic model is “simply” the derivation of the geometric model
X = f(00,01, e ,9,,):
x=2
00

e J:= g is called the Jacobian of the robot

o J represents the instantaneous transformation between a vector of joint velocities and
the linear and angular velocities of the end-effector
@ J can be decomposed into J, and J, so that:

Kinematic model

Reo= 4,0

Wi = Jwé

n
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N. Marchand

Kinematic model

KINEMATIC MODEL OF ROBOTS

P . do
Express the infinitesimal mouvement dX as a function of speed of the actuators m

Sometimes called “velocity kinematics”

Assumes that, thanks to inner-loops,
variables

The kinematic model is “simply” the
X = f(00,01, e ,9,,):

actuators speeds can be assumed to be control

derivation of the geometric model

. Of .
X=2
099

e J:= g is called the Jacobian of the robot

J represents the instantaneous transformation between a vector of joint velocities and
the linear and angular velocities of the end-effector

J can be decomposed into J, and J,, so that:
Reo= 4,0
w,,R‘ = Jwé

The kinematic model can also be obtained using the composition of speed and
decomposing the Denavit-Hartenberg's parametrization:

R(z,0)T(z,d)T(x",a)R(xT, )
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Robotics

N. Marchand

Kinematic model

KINEMATIC MODEL OF ROBOTS

P . do
Express the infinitesimal mouvement dX as a function of speed of the actuators m

Sometimes called “velocity kinematics”

Assumes that, thanks to inner-loops, actuators speeds can be assumed to be control

variables

The kinematic model is “simply” the derivation of the geometric model

X = f(00,01,~~ ,9,,):
X ==
099

of . .
o J:= — is called the Jacobian of the robot
J represents the instantaneous transformation between a vector of joint velocities and

the linear and angular velocities of the end-effector

J can be decomposed into J, and J,, so that:
Reo= 4,0
w,,R‘ = Jwé

The kinematic model can also be obtained using the composition of speed and

decomposing the Denavit-Hartenberg's parametrization:
R(z,0)T(z,d)T(x",a)R(xT, )

Fastidious in many cases but systematic ! See books for that
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@ Kinematic model can be used if “it can be stopped quasi
instantaneously” (quickly w.r.t. the tasks to be done)
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Kinematic model
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@ As for geometrical model, the dynamics has to be
neglected
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instantaneously” (quickly w.r.t. the tasks to be done)
@ As for geometrical model, the dynamics has to be
neglected
@ Many cases can happen:
e Jis square and full rank: miracle !
o J is square but for some articulation position, det J =0
Kinematic model (singularities), the singularities are usually avoided
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Robotics

@ Kinematic model can be used if “it can be stopped quasi

N. Marchand
instantaneously” (quickly w.r.t. the tasks to be done)
@ As for geometrical model, the dynamics has to be
neglected
@ Many cases can happen:
e Jis square and full rank: miracle !
o J is square but for some articulation position, det J =0
Kinematic model (singularities), the singularities are usually avoided
e J has more columns than rows: add a criterium to find the
optimal path
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KINEMATIC MODEL OF ROBOTS

Robotics

@ Kinematic model can be used if “it can be stopped quasi

N. Marchand
instantaneously” (quickly w.r.t. the tasks to be done)
@ As for geometrical model, the dynamics has to be
neglected
@ Many cases can happen:
e Jis square and full rank: miracle !
o J is square but for some articulation position, det J =0
Kinematic model (singularities), the singularities are usually avoided
e J has more columns than rows: add a criterium to find the
optimal path

o J has more rows than columns: impossible configurations
of nonholonomic constraints, nonlinear control theory to
solve this problem
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KINEMATIC MODEL OF ROBOTS

Robotics

@ Kinematic model can be used if “it can be stopped quasi

N. Marchand
instantaneously” (quickly w.r.t. the tasks to be done)
@ As for geometrical model, the dynamics has to be
neglected
@ Many cases can happen:
e Jis square and full rank: miracle !
o J is square but for some articulation position, det J =0
Kinematic model (singularities), the singularities are usually avoided
o J has more columns than rows: add a criterium to find the
optimal path

o J has more rows than columns: impossible configurations
of nonholonomic constraints, nonlinear control theory to
solve this problem

@ The kinematic model is a state space representation
of a controlled system
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Example of kinematic

N. Marchand @ Example: the car in the plane

Kinematic model

N. Marchand (gipsa-lab)

o Characterizing variables (state
variables): x, y and 6
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Robotics

