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Abstract

This work was originally motivated by a classification of tensors proposed
by Richard Harshman. In particular, we focus on simple and multiple “bot-
tlenecks”, and on “swamps”. Existing theoretical results are surveyed, some
numerical algorithms are described in details, and their numerical complexity
is calculated. In particular, the interest in using the ELS enhancement in
these algorithms is discussed. Computer simulations feed this discussion.
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1 Introduction

Richard Harshman liked to explain Multi-Way Factor Analysis (MFA) as one tells
a story: with words, sentences, appealing for intuition, and with few formulas.
Sometimes, the story turned to a tale, which required the belief of participants,
because of the lack of proof of some strange –but correct– results.

MFA has been seen first as a mere nonlinear Least Squares problem, with a
simple objective criterion. In fact, the objective is a polynomial function of many
variables, where some separate. One could think that this kind of objective is easy
because smooth, and even infinitely differentiable. But it turns out that things are
much more complicated than they may appear to be at first glance. Nevertheless,
the Alternating Least Squares (ALS) algorithm has been mostly utilized to address
this minimization problem, because of its programming simplicity. This should not
hide the inherently complicated theory that lies behind the optimization problem.

Note that the ALS algorithm has been the subject of much older tales in the past.
In fact, it can be seen as a particular instance of the nonlinear Least Squares problem
addressed in [28], where variables separate. The latter analysis gave rise in particular
to the Variable Projection algorithm, developed by a great figure of Numerical
Analysis, who also passed away recently, barely two months before Richard.
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2 P.Comon et al.

Tensors play a wider and wider role in numerous application areas, much be-
yond Chemometrics. Among many others, one can mention Signal Processing for
Telecommunications [55] [23] [21], and Arithmetic Complexity [35] [62] [8], which are
two quite different frameworks. One of the reasons of this success is that MFA can
often replace Principal Component Analysis (PCA), when available data measure-
ments can be arranged in a meaningful tensor form [57]. When this is not the case,
that is, when the observation diversity is not sufficient (in particular when a 3rd or-
der tensor has proportional matrix slices), one can sometimes resort to High-Order
Statistics (HOS), allowing to build symmetric tensors of arbitrarily large order from
the data [17].

In most of these applications, the decomposition of a tensor into a sum of rank-
1 terms (cf. Section 2) allows to solve the problem, provided the decomposition
can be shown to be essentially unique (i.e. unique up to scale and permutation).
Necessary and sufficient conditions ensuring existence and essential uniqueness will
be surveyed in Section 2.3. The main difficulty stems from the fact that actual
tensors may not exactly satisfy the expected model, so that the problem is eventually
an approximation rather than an exact decomposition.

Richard Harshman was very much attached to the efficiency of numerical algo-
rithms when used to process actual sets of data. He pointed out already in 1989
[36] that one cause of slow convergence (or lack of convergence) can be attributed
to “degeneracies” of the tensor (cf. Section 2.2). Richard Harshman proposed the
following classification:

1. Bottleneck. A bottleneck occurs when two or more factors in a mode are
almost collinear [49].

2. Swamp. If a bottleneck exists in all the modes, then we have what has been
called by R. Harshman and others a “swamp” [43] [52] [49].

3. CP-degeneracies may be seen as particular cases of swamps, where some fac-
tors diverge and at the same time tend to cancel each other as the goodness
of fit progresses [36] [47] [30].

CP-degeneracies occur when one attempts to approximate a tensor by another of
lower rank, causing two or more factors to tend to infinity, and at the same time
to almost cancel each other, giving birth to a tensor of higher rank (cf. Section
2.2). The mechanism of these “degeneracies” is now rather well known [47] [63]
[58] [59] [14], and has been recently better understood [56] [33]. If one dimension
is equal to 2, special results can be obtained by viewing third order tensors as
matrix pencils [60]. According to [56], the first example of a rank-r tensor sequence
converging to a tensor of rank strictly larger than r was exhibited by D.Bini as early
as the seventies [3]. CP-degeneracies can be avoided if the set in which the best
approximate is sought is closed. One solution is thus to define a closed subset of
the set of lower-rank tensors; another is to define a superset, yielding the notion of
border rank [62] [4] [8].

On the other hand, swamps may exist even if the problem is well posed. For
example, Paatero reports in [47] precise examples where the trajectory from a well
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Tensor decompositions and other tales 3

conditioned initial point to a well-defined solution has to go around a region of
higher rank, hence a “swamp”. In such examples, the convergence to the minimum
can be slowed down or even compromised.

One solution against bottlenecks that we developed together with R. Harshman
just before he passed away was the Enhanced Line Search (ELS) principle [49],
which we subsequently describe. This principle, when applied to the Alternating
Least Squares (ALS) algorithm, has been shown in [49] to improve significantly
its performances in the sense that it would decrease the risk to terminate in a
local minimum, and more importantly also need an often much smaller number
of iterations. Also note that an extension to the complex case has been recently
proposed [45].

However, the additional computational cost per iteration was shown to be neg-
ligible only when the rank was sufficiently large compared to the dimensions; see
condition (9). Nevertheless, we subsequently show that this condition is not too
much restrictive, since one can always run a prior dimensional reduction of the ten-
sor to be decomposed with the help of a HOSVD truncation, which is a compression
means that many users practice for several years [24] [55] [7].

The goal of the paper is two-fold. First we give a summary of the state of the art,
and make the distinction between what is known but attributed to usual practice,
and thus belongs to the world of conjectures, and what has been rigorously proved.
Second, we provide details on numerical complexities and show that ELS can be
useful and efficient in a number of practical situations.

Section 2 defines a few notations and addresses the problems of existence, unique-
ness, and genericity of tensor decompositions. Section 3 gathers precise update
expressions appearing in iterative algorithms used in Section 5. We shall concen-
trate on Alternating Least Squares (ALS), Gradient descent with variable step, and
Levenberg-Marquardt algorithms, and on their versions improved with the help of
the Enhanced Line Search (ELS) feature, with or without compression, the goal be-
ing to face bottlenecks more efficiently. Section 4 gives orders of magnitude of their
computational complexities, for subsequent comparisions in Section 5. In memory
of Richard, we shall attempt to give the flavor of complicated concepts with simple
words.

2 Tensor decomposition

2.1 Tensor rank and the CP decomposition

Tensor spaces. Let V
(1), V

(2), V
(3) be three vector spaces of dimension I, J and

K respectively. An element of the vector space V
(1)

⊗ V
(2)

⊗ V
(3), where ⊗ denotes

the outer (tensor) product, is called a tensor. Let us choose a basis {e(!)
i } in each of

the three vector spaces V
(!). Then any tensor T of that vector space of dimension

IJK has coordinates Tijk defined by the relation

T =
I

∑

i=1

J
∑

j=1

K
∑

k=1

Tijk e(1)
i ⊗ e(2)

j ⊗ e(3)
k
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4 P.Comon et al.

Multi-linearity. If a change of basis is performed in space V
(!), defined by e(!)

i =
Q(!) e′i

(!), for some given matrices Q(!), 1 ≤ ! ≤ d then the new coordinates T ′
pqr of

tensor T may be expressed as a function of the original ones as

T ′
pqr =

I
∑

i=1

J
∑

j=1

K
∑

k=1

Q(1)
pi Q(2)

qj Q(3)
rk Tijk

This is a direct consequence of the construction of tensors spaces, which can be read-
ily obtained by merely pugging the exporession of e′i

(!) in that of T . By convention,
this multilinear relation between arrays of coordinates is chosen to be written as
[56] [14]:

T′ = (Q(1),Q(2),Q(3)) · T

CP decomposition. Any tensor T admits a decomposition into a sum of rank-1
tensors. This decomposition takes the form below in the case of a 3rd order tensor:

T =
F

∑

p=1

a(p)⊗b(p)⊗ c(p) (1)

where a(p), b(p) and c(p) denote vectors belonging to spaces V
(1), V

(2), V
(3).

Denote Aip (resp. Bjp and Ckp) the coordinates of vector a(p) in basis {e(1)
i , 1 ≤

i ≤ I}, (resp. b(p) in {e(2)
j , 1 ≤ j ≤ J} and c(p) in {e(3)

k , 1 ≤ k ≤ K}). Then one
can rewrite this decomposition as

T =
F

∑

p=1

(
I

∑

i=1

Aipe
(1)
i )⊗(

J
∑

j=1

Bjpe
(2)
j )⊗(

K
∑

k=1

Ckpe
(3)
k )

or equivalently

T =
∑

ijk

(
F

∑

p=1

AipBjpCkp) e(1)
i ⊗ e(2)

j ⊗ e(3)
k

which shows that arrays of coordinates are related by

Tijk =
F

∑

p=1

Aip Bjp Ckp (2)

One may see this equation as a consequence of the multi-linearity property. In fact,
if one denotes by I the F × F × F three-way diagonal array, having ones on its
diagonal, then (2) can be rewritten as

T = (A,B,C) · I

Note that, contrary to (1), equation (2) is basis-dependent.
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Tensor decompositions and other tales 5

Tensor rank. The tensor rank is the minimal number F of rank-1 terms such
that the equality (1), or equivalently (2), holds true. Tensor rank always exists
and is well defined. This decomposition can be traced back to the previous century
with the works of Hitchcock [32]. It has been later independently referred to as the
Canonical Decomposition (Candecomp) [9] or Parallel Factor (Parafac) [29] [31].
We shall simply refer to it via the acronym CP, as usual in this journal.

Points of terminology. The order of a tensor is the number of tensor products
appearing in its definition, or equivalently, the number of its ways, i.e. the number
of indices in its array of coordinates (2). Hence a tensor of order d has d dimensions.
In Multi-Way Factor Analysis, the columns a(p) of matrix A are called factors [57]
[34]. Another terminology that is not widely assumed is that of modes [34]. A mode
actually corresponds to one of the d linear spaces V

(!). For instance, according to
the classification sketched in Section 1, a bottleneck occurs in the second mode if
two columns of matrix B are almost collinear.

2.2 Existence

In practice, one often prefers to fit a multi-linear model of lower rank, F < rank{T },
fixed in advance, so that we have to deal with an approximation problem. More
precisely, it is aimed at minimizing an objective function of the form

Υ(A,B,C) = ||T −
F

∑

p=1

a(p)⊗b(p)⊗ c(p)||2 (3)

for a given tensor norm defined in V
(1)

⊗V
(2)

⊗ V
(3). In general, the Euclidean norm

is used. Unfortunately, the approximation problem is not always well posed. In
fact, as pointed out in early works of R.Harshman [36] [30], the infimum may never
be reached, for it can be of rank higher than F .

CP-degeneracies. According to the classification proposed by Richard Harsh-
man and sketched in Section 1, CP-degeneracies can occur when one attempts to
approximate a tensor by another of lower rank. Let us explain this in this section,
and start with an example.

Example. Several examples are given in [56] [14], and in particular the case of
a rank-2 tensor sequence converging to a rank-4 tensor. Here, we give a slightly
more tricky example. Let x, y and z be three linearly independent vectors, in R

3

for instance. Then the following sequence of rank-3 symmetric tensors

T (n) = n2(x +
1

n2
y +

1

n
z)⊗ 3 + n2(x +

1

n2
y −

1

n
z)⊗ 3 − 2 n2x⊗ 3

converges towards the tensor below, which may be proved to be of rank 5 (despite
its 6 terms) as n tends to infinity:

T (∞) = x⊗x⊗y + x⊗y⊗x + y⊗x⊗x + x⊗ z⊗ z + z⊗x⊗ z + z⊗ z⊗x
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6 P.Comon et al.