Example of kinematic

N. Marchand @ Example: the car in the plane

Kinematic model

N. Marchand (gipsa-lab)

o Characterizing variables (state
variables): x, y and 6

e Control variables: speed of
each wheels V, and V,
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Example of kinematic model

Robotics
N. Marchand @ Example: the car in the plane

o Characterizing variables (state
variables): x, y and 6

e Control variables: speed of
each wheels V, and V,

e The kinematic model is given
by the relation between x, y, 0
and the controls V, and V,

Kinematic model
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Robotics
N. Marchand @ Example: the car in the plane

o Characterizing variables (state
variables): x, y and 6

e Control variables: speed of
each wheels V, and V,

e The kinematic model is given
by the relation between x, y, 0
and the controls V, and V,

e What is the kinematic model
of the car ?

Kinematic model

N. Marchand (gipsa-lab) Robotics

Example of kinematic

model
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Robotics

N. Marchand @ Example: the car in the plane

Kinematic model

N. Marchand (gipsa-lab)

Example of kinematic model

Characterizing variables (state

variables): x, y and 6
Control variables: speed of
each wheels V, and V,

The kinematic model is given
by the relation between x, y, 0
and the controls V, and V,
What is the kinematic model
of the car ?

What is the expression of the
Jacobian of this robot ?

<.

Robotics

V/"’Vr 0s0
2
V,+V,
/; “sing
V.-V,
d
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Robotics

N. Marchand @ Example: the car in the plane

Kinematic model

N. Marchand (gipsa-lab)

Example of kinematic model

Characterizing variables (state

variables): x, y and 6
Control variables: speed of
each wheels V, and V,

The kinematic model is given
by the relation between x, y, 6

Vi+V,
and th.e contr9|s Vv, énd Vv, % = |+ Vr cosd
What is the kinematic model 2
of the car ? . VitV 0
What is the expression of the y = 2 s
Jacobian of this robot ? . V, -V,
Is this system underactuated or 0 = —d

5 .
overactuated ? Explain é’%@kﬁ cos

_11sing sing
J=3 2 2

d d

Robotics
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Relation between workspace forces and joint
torques

Robotics

N. Marchand

@ The workspace forces and joint torques are linked with the
relation:
T
T=J,F

Kinematic model
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Relation between workspace forces and joint
Robotics torq ues

N. Marchand

@ The workspace forces and joint torques are linked with the
relation:

T:J\Z—F

Kinematic model

@ the Jacobian must be derived at each origin O; of each
link frame
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Kinematic redundancy

Robotics

N. Marchand

When a robot is given by its kinematic model X =Jo
o Jis usually n x pwith X € R” and 6 € R”
@ r = p — n is called the kinematic redundancy number

@ When r < 0, the robot is underactuated, usually the case
with mobile robots = advanced control

Kinematic model
@ When r > 0, the robot is overactuated. It has redundancy.
For a robot with redundancy, one can write:

o J= (J,7 Jp_n) with J, invertible
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Control through the kinematic equation

Robotics

N. Marchand
Control with Jt Take a robot given by its kinematic model
X =J0
e Control with J*
o Apply a fictive force F = K(X — Xy) with K positive and
symmetric
o Take 6 = JIF = JIK(X — Xg) = JtKe
Kinematic model o Then the elastic potential ®(e) = EetKe is such that
d(e) = —e'KJJKe <0
e e—0, X—Xy

Automatically handles redundancy
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Control through the kinematic equation

§(Bea-aly

Robotics
N. Marchand

Control with J™ Take a robot given by its kinematic model
X =J0
e Control with J* := Jt(JJ5H)=!
o J' is the Moore-Penrose pseudo-inverse (pinv in Matlab)
o Can be obtained through SVD decomposition. J = UAV?,
A diagonal = Jt = VAT U, A" is the inverse of the
nonzero coefficient of A
e Taking 0 = J* X minimizes the energy 610
o Taking 6 = Jj,X with J); .= M~1Jt(UM~18) 1
minimizes the kinetic energy T = %@M(G)@l

Kinematic model
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N. Marchand

@ Kinematics and dynamics of robots

Arm robots
Inner-loop

Geometrical
model

Kinematic model .
Dynamical @ Dynamical model
model

Conclusion

Workspace and
obstacles

path planning
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a DYNAMICAL MODEL OF ROBOTS
) o Express the accelerations of movement as
Robotics . . .
a function of the actuation variables
N. Marchand

Arm robots
Inner-loop

Geometrical
model

Kinematic model

Dynamical
model

Conclusion

Workspace and
obstacles

path planning
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a DYNAMICAL MODEL OF ROBOTS
Robotice @ Express the accelerations of movement as

a function of the actuation variables

N. Marchand @ The dynamical model is obtained writing
the mechanical equations of the system
(conservation of momentum)

Arm robots
Inner-loop

Geometrical
model

Kinematic model

Dynamical
model
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=
a DYNAMICAL MODEL OF ROBOTS
Robotice @ Express the accelerations of movement as

a function of the actuation variables
N. Marchand @ The dynamical model is obtained writing
the mechanical equations of the system
(conservation of momentum)
@ Sometimes also includes the actuators
dynamics (mainly electrical or
pneumatical)

Arm robots
Inner-loop

Geometrical
model

Kinematic model

Dynamical
model

Conclusion

Workspace and
obstacles

path planning
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F1

@

Robotics

N. Marchand

Arm robots
Inner-loop

Geometrical
model

Kinematic model

Dynamical
model

Conclusion

Workspace and
obstacles

path planning

DYNAMICAL MODEL OF ROBOTS

Express the accelerations of movement as
a function of the actuation variables
The dynamical model is obtained writing
the mechanical equations of the system
(conservation of momentum)

Sometimes also includes the actuators
dynamics (mainly electrical or
pneumatical)

Very complex and most of the time
impossible to control (too complex to
design a control)
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F1

@

Robotics

N. Marchand

Arm robots
Inner-loop

Geometrical
model

Kinematic model

Dynamical
model

Conclusion

Workspace and
obstacles

path planning

DYNAMICAL MODEL OF ROBOTS

Express the accelerations of movement as
a function of the actuation variables
The dynamical model is obtained writing
the mechanical equations of the system
(conservation of momentum)

Sometimes also includes the actuators
dynamics (mainly electrical or
pneumatical)

Very complex and most of the time
impossible to control (too complex to
design a control)

simplifications are required:
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Robotics

N. Marchand

Arm robots
Inner-loop

Geometrical
model

Kinematic model

Dynamical
model

Conclusion

Workspace and
obstacles

path planning

DYNAMICAL MODEL OF ROBOTS

Express the accelerations of movement as
a function of the actuation variables
The dynamical model is obtained writing
the mechanical equations of the system
(conservation of momentum)
Sometimes also includes the actuators
dynamics (mainly electrical or
pneumatical)
Very complex and most of the time
impossible to control (too complex to
design a control)
simplifications are required:

o based on relative speed of the # parts of

the robot
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Robotics

N. Marchand

Arm robots
Inner-loop

Geometrical
model

Kinematic model

Dynamical
model

Conclusion

Workspace and
obstacles

path planning

DYNAMICAL MODEL OF ROBOTS

Express the accelerations of movement as
a function of the actuation variables
The dynamical model is obtained writing
the mechanical equations of the system
(conservation of momentum)
Sometimes also includes the actuators
dynamics (mainly electrical or
pneumatical)
Very complex and most of the time
impossible to control (too complex to
design a control)
simplifications are required:
o based on relative speed of the # parts of
the robot
o thanks to inner-loops that can render
parts instantaneous w.r.t. other parts of
the robot
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Arm robots
Inner-loop

Geometrical
model

Kinematic model

Dynamical
model

Conclusion

Workspace and
obstacles

path planning

DYNAMICAL MODEL OF ROBOTS

Express the accelerations of movement as
a function of the actuation variables
The dynamical model is obtained writing
the mechanical equations of the system
(conservation of momentum)
Sometimes also includes the actuators
dynamics (mainly electrical or
pneumatical)
Very complex and most of the time
impossible to control (too complex to
design a control)
simplifications are required:
o based on relative speed of the # parts of
the robot
o thanks to inner-loops that can render
parts instantaneous w.r.t. other parts of
the robot

Almost never used for arm-robots
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@