Rank 5 is the maximal rank that can achieve third order tensors of dimension 3. To
conclude, tensor T (∞) can be approximated arbitrarily well by rank-3 tensors T (n),
but the limit is never reached since it has rank 5. Note that this particular example
cannot be directly generated by Leibniz tensors described in [56], which could have
been used equally well for our demonstration (note however that T (∞) can probably
be expressed as a Leibnitz operator after a multilinear change of coordinates).

Classification of third order tensors of dimension 2. Contrary to symmetric
tensors in the complex field, whose properties have been studied in depth [5] [2] [20]
[14] (see also Section 2.3) and utilized in various applications including Signal Pro-
cessing [16], much less is known concerning non symmetric tensors [62] [8], and even
less in the real field. However, the geometry of 2-dimensional 3rd order asymmetric
tensors is fully known (symmetric or not, real or not). Since the works of Bini [3],
other authors have shed light on the subject [63] [58] [47], and all the proofs can
now be found in [26] [56]. Since the case of 2-dimensional tensors is rather well
understood, it allows to figure out what probably happens in larger dimensions, and
is worth mentioning.

The decomposition of 2×2×2 tensors can be computed with the help of matrix
pencils if one of the 2d = 6 matrix slices is invertible (one can show that if none of
them is invertible, then the tensor is necessarily of rank 1). But hyperdeterminants
can avoid this additional assumption [56], which may raise problems in higher di-
mensions. Instead of considering the characteristic polynomial of the matrix pencil,
det(T1 + λT2), one can work in the projective space by considering the homoge-
neous polynomial p(λ1,λ2) = det(λ1 T1 + λ2 T2). This does not need invertibility
of one matrix slice. It can be shown [56] to take the simple form:

p(λ1,λ2) = λ2
1 detT1 +

λ1λ2

2
(det(T1 + T2) − det(T1 − T2)) + λ2

2 detT2

It turns out that the discriminant ∆(T1,T2) of polynomial p(λ1,λ2) is nothing else
but Kruskal’s polynomial mentioned in [63] [58] [47], which itself is due to Cayley
[10]. As pointed out in [56], the sign of this discriminant is invariant under changes
of bases, and tells us about the rank of T : if ∆ < 0, rank{T } = 3, and if ∆ > 0,
rank{T } = 2.

Thus the variety defined by ∆ = 0 partitions the space into two parts, which
hence have a non zero volume. The closed set of tensors of rank 1 lies on this
hypersurface ∆ = 0. But two other rare cases of tensors of rank 2 and 3 share
this hypersurface: in particular, this is where tensors of rank 3 that are the limit of
rank-2 tensors are located.

How to avoid degeneracies. In [56] [58] [33], it has been shown that CP-
degeneracies necessarily involve at least two rank-1 terms tending to infinity. In
addition, if all rank-1 terms tend to infinity, then the rank jump is the largest pos-
sible. In our example, all the three tend to infinity, and almost cancel with each
other. This is the residual that gives rise to a tensor of higher rank.

If cancellation between diverging rank-1 tensors cannot occur, then neither CP-
degeneracy can. This is in fact what happens with tensors with positive entries.
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Tensor decompositions and other tales 7

Thus, imposing the non negativity during the execution of successive iterations is
one way to prevent CP-degeneracy, if tensors with non negative entries are concerned
[40].

In order to guarantee the existence of a minimum, the subset of tensors of rank
F must be closed, which is not the case of tensors with free entries, except if F ≤ 1
[14]. Should this not be the case, one can perform the minimization either over a
closed subset (e.g. the cone of tensors with positive entries [40]) or over a closed
superset. The most obvious way to define this superset is to define the smallest
closed subset containing all tensors of rank F , i.e. their adherence; such a superset
is that of tensors with border rank at most F [62] [4] [8]. Another idea proposed
in [44] is to add a regularization term in the objective function, which avoids the
permutation-scale ambiguities to change when iterations progress. The effect is that
swamps are better coped with.

However, no solution is entirely satisfactory, as pointed out in [56], so that this
problem remains open in most practical cases.

2.3 Uniqueness

The question that can be raised is then: why don’t we calculate the CP decomposi-
tion for F = rank{T }? The answer generally given is that the rank of T is unknown.
This answer is not satisfactory. By the way, if this were the actual reason, one could
choose F to be larger than rank{T }, e.g. an upper bound. This choice is not made,
actually for uniqueness reasons. In fact, we recall hereafter that tensors of large
rank do not admit a unique CP decomposition.

Typical and generic ranks. Suppose that the entries of a 3-way array are drawn
randomly according to a continuous probability distribution. Then the typical ranks
are those that one will encounter with non zero probability. If only one typical rank
exists, it will occur with probability 1 and is called generic.

For instance, in the 2 × 2 × 2 case addressed in a previous paragraph, there are
two typical ranks: rank 2 and rank 3. In the complex field however, there is only
one: all 2 × 2 × 2 tensors generically have rank 2.

In fact the rank of a tensor obtained from real measurements is typical with
probability 1 because of the presence of measurement errors with a continuous prob-
ability distribution. And we now show that the smallest typical rank is known, for
any order and dimensions.

With the help of the so-called Terracini’s lemma [68], sometimes attributed to
Lasker [38] [16], it is possible to compute the smallest typical rank for any given
order and dimensions, since it coincides with the generic rank (if the decomposition
were allowed to be computed in the complex field) [42] [18] [5]. The principle consist
of computing the rank of the Jacobian of the map associating the triplet (A,B,C)
to tensor T defined in (2) [18]. The same principle extends to more general tensor
decompositions [19]. The resulting ranks are reported in Tables 1 and 2. Values
reported in bold correspond to smallest typical ranks that are now known only via
this numerical computation.
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8 P.Comon et al.

K 2 3 4
J 2 3 4 5 3 4 5 4 5

2 2 3 4 4 3 4 5 4 5

3 3 3 4 5 5 5 5 6 6

4 4 4 4 5 5 6 6 7 8

5 4 5 5 5 5 6 8 8 9

6 4 6 6 6 6 7 8 8 10

I 7 4 6 7 7 7 7 9 9 10
8 4 6 8 8 8 8 9 10 11

9 4 6 8 9 9 9 9 10 12

10 4 6 8 10 9 10 10 10 12
11 4 6 8 10 9 11 11 11 13
12 4 6 8 10 9 12 12 12 13

Table 1: Smallest typical rank for some third order unconstrained arrays. Frame:
finite number of solutions. Underlined: exceptions to the ceil rule.

I 2 3 4 5 6 7 8 9

d 3 2 5 7 10 14 19 24 30

4 4 9 20 37 62 97

Table 2: Smallest typical rank for unconstrained arrays of order d = 3 and d = 4 and
with equal dimensions I. Frame: finite number of solutions. Underlined: exceptions
to the ceil rule.
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Tensor decompositions and other tales 9

One could believe that this generic rank could be computed by just counting the
number of degrees of freedom in both sides of decomposition (2). If we do this job
we find IJK free parameters in the lhs, and F (I + J + K − 2) in the rhs. So we
can say that the “expected rank” of a generic tensor would be

F̄ =

⌈

IJK

I + J + K − 2

⌉

(4)

Now notice that the values given by (4) do not coincide with those given by Tables
1 and 2; generic ranks that differ from expected values are underlined. These values
are exceptions to the ceil rule. For instance, the row d = 3 in Table 2 shows that
there is a single exception, which is consistent with [39, p.110]. We conjecture that
the “ceil rule” is correct almost everywhere, up to a finite number of exceptions. In
fact, this conjecture has been proved in the case of symmetric tensors [14], thanks to
Alexander-Hirschowitz theorem [2] [5]. In the latter case, there are fewer exceptions
than in the present case of tensors with free entries. Results of [1] also tend to
support this conjecture.

Another open problem is the following: what are the other typical ranks, when
they exist? For what values of dimensions can one find several typical ranks, and
indeed how many can there be? Up to now, only two typical ranks have been proved
to exist for some given dimensions [65] [64] [67] [66] [56], not more.

Number of decompositions. These tables not only give the most probable
ranks, but allow to figure out when the decomposition may be unique. When the
ratio in (2) is an integer, one can indeed hope that the solution is unique, since there
are as many unknowns as free equations. This hope is partially granted: if the rank
F̄ is not an exception, then it is proved that there is a finite number of decompo-
sitions with probability 1. These cases are shown in a framebox in Tables 1 and
2. In all other cases there are infinitely many decompositions. In the symmetric
case, stronger results have been obtained recently and prove that the decomposition
is essentially unique with probability 1 if the dimension does not exceed the order
[42]. In the case of non symmetric tensors, such proofs are still lacking.

So why do we go to the approximation problem? In practice, imposing a smaller
rank is a means to obtain an essentially unique decomposition (cf. Section 2.4). In
fact, it has been proved that symmetric tensors of any order d ≥ 3 and of dimension 2
or 3 always have an essentially unique decomposition with probability 1 if their rank
is strictly smaller than the generic rank [12]. Our conjecture is that this also holds
true for non symmetric tensors: all tensors with a sub-generic rank have a unique
decomposition with probability 1, up to scale and permutation indeterminacies.

Another result developed in the context of Arithmetic Complexity has been
obtained by Kruskal in 1977 [35]. The proof has been later simplified [61] [37],
and extended to tensors of order d higher than 3 [54]. The theorem states that
essential uniqueness of the CP decomposition (equation (2) for d = 3) is ensured if
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10 P.Comon et al.

the sufficient condition below is satisfied:

2 F + d − 1 ≤
d

∑

!=1

min(I!, F )

where I! denotes the !th dimension. It is already known that this condition is not
necessary. Our conjecture goes in the same direction, and our tables clearly show
that Kruskal’s condition on F above is much more restrictive than the condition
that F is strictly smaller than generic. Another interesting result has been obtained
in [22] for tensors having one large dimension. The condition of uniqueness is then
less restrictive than the above.

2.4 Dimension reduction

When fitting a parametric model, there is always some loss of information; the fewer
parameters, the larger the loss. Detecting the optimal number of free parameters to
assume in the model, for a given data length, is a standard problem in parameter
estimation [53]. If it is taken too small, there is a bias in the model; but if it is
too large, parameters suffer from a large estimation variance. At the limit, if the
variance of some parameters are infinite, it means that uniqueness is lost for the
corresponding parameters. In our model (1), the number of parameters is controlled
by the rank F and the dimensions. If the rank F is taken too small, the factors are
unable to model the given tensor with enough accuracy; if it is too large, factors
are poory estimated, or can even become non unique even if the permutation-scale
ambiguity is fixed.

It is clear that assuming that the rank F is generic will lead either to large
errors or to non unique decompositions. Reducing the rank is a means to eliminate
part of the estimation variance, noise effects and measurement errors. Restoring the
essential uniqueness of the model by rank reduction may be seen as a limitation of
the estimation variance, and should not be seen as a side effect.

In this section, we propose to limit the rank to a subgeneric value and to reduce
the dimensions. Statistical analyses leading to the optimal choices of dimensions and
rank are out of our scope, and only numerical aspects are subsequently considered.

Unfolding matrices and multilinear rank. One way to reduce the dimensions
of the problem, and at the same time reduce the rank of T , is to truncate the
Singular Value Decomposition (SVD) of unfolding matrices of array T. Let’s see
how to do that. An order d array T admits d different unfolding matrices, also
sometimes called flattening matrices (other forms exist but are not fundamentally
different). Take a I × J × K array. For k fixed in the third mode, we have a I × J
matrix that can be denoted as T::k. The collection of these K such matrices can be
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Tensor decompositions and other tales 11

arranged in a KI × J block matrix:

TKI×J =

















T::1
...