Robotics

N. Marchand

Arm robots
Inner-loop

Geometrical
model

Kinematic model

Dynamical
model

Conclusion

DYNAMICAL MODEL OF ROBOTS

Express the accelerations of movement as
a function of the actuation variables
The dynamical model is obtained writing
the mechanical equations of the system
(conservation of momentum)
Sometimes also includes the actuators
dynamics (mainly electrical or
pneumatical)
Very complex and most of the time
impossible to control (too complex to
design a control)
simplifications are required:
o based on relative speed of the # parts of
the robot
o thanks to inner-loops that can render
parts instantaneous w.r.t. other parts of
the robot
Almost never used for arm-robots
Widely used for flying or diving robots
(UAVs, AUVs, etc.) or walking robots
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DYNAMICAL MODELS OF ROBOTS

n-link manipulator

@ The dynamical equations are of the form:

Arm robots
Inner-loop
Geometrical
model
Kinematic mode
Dynamical
model

Conclusion

N. Marchand (gipsa-lab)

D(q)d+ C(q,9)g +g(q) =r
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DYNAMICAL MODELS OF ROBOTS

n-link manipulator

L]

Robotics
N. Marchand
@ The dynamical equations are of the form:
D(q)q+ C(q,4)g+g(q) =r
o Obtained thanks to the Euler-Lagrange formalism
Dynamical

model
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n-link manipulator

§(Bea-aly

Robotics

N. Marchand

@ The dynamical equations are of the form:

D(q)d+ C(q,9)g +g(q) =r

o Obtained thanks to the Euler-Lagrange formalism
o g are the generalized coordinates

Dynamical
model
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n-link manipulator
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Robotics
N. Marchand
@ The dynamical equations are of the form:
D(q)q+ C(q,4)g+g(q) =r
o Obtained thanks to the Euler-Lagrange formalism

b o g are the generalized coordinates

o Clq.d)a=>_> ci(q)dig

i
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n-link manipulator
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Robotics

N. Marchand

@ The dynamical equations are of the form:

D(q)d+ C(q,9)g +g(q) =r

o Obtained thanks to the Euler-Lagrange formalism
S o g are the generalized coordinates
'ynamica

o Clq.d)a=>_> ci(q)dig
i

o Centrifugal effect when i = j (term in g7)

N. Marchand (gipsa-lab) Robotics ENSE3-ASI 63 / 109



§(Bea-aly

DYNAMICAL MODELS OF ROBOTS

n-link manipulator
Robotics

N. Marchand

@ The dynamical equations are of the form:

D(q)d+ C(q,9)g +g(q) =r

o Obtained thanks to the Euler-Lagrange formalism
S o g are the generalized coordinates
'ynamica

o Clq.d)a=>_> ci(q)dig
i

o Centrifugal effect when i = j (term in g7)
o Coriolis effect when i # j (terms in §iq;)
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DYNAMICAL MODELS OF ROBOTS

n-link manipulator

Robotics
N. Marchand
@ The dynamical equations are of the form:
D(q)q+ C(q,4)g+g(q) =r
o Obtained thanks to the Euler-Lagrange formalism
b o g are the generalized coordinates

()

e Cla.a)a=>_> ci(@)ad
i

o Centrifugal effect when i = j (term in g7)
o Coriolis effect when i # j (terms in §iq;)

o An important literature on the control of this type of
systems can be found
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DYNAMICAL MODELS OF ROBOTS
flying and diving robots

Robotics

N. Marchand
@ The dynamical equations are of the form:
(= _
p = v
Fx
mv = -mg&+R|F,
F,
I’IZT)jyor;'a;rlni<:a| R = RCUX
[
IS = —&JG+ T,
Iy
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DYNAMICAL MODELS OF ROBOTS
flying and diving robots

§(Bea-aly

Robotics

N. Marchand
@ The dynamical equations are of the form:
(= _
p = v
Fx
mv = -mg&+R|F,
F,
I[Zj}y;&a;rlnical R = RCUX
[
Jo = —&*Jd+ (T,
Iy

o The number of available controls depends upon the system
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DIFFERENT MODELS OF ROBOTS

Robotics e Geometrical model (or forward kinematic model):

N. Marchand

N. Marchand (gipsa-lab)

Position of the robot = f(position of the actuators)

Robotics
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Robotics

N. Marchand

Conclusion

DIFFERENT MODELS OF ROBOTS

e Geometrical model (or forward kinematic model):
Position of the robot = f(position of the actuators)
@ Inverse geometrical model (or inverse kinematic model):

Position of the actuators = f(position of the robot)
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DIFFERENT MODELS OF ROBOTS

Robotics e Geometrical model (or forward kinematic model):

N. Marchand
Position of the robot = f(position of the actuators)
@ Inverse geometrical model (or inverse kinematic model):