T::k
...

T::K

















The two other unfolding matrices, TIJ×K and TJK×I , can be obtained in a similar
manner as TKI×J , by circular permutation of the modes; the latter contain blocks
of size J × K and K × I, respectively.

The rank of the unfolding matrix in mode p may be called the p-mode rank. It
is known that tensor rank is bounded below by every mode-p rank [25]. The d-uple
containing all p-mode ranks is sometimes called the multilinear rank.

Kronecker product. Let two matrices A and H, of size I × J and K × L re-
spectively. One defines the Kronecker product A ⊗ H as the IK × JL matrix [50]
[51]:

A ⊗ H
def
=







a11H a12H · · ·
a21H a22H · · ·

...
...







Now denote aj and h! the columns of matrices A and H. If A and H have the
same number of columns, on can define the Khatri-Rao product [50] as the IK × J
matrix:

A ' H
def
=

(

a1 ⊗ h1 a2 ⊗ h2 · · ·
)

.

The Khatri-Rao product is nothing else but the column-wise Kronecker product.
Note that the Kronecker product and the tensor product are denoted in a similar
manner, which might be confusing. In fact, this usual practice has some reasons:
A⊗H is the array of coordinates of the tensor product of the two associated linear
operators, in some canonical basis.

High-Order SVD (HOSVD). The Tucker3 decomposition has been introduced
by Tucker [70] and studied in depth by L.DeLathauwer [24] [25]. It is sometimes
referred to as the High-Order Singular Value Decomposition (HOSVD). A third
order array of size I × J × K can be decomposed into an all-orthogonal core array
Tc of size R1 ×R2 ×R3 by orthogonal changes of coordinates, where Rp denote the
mode-p ranks, earlier defined in this section. One can write:

T = (Q(1),Q(2),Q(3)) ·Tc ⇔ Tc = (Q(1)T,Q(2)T,Q(3)T) ·T (5)

In order to compute the three orthogonal matrices Q(!), one just computes the
SVD of the three unfolding matrices of T. The core tensor Tc is then obtained
by the rightmost equation in (5). Now the advantage of the SVD is that it allows
to compute the best low-rank approximate of a matrix, by just truncating the
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12 P.Comon et al.

decomposition (setting singular values to zero, below some chosen threshold); this
is the well-known Eckart-Young theorem. So one could think that truncating the
HOSVD in every mode would yield a best lower multilinear rank approximate. It
turns out that this is not true, but generally good enough in practice.

By truncating the HOSVD to some lower multilinear rank, say (r1, r2, r3) smaller
than (R1, R2, R3), one can reduce the tensor rank. But this is not under control,
since tensor rank may be larger than all mode-ranks: F ≥ ri. In other words,
HOSVD truncation may yield a sub-generic tensor rank, but the exact tensor rank
will not be known. To conclude, and contrary to what may be found in some papers
in the literature, there does not exist a generalization of the Eckart-Young theorem
to tensors.

3 Algorithms

Various iterative numerical algorithms have been investigated in the literature, and
aim at minimizing the fitting error (3). One can mention in particular the Conjugate
Gradient [46], Gauss-Newton and Levenberg-Marquardt [69] algorithms.

Notations. It is convenient to define the vec operator that maps a matrix to
a vector: m = vec(M), meaning that m(i−1)J+j = Mij . Also denote by ! the
Hadamard entry-wise matrix product between matrices of the same size. With this
notation, the gradient of Υ with respect to vec(A) is given by:

gA = [IA ⊗ (CTC ! BTB)]vecAT − [IA ⊗ (C ' B)]TvecTJK×I

and other gradients are deduced by circular permutation:

gB = [IB ⊗ (ATA ! CTC)]vecBT − [IB ⊗ (A ' C)]TvecTKI×J

gC = [IC ⊗ (BTB ! ATA)]vecCT − [IC ⊗ (B' A)]TvecTIJ×K

Also define

p =





vecAT

vecBT

vecCT



 , and g =





gA

gB

gC





Lastly, we have the compact forms below for Jacobian matrices:

JA = IA ⊗ (C ' B)

JB = Π1 [IB ⊗ (A ' C)]

JC = Π2 [IC ⊗ (B' A)]

where Π1 and Π2 are permutation matrices that put the entries in the right order.
The goal is to minimize the Frobenius norm of tensor T − (A,B,C) · I, which

may be written in a non unique way as a matrix norm:

Υ(p)
def
= ||TJK×I − (B ' C)AT||2 (6)
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Tensor decompositions and other tales 13

3.1 Gradient descent

The gradient descent is the simplest algorithm. The iteration is given by: p(k+1) =
p(k) − µ(k)g(k), where µ(k) is a stepsize that is varied as convergence progresses.
Even with a good strategy of variation of µ(k), this algorithm has often very poor
convergence properties. But they can be dramatically improved with the help of
ELS, as will be demonstrated in Section 5.4.

3.2 Levenberg-Marquardt (LM)

Taking into account the second derivative (Hessian) allows faster local convergence.
An approximation using only first order derivatives is given by the iteration below,
known as Levenberg-Marquardt:

p(k + 1) = p(k) − [J(k)TJ(k) + λ(k)2 I]−1 g(k)

where J(k) denotes the Jacobian matrix [JA, JB , JC ] at iteration k and λ(k)2 a
positive regularization parameter. There exist several ways of calculating λ(k)2,
and this has an important influence on convergence. In the sequel, we have adopted
the update described in [41]. Updates of p and λ2 are controlled by the gain ratio γ:

γ
def
= Υ(k) −Υ(k + 1) · (Υ̂(0) − Υ̂(∆p(k)))−1

where Υ̂(∆p(k)) is a second order approximation of Υ(p(k) + ∆p(k)). More pre-
cisely, each new iteration of the algorithm follows this simple scheme:

1. Find the new direction ∆p(k) = −[J(k)HJ(k) + λ(k)2 I]−1 g(k),
2. Compute p(k + 1) and deduce Υ(k + 1)
3. Compute Υ̂(∆p(k))
4. Compute γ.
5. If γ ≥ 0, then p(k +1) is accepted, λ(k +1)2 = λ(k)2 ∗max

(

1
3 , 1 − (2γ − 1)3

)

and ν = 2. Otherwise, p(k + 1) is rejected, λ(k + 1)2 = νλ(k)2 and ν ← 2ν.