Position of the actuators = f(position of the robot)

e Kinematic model (state space representation) (or
velocity kinematic model):

Conclusion

Speed of the robot = f(position,actuation speed)
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DIFFERENT MODELS OF ROBOTS

Robotics e Geometrical model (or forward kinematic model):

N. Marchand
Position of the robot = f(position of the actuators)

Inverse geometrical model (or inverse kinematic model):

Position of the actuators = f(position of the robot)

Kinematic model (state space representation) (or
velocity kinematic model):

Conclusion

Speed of the robot = f(position,actuation speed)

Dynamical model (state space representation):

Robot acceleration = f(position and speed,forces/torques)
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Arm robots
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model
Kinematic model
Dynamical
model
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@ Need to choose a path for the end effector that avoids

e collisions
e singularities of the robot
@ Collision are easy to characterize in the workspace but may
need to be transformed in the configuration space
@ The complexity of obstacle avoidance grows exponentially
with the number of DOF
@ The method used are (usually):

Workspace and o Potential field: renders the obstacle repulsive
o Gradient descent or Probabilistic roadmaps to generate the
path
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WORKSPACE AND OBSTACLES

Robotics

. Marchand @ The workspace is the volume W the end effector can
reach. Usually divided into:
e Reachable
o Dexterous
@ The "configuration” is the "location” of all points of the
robot
e Configuration answers the question: where is the robot
e The configuration can be adapted to the problem: from
the set of all points of the robot to the sole the effector
—_— e The 6;'s are sufficient to characterize the configuration of
obstacles an arm robot for arm robots

@ The set of 6;'s corresponding to a possible configuration is
noted @
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@ Obstacles are denotes O; and the set of obstacle is
O =U0;
o Let 8 € Q and C(0) denote the corresponding
configuration
@ Then the workspace can be divided into:
e the collision-free configuration subspace

Qr={0e€Q|IC(HHNO =0}
e the collision configuration subspace

Q. ={0 € Q|C(0)N O # 0}
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Robotics

N. Marchand

@ The collision configuration subspace is the convex hull in
which the robot and an obstacle make vertex to vertex
contact

Workspace and
obstacles

@ Can be much more complicate to obtain

@ Numerical simulation can easily solve this problem
(systematic simulation)
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A RECALL ON GRADIENT DESCENT
About the stop criteria

Many solutions to stop the iteration

Zk1 = zk — YV F(2k)
Better from the criteria point of view:
stops if F(zkt+1) > F(2k)
No more improvement in the criteria:
stops if |F(zks1) — F(2k)| < €
No more slope (almost the same as previous condition)
stops if ||VF(z)|| < e
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A RECALL ON GRADIENT DESCENT
About the step size ~y

Robotics

N. Marchand
@ On the step size v
@ Newton-Euler method: H, Hessian of F
Zkp1 = 2k — VF(zi)H(x) ™
@ Quasi-Newton method:
Z11 = zx — pk BV F (k)
path planning By: approximation of the Hessian

ttp://en.wikipedia.org/wiki/Quasi-Newton_metho
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e We define a continuous function v : [0,1] — Qf such that
o 7(0) = 0o and (1) = 6r

@ v will represent a configuration between the initial
configuration and the final

@ The aim will be to fin successive « that remain in Qr:

T — y(7) is a path from 6y to ¢
e We define a potential field (criterium):

U(0) = Uaet(0) + Urep(60)

path planning

o U (6) will attract v to 6f: the goal configuration
o Urep(0) will repulse the system away from obstacle

The aim will be to minimize the criterium
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@ Trying to minimize or maximize the distance is not
necessary appropriate
@ Inappropriate criterium may:

o generate local minima
o be delicate to minimize
o have singularities

@ The main problem consist in finding a criterium that
will be convex (or close to)
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MANIPULATOR ROBOTS

Robotics

N. Marchand

@ We define a potential field for each articulation

@ The attractive field is a monotonically increasing function
of the distance of the /™" frame to the goal position

@ The attractive field applies a fictitious force that push the
manipulator into its goal position

@ The repulsive field will create a fictitious force that will
prevent collisions by repelling the robot from the obstacles
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Uatr;(0) = Gi [|0i(0) — Oi(6r)l|
@ The corresponding force is:
Oi(0) — 0i(0¢)
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ATTRACTIVE FIELDS

Robotics
N. Marchand

@ Simple potential field: conic well potential
Uat;(0) = Gi [10i(0) — Oi(6r)|

@ The corresponding force is:

Fare,(0) = =GV || 0i(6) — 0i(0¢)|| = _C’Hgigz; - gjgzg\l

e it is a (j-norm vector pointing to the objective
path planning e has a singularity at the objective
o (; is a ponderation between articulations
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@ The corresponding force is:

Fat;(0) = =V [|0;(0) — Oi(0r)|| = —Ci(0i(0) — Oi(0r))

e this force is defined everywhere
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1
Uaee,(6) = 5¢110i(0) — Oi(6)I”
@ The corresponding force is:

Fat;(0) = =V [|0;(0) — Oi(0r)|| = —Ci(0i(0) — Oi(0r))

e this force is defined everywhere
@ Or the hybrid potential:
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1
Uaee,(6) = 5¢110i(0) — Oi(6)I”
@ The corresponding force is:

Fat;(0) = =V [|0;(0) — Oi(0r)|| = —Ci(0i(0) — Oi(0r))

e this force is defined everywhere
@ Or the hybrid potential:

1
o Uaex (6) = 5Gi1101(60) = Oi(0)|I” if | 0,(0) — Oi(6r)|| < d
o U (6) = ~dGi10,(6) — 0:(00)| - 36 F 0,(0) — O,(09)] <
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Instead we use: parabolic well potential
1
User,(6) = 5Gi110i(6) — 0i(65)]
The corresponding force is:

Fat;(0) = =V [|0;(0) — Oi(0r)|| = —Ci(0i(0) — Oi(0r))

e this force is defined everywhere
Or the hybrid potential:

1
o Uaex (6) = 5Gi1101(60) = Oi(0)|I” if | 0,(0) — Oi(6r)|| < d
o U (6) = ~dGi10,(6) — 0:(00)| - 36 F 0,(0) — O,(09)] <
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Instead we use: parabolic well potential

1
Uare,(0) = 56 1101(6) = Oi(6)|*
The corresponding force is:

Fat;(0) = =V [|0;(0) — Oi(0r)|| = —Ci(0i(0) — Oi(0r))

e this force is defined everywhere
Or the hybrid potential:

1
o Uaex (6) = 5Gi1101(60) = Oi(0)|I” if | 0,(0) — Oi(6r)|| < d
o U (6) = ~dGi10,(6) — 0:(00)| - 36 F 0,(0) — O,(09)] <
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ATTRACTIVE FIELDS

Instead we use: parabolic well potential

1
Uare,(0) = 56 1101(6) = Oi(6)|*
The corresponding force is:

Fat;(0) = =V [|0;(0) — Oi(0r)|| = —Ci(0i(0) — Oi(0r))

e this force is defined everywhere
Or the hybrid potential:

1
° U (0) = 5Gi 110:1(6) — 0;(6¢)|1* if [|0i(8) — Oi(67)|| < d
o Ut (0) = —dGi [|0i(0) — Oi(0f)l| — %Cfdz it [[0:i(0) — Oi(0f)|| < d
The corresponding force is:
o Far,(0) = —Gi(0i(0) — Oi(0r)) if [|0:i(0) — Oi(0f)|| < d

o Fa(0) = dC:m it [|0;(0) — Oi(br)l| < d
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@ Again, one repulsive field by articulation is given
@ Should strongly repel the robot close to obstacles

@ Usually, should not have any influence far from the
obstacle

@ First define a radius of influence p;
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Usually, should not have any influence far from the
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First define a radius of influence p;
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Again, one repulsive field by articulation is given

Should strongly repel the robot close to obstacles

Usually, should not have any influence far from the

obstacle

First define a radius of influence p;

Define the repulsive field:
® Urep,(0) =0if d(6,0) < p;
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REPULSIVE FIELDS

Again, one repulsive field by articulation is given

Should strongly repel the robot close to obstacles

Usually, should not have any influence far from the

obstacle

First define a radius of influence p;

Define the repulsive field:
® Urep,(0) =0if d(6,0) < p;

@ V)= 5 (

1
d(0, 0)

Robotics
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2
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@ Again, one repulsive field by articulation is given
@ Should strongly repel the robot close to obstacles

@ Usually, should not have any influence far from the
obstacle

@ First define a radius of influence p;

@ Define the repulsive field:
o Urep(0) =0if d(0, O) < pi
o U (9)—C’< 1 —1>2ifd(6‘0)>p-
=240 p) "IN
@ The corresponding fictive force is:
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@ Again, one repulsive field by articulation is given
@ Should strongly repel the robot close to obstacles