3.3 Alternating Least Squares (ALS)

The principle of the ALS algorithm is quite simple. We recall here the various
versions that exist, since there are indeed several. For fixed B and C, this is a
quadratic form in A, so that there is a closed form solution for A. Similarly for B
and C. Consquently, we can write:

AT = (B ' C)† TJK×I
def
= fA(B,C)

BT = (C ' A)† TKI×J
def
= fB(C,A) (7)

CT = (A ' B)† TIJ×K
def
= fC(A,B)

where M† denotes the pseudo-inverse of M. When M is full column rank, we
have M† = (MTM)−1MT, which is the Least Squares (LS) solution of the over-
determined linear system. But it may happen that M is not full column rank. In
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14 P.Comon et al.

that case, not only there are more equations than unknowns, so that the system
is impossible, but some equations are linked to each other so that there are also
infinitely many solutions for some unknowns. The pseudo-inverse then gives the
solution of minimal norm for those variables (i.e. null component in the kernel).
In some cases, this may not be what we want: we may want to obtain full rank
estimates of matrices (A,B,C).

Another well-known approach to singular systems is that of regularization. It
consists of adding a small diagonal matrix D, which allows to restore invertibility.
Matrix D is often taken to be proportional to the identity matrix D = ηI, η being
a small real number. This corresponds to define another inverse of the form M† =
(MTM+ηD)−1MT. With this definition, we would have three other relations, with
obvious notation:

AT = f̄A(B,C;D), BT = f̄B(C,A;D), CT = f̄C(A,B;D) (8)

Thus from (7) one can compute the updates below

ALS1. Bn+1 =fB(Cn,An), Cn+1 =fC(An,Bn), An+1 =fA(Bn,Cn)

ALS2. Bn+1 =fB(Cn,An), Cn+1 =fC(An,Bn+1), An+1 =fA(Bn+1,Cn+1),

ALS3. Bn+1=f̄B(Cn,An; ηI), Cn+1=f̄C(An,Bn+1; ηI), An+1=f̄A(Bn+1,Cn+1; ηI)

Algorithm ALS1 is never utilized in practice except to compute a direction of search
at a given point, and it is preferred to replace the values of the loading matrices by
the most recently computed, as shown in ALS2. Algorithm ALS3 is the regularized
version of ALS2. If the tensor T to be decomposed is symmetric, there is only one
matrix A to find. At least two implementations can be thought of (more exist for
higher order tensors):

ALS4. Soft constrained: An+1 = fA(An,An−1)

ALS5. Hard constrained: An+1 = fA(An,An)

There does not exist any proof of convergence of the ALS algorithms, which may
not converge, or converge to a local minimum. Their extensive use is thus rather
unexplainable.

3.4 Enhanced Line Search (ELS)

The ELS enhancement is applicable to any iterative algorithm, provided the opti-
mization criterion is a polynomial or a rational function. Let ∆p(k) be the direction
obtained by an iterative algorithm, that is, p(k +1) = p(k)+µ∆p(k). ELS ignores
the value of µ that the iterative algorithm has computed, and searches for the best
stepsize µ that corresponds to the global minimum of (6):

Υ(p(k) + µ∆p(k)).

Stationary values of µ are given by the roots of a polynomial in µ, since Υ is itself
a polynomial. It is then easy to find the global minimum once all the roots have
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Tensor decompositions and other tales 15

been computed, by just selecting the root yielding the smallest value of Υ [48]. Note
that the polynomial is of degree 5 for third order tensors. The calculation of the
ELS stepsize can be executed every every p iteration, p ≥ 1, in order to spare some
computations (cf. Section 4).

4 Numerical complexity

The goal of this section is to give an idea of the cost per iteration of various algo-
rithms. In fact, to compare iterative algorithms only on the basis on the number
of iterations they require is not very meaningful, because the costs per iteration are
very different.

Nevertheless, only orders of magnitudes of computational complexities are given.
In fact, matrices that are the Kronecker product of others are structured. Yet, the
complexity of the product between matrices, the solution of linear systems or other
matrix operations, can be decreased by taking into account their structure. And
such structures are not fully taken advantage of in this section.

Singular Value Decomposition (SVD). Let the so-called reduced SVD of a
m × n matrix M of rank r, m ≥ n ≥ r, be written as:

M = UΣVT = UrΣr Vr
T

where U and V are orthogonal matrices,Σ is m×n diagonal, Ur is a m×r submatrix
of U, Ur

TUr = Ir, Σr is r×r diagonal and Vr is n×r, Vr
TVr = Ir. The calculation

of the diagonal matrix Σ needs 2mn2 − 2n3/3 multiplications, if matrices U and
V are not explicitly formed, but kept in the form of a product of Householder
symmetries and Givens rotations [27]. Calculating explicitly matrices Ur and Vr

requires additional 5mr2 − r3/3 and 5nr2 − r3/3 multiplications, respectively.
For instance if r = n, the total complexity for computing Σ, Un and V is of

order 7mn2 + 11n3/3. If m + n, this complexity can be decreased to O(3mn2)
by resorting to Chan’s algorithm [11] [15]. Even if in the present context this
improvement could be included, it has not yet been implemented.

High-Order SVD (HOSVD). Computing the HOSVD of a I × J × K array
requires three SVD of dimensions I × JK, J × KI and K × IJ respectively, where
only the left singular matrix is required explicitly. Assume that we want to compute
in mode i the reduced SVD of rank Ri. Then the overall computational complexity
for the three SVDs is

2IJK(I+J +K)+5(R2
1JK+IR2

2K+IJR2
3)−2(I3+J3+K3)/3−(R3

1+R3
2+R3

3)/3

In addition, if the core tensor needs to be computed, singular matrices need to
be contracted on the original tensor. The complexity depends on the order in
which the contractions are executed. If we assume I ≥ J ≥ K > Ri, then it is
better to contract the third mode first and the first mode last. This computation
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16 P.Comon et al.

requires IR1JK + R1JR2K + R1R2KR3 additional multiplications. If Ri ≈ F -
min(I, J, K) one can simplify the overall complexity as:

2IJK(I + J + K) − 2(I3 + J3 + K3)/3 + IJKF

Alternating Least Square (ALS). Let’s look at the complexity of one iteration
for the first mode, and consider the linear system below, to be solved for A in the
LS sense:

MAT = T

where the dimensions of M, A and T are m×r, r×q and m×q, respectively. First,
matrix M = B'C needs to be calculated, which requires one Khatri-Rao product,
that is, JKF multiplications. Then the SVD of matrix M of size F × JK needs
7JKF 2 + 11 F 3/3 multiplications, according to the previous paragraph. Last, the
product VF Σ

−1
F UF

T T represents FJKI + FI + F 2I multiplications.
The cumulated total of one iteration of ALS2 for the three modes is hence

(JK + KI + IJ)(7F 2 + F ) + 3F IJK + (I + J + K)(F 2 + F ) + 11 F 3, where the
two last terms are often negligible. The complexity of ALS3 is not detailed here,
but could be calculated following the same lines as LM in the next section.

Levenberg-Marquardt (LM). One iteration consists of calculating ∆p
def
=

[JTJ + λ2I]−1g where J is of size m × n, m
def
= IJK, n

def
= (I + J + K)F . Of

course, it is not suitable to compute the product JTJ, nor the inverse matrix. In-

stead, one shall work with the (m + n) × n matrix S
def
= [J, λI]T, and consider the

linear system STS∆p = g.
As in ALS, the first step is to compute the Khatri-Rao products. Then each

of the three gradients requires (I + J + K)F 2 + IJKF multiplications. Next, the
orthogonalization (QR factorization) of matrix S requires mn2 multiplications, since
making the orthogonal matrix explicit is not necessary. Finally, g is obtained by
solving two triangular systems, each requiring an order of n2/2 multiplications.
Thus the overall complexity of one iteration of the algorithm is dominated by the
orthogonalization step, which costs: IJK(I + J + K)2F 2 multiplications.

Enhanced Line Search (ELS). Given a direction of search, the complexity
of one ELS iteration is dominated by the calculation of the 6 coefficients of the
polynomial in µ to be rooted. This complexity may be shown to be of order (8F +
10)IJK [49]. But the constant coefficient is not needed here so that we may assume
that (8F + 9)IJK multiplications are required.

It is interesting to compare the complexity of ELS with those of ALS or LM.
This gives simple rules of thumb. If the rank is smaller than the bound below, then
the additional complexity of ELS is negligible compared to ALS2 [49]:

(

1

I
+

1

J
+

1

K

)

F + 1 (9)

Similarly, if 8 - (I +J +K)F , ELS is negligible compared to LM, which in practice
always happens. These rules are extremely simplified, but they still show that the
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Tensor decompositions and other tales 17

larger the rank F , the more negligible ELS; they also have the advantage to give
quite reliable orders of magnitude when dimensions are large enough (i.e. at least
10).

5 Computer results

5.1 Performance measure

Performance evaluation is carried out in terms of error between the calculated and
actual factor matrices. The problem would be easy if there were not an indetermi-
nation up to scale and permutation. In fact, it is well known that

(A,B,C) · I = (AΛAP,BΛBP,CΛCP) · I

For any F × F invertible diagonal matrices ΛA, ΛB, ΛC satisfying ΛAΛBΛC = I
and for any F ×F permutation matrix P. It is thus desirable that the performance
measure be invariant under the action of these four matrices. First, it is convenient
to define a distance between two column vectors u and v, which is invariant to scale.
This is given by the expression below:

δ(u,v) = ||u−
vTu

vTv
v|| (10)

Now we describe two ways of computing a scale-permutation invariant distance
between two matrices M and M̂.

Optimal algorithm. For every F × F permutation P, one calculates

∆(P) =
K

∑

k=1

δ(u(k),v(k))

where u(k) and v(k) denote the kth column of matrices




A
B
C



P et M̂
def
=





Â
B̂
Ĉ





respectively. The error retained is the minimal distance obtained over all F ! possible
permutations. Of course, this optimal algorithm is usable only for moderate values of
F , say smaller than 9. For larger ranks, one must resort to a suboptimal algorithm,
as the one described below.

Greedy algorithm. The goal is to avoid to describe all permutations. For doing
this, one selects an hopefully relevant subset of all possible permutations. One
first selects the column m̂(j1) of M̂ having the largest norm and one calculates its
distance δ(·) with the closest column m(k1) of M:

∆1 = min
k1

δ(m(k1), m̂(j1))
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18 P.Comon et al.

Then one deletes from matrices M and M̂ the columns k1 and j1 previously selected,
and one keeps going with the remaining columns. At iteration n, one has to compute
F − n + 1 distances δ(m(kn), m̂(jn)). After F iterations, one eventually obtains a
suboptimal distance ∆, defined either as

∆ =
K

∑

k=1

∆k or as ∆2 =
K

∑

k=1

∆2
k.