@ Usually, should not have any influence far from the
obstacle

@ First define a radius of influence p;

@ Define the repulsive field:
o Urep(0) =0if d(0, O) < pi
o U (9)—C’< 1 —1>2ifd(6‘0)>p-
=240 p) "IN
@ The corresponding fictive force is:

o Frep(0) =0if d(0,0) < pi
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REPULSIVE FIELDS

Again, one repulsive field by articulation is given

Should strongly repel the robot close to obstacles

Usually, should not have any influence far from the
obstacle

First define a radius of influence p;

Define the repulsive field:
o Urep(0) =0if d(0, O) < pi
o U (9)—C’< 1 —1>2ifd(90)>p-
=240 p) "IN
@ The corresponding fictive force is:
o Frep(0) = 0if d(0,0) < p;
o Frep(0) = —C (1 - 1) d(,0)72vd(0, 0) if

d(oa O) Po
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From ATTRACTIVE/REPULSIVE FORCES TO
ACTUATOR TORQUES

@ The total joint torques acting on a robot is the sum of the
torques from all attractive and repulsive potentials:

7(0) = > J5,(0) (Fot(0) + Frep, (6))
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@ Now that we can formulate the total torques acting on the
joints in the configuration space due to the artificial
potentials, we can formulate a path planning algorithm

@ First, determine your initial configuration

@ Second, given a desired point in the workspace, calculate
the final configuration using the inverse kinematics: Use
this to create an attractive potential field

path planning
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@ Now that we can formulate the total torques acting on the
joints in the configuration space due to the artificial
potentials, we can formulate a path planning algorithm

@ First, determine your initial configuration

@ Second, given a desired point in the workspace, calculate
the final configuration using the inverse kinematics: Use
this to create an attractive potential field

© Locate obstacles in the workspace: Create a repulsive
potential field

path planning

N. Marchand (gipsa-lab) Robotics ENSE3-ASI 85 / 109



§(Bea-aly

Robotics

N. Marchand

GRADIENT DESCENT

@ Now that we can formulate the total torques acting on the
joints in the configuration space due to the artificial
potentials, we can formulate a path planning algorithm

path planning
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First, determine your initial configuration

Second, given a desired point in the workspace, calculate
the final configuration using the inverse kinematics: Use
this to create an attractive potential field

Locate obstacles in the workspace: Create a repulsive
potential field

Sum the joint torques in the configuration space
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GRADIENT DESCENT

@ Now that we can formulate the total torques acting on the
joints in the configuration space due to the artificial
potentials, we can formulate a path planning algorithm

path planning

N. Marchand (gipsa-lab)

o
2]

00

First, determine your initial configuration

Second, given a desired point in the workspace, calculate
the final configuration using the inverse kinematics: Use
this to create an attractive potential field

Locate obstacles in the workspace: Create a repulsive
potential field

Sum the joint torques in the configuration space

Use gradient descent to reach your target configuration
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Robotics

N Marchand @ Many other algorithm are
. possible
© =0, 0[0] = 0o o steepest descent
Q if ||0]i] — 0f]| > e, (gradient) (Euler)
then: o Newton
o O[i +1] = e ... see optimization
u) books
9H+QHH(ﬂDH o the 0[0], ..., 0[] are the
o i=i+l successive configuration to
| ° goto 2 track = path
path planning ese: . @ It is possible to add

turn 0[0], ..., 0
e return 00 [ random to escape local

minima
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@ Enables to roughly separate Qf from O
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Randomly sample the configuration space
Enables to roughly separate Qr from O

Discards the points “too close” from O

Connect using straight line segments that do not intersect
obstacles

Eventually resample until Qr is sufficiently covered

path planning
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Robotics

N. Marchand

@ Randomly sample the configuration space
@ Enables to roughly separate Qf from O
@ Discards the points “too close” from O

@ Connect using straight line segments that do not intersect
obstacles

@ Eventually resample until Qr is sufficiently covered

@ Chose the path in the connected space

path planning
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N. Marchand

SOME FINAL REMARKS

the environnement

@ All the previous methods assume an a priori knowledge of

@ Predictive control can also be used to handle constraints

“on line"

@ Adding fictive force is a very power tool also widely used
in formation control or robotics with communication

path planning

N. Marchand (gipsa-lab)
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Robotics @ An arm robot equipped with a camera

N. Marchand @ Aim: bring the final effector to a given predefined
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An arm robot equipped with a camera

Aim: bring the final effector to a given predefined
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Robotics An arm robot equipped with a camera

Aim: bring the final effector to a given predefined
configuration

N. Marchand

The configuration is defined by a final image feature to reach

Two possible configurations

@ Eye in hand configuration
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Robotics @ An arm robot equipped with a camera
N. Marchand @ Aim: bring the final effector to a given predefined
configuration
@ The configuration is defined by a final image feature to reach
@ Two possible configurations
@ Eye in hand configuration @ Eye to hand configuration
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@ Being able to extract feature from the image: "recognize”
points of the object

PO @ Being able to characterize the relation between the robot
e toop movement and the image changes
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Visual The interaction matrix links the mouvement of O, (lateral and
e rotational) to the movement of the feature points ()
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A short mathematical background
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° itioni :
N Marchand Positioning error

o s denotes the current feature depending upon

o the robot configuration q(t)
@ a set of parameters a gathering all additional information (coarse
camera intrinsic parameters, three-dimensional model of objects, etc.)

e s* denotes the target feature
@ The relation between the image and the real world is given by the
interaction matrix:
s = Lsv,

where

o vc = (Ve,wc) = (linear veloccam frame, angular veloceam frame)

o L, € R¥*®: interaction matrix (Jacobian)
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CONTROL IN VISUAL SERVOING

A simple control approach

Coupling the error and the interaction relation, one gets:
é = Lsu,

Take the linear velocities and angular velocities as control
variable

Let LY := (LT L) L] be the Moore-Penrose
pseudo-inverse of Lg

To force an exponential decrease of the error:
e=—Xe

we must chose

ve i =—ALTe
Practically, Ls is never known perfectly and we use an
approximation
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IMAGE-BASED VISUAL SERVOING

Robotics @ Take a 3D point of coordinates P = (X, Y, Z) in the
N. Marchand camera frame

@ Its coordinates in the image will be p = (x, y):

x = X/Z=(u—-c,)/fa
y = Y/Z=(v—-¢)/f

where f is the focal length, « is the ratio of the pixel
dimensions, ¢, and ¢, are the coordinates of the principal
point.
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IMAGE-BASED VISUAL SERVOING

Take a 3D point of coordinates P = (X, Y, Z) in the
camera frame

Its coordinates in the image will be p = (x,y):

x = X/Z=(u—-c,)/fa
y = Y/Z=(v—-¢)/f

where f is the focal length, « is the ratio of the pixel
dimensions, ¢, and ¢, are the coordinates of the principal
point.

Derivating, we get

= X/Z-XZ)Z?=(X-x2)/Z
= Y/Z-YZ)72=(Y -y2)/Z
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X =—ve—wrX

@ Mixing the two last equation, we get the interaction
matrix form P
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IMAGE-BASED VISUAL SERVOING
Using the Varignon's formula

X =—ve—wrX

Mixing the two last equation, we get the interaction
matrix form P
p=Lpve
with
L -1/Z 0 x/Z xy —(1+x%) vy
L 0 ~1/Z y/Z 1+ y? —Xy —X
Z is the depth and is usually not known

To control six degrees of freedom, at least three points are
required (p1, p2, P3)
Camera parameters can be obtained by calibration
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@ Staubli RX90 robot
e What are the number of DOF 7
oot e Compute the forward kinematic
Geomerria (geometrical model) of the wrist
Kinemati mode e Compute the inverse kinematic
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STAUBLI RX90 ROBOT

© Compute U, and Uyep as function of the current position
p = (x,y,z) and the desired final position pr = (x¢, yr, zf)

@ Compute U(p, pr) = Uset + Urep € RT

© Compute VU € R3, the derivative of U w.r.t. p

o VU can be computed analytically
e VU can be computed numerically for & small:

§(Bea-aly

Robotics

N. Marchand

U(Xfevyvzapf) 7 U(X+57yvzapf)

2e
VU ~ U(X7y_5’z7pf)_U(X7Y+57Z7Pf)

2e
U(X7y72 — 5apf) - U(X7yvz+€apf)
2e
@ Program an iterative routine with the following iteration:

pr+1 = Pk — YV U(pk, pr)

© Start the program at your initial position py and stop the
program when py is close to pr
@ The successive pg, p1, ... give you the path

RX90 robot
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