If M is L × F , this greedy calculation of the error ∆ requires an order of 3F 2L/2
multiplications.
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Figure 1: First case treated by ALS with ELS at every 3 iterations. Left: symbols ‘+’,
‘o’ and ‘∗’ denote respectively the initial value, the successive iterations, and the global
minimum, in the (d, h) plane. Right: value of the error as a function of iterations.

5.2 A 2 × 2 × 2 tensor of rank 2

Paatero gave in his paper [47] a nice example of a 2× 2× 2 tensor, fully parameter-
izable, hence permitting reproducible experiments. We use here the same parame-
terization. Its form is as follows:

T =

(

0 1 e 0
1 d 0 h

)

The discriminant defined in Section 2.2 is in the present case ∆ = 4 h + d2e. As
in [47], we represent the decompositions computed in the hyperplane e = 30. The
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Tensor decompositions and other tales 19
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Figure 2: Second case treated by ALS with ELS at every iteration. Left: symbols ‘+’,
‘o’ and ‘∗’ denote respectively the initial value, the successive iterations, and the global
minimum, in the (d, h) plane. Right: value of the error as a function of iterations.

tensor to be decomposed are chosen to have a discriminant of ∆ > 0, so that they
have a rank 2, but they lie close to the variety ∆ = 0, represented by a parabola in
the subsequent figures.

Case 1. First consider the tensor defined by (e, d, h) = (30, 0.26,−0.34), and start
with the initial value (e, d, h) = (30,−0.3,−0.12). In that case, neither the Gradient
nor even LM converge towards the solution, and are stuck on the left side of the
parabola. The ALS algorithm does not seem to converge, or perhaps does after
a very large number of iterations. With the ELS enhancement executed every 3
iterations, ALS2 converges to a neighborhood of the solution (error of 10−6) within
only 60 iterations, as shown in Figure 1. Then, the algorithm is slowed down for a
long time before converging eventually to the solution; the beginning of this plateau
may be seen in the right graph of Figure 1. Note that it does not correspond to a
plateau of the objective function. In this particular example, the gain brought by
ELS is very significant at the beginning. On the other hand, no gain is brought
at the end of the trajectory towards the goal, where ELS cannot improve ALS2
because the directions given by ALS2 are repeatedly bad.

Case 2. Consider now a second (easier) case given by (e, d, h) = (30, 0.26,−0.29),
with the initial value (e, d, h) = (30,−0.26,−0.19). This time, the LM algorithm is

ha
l-0

04
10

05
7,

 v
er

sio
n 

1 
- 1

6 
Au

g 
20

09



20 P.Comon et al.
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Figure 3: Second case treated by LM. Left: symbols ‘+’, ‘o’ and ‘∗’ denote respectively
the initial value, the successive iterations, and the global minimum, in the (d, h) plane.
Right: value of the error as a function of iterations.

the most efficient and converges within 100 iterations, as shown in Figure 3. The
fastest ALS2 algorithm is this time the one using the ELS enhancement at every
iteration, and converges within 400 iterations (cf. Figure 2).

In the second case, ALS2 with the ELS enhancement could avoid being trapped
in a kind of “cycling” about the goal, whereas it could not do it in the first example.
This is a limitation of ELS: if the directions provided by the algorithm are bad,
ELS cannot improve much on the convergence. The same has been be observed
with case 1: ELS does not improve LM since directions chosen by LM are bad (LM
is not represented for case 1). The other observation one can make is that executing
ELS at every iteration is not always better than at every p iterations, p > 1: this
depends on the trajectory, and there is unfortunately no general rule. This will be
also confirmed by the next computer experiments.

5.3 Random 30 × 30 × 30 tensor of rank 20

In the previous section, the computational complexity per iteration was not an
issue, because it is so small. Now we shall turn our attention to this issue, with a
particular focus on the effect of dimension reduction by HOSVD truncation. As in
the 2×2×2 case, the initial value has an influence on convergence; one initial point
is chosen randomly, the same for all algorithms to be compared.
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Tensor decompositions and other tales 21

0 1 2 3 4 5 6 7 8 9
x 109

10−20

10−10

100

Flops

Er
ro

r

0 100 200 300 400 500 600 700 800 900

10−20

10−10

100

Iterations

Er
ro

r

 

 

4

4

321

1 23

Figure 4: Reconstruction error of a 30×30×30 random tensor of rank 20 as a function of
the number of iterations (top) or the number of multiplications (bottom), and for various
algorithms. 1: ALS + HOSVD + ELS, 2: ALS + ELS, 3: ALS + HOSVD, 4: ALS.

The tensor considered here is generated by three 30 × 20 factor matrices whose
entries have been independently randomly drawn according to a zero-mean unit
variance Gaussian distribution. In the sequel, we shall denote such a random draw-
ing as A ∼ N30×20(0, 1), in short. The correlation coefficient (absolute value of the
cosine) between any pair of columns of these matrices was always smaller than 0.8,
which is a way to check out that the goal to reach does not lie itself in a strong
bottleneck.

The ALS algorithm is run either without ELS, or with ELS enhancement at every
iteration. Figure 4 shows the clear improvement brought by ELS without dimension
reduction (the computational complexity is 3 times smaller). If the dimensions are
reduced to 20 by HOSVD truncation, we also observe a similar improvement: ALS
runs better, but the additional complexity of ELS also becomes smaller (the rank is
of same order as dimensions). Also notice by comparing top and bottom of Figure
4 that curves 2 and 3 do not appear in the same order: the dimension reduction
gives the advantage to ALS in dimension 20 without ELS, compared to ALS with
ELS in dimension 30. The advantage was reversed in the top part of the figure.
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22 P.Comon et al.

A reduction of the dimensions to a value smaller than 20, while keeping the
rank equal to 20, is theoretically possible. However, we know that truncating the
HOSVD is not the optimal way of finding the best (20, 20, 20) multilinear rank
approximation. In practice, we have observed that truncating the HOSVD yields
reconstruction errors if the chosen dimension is smaller than the rank (e.g. 19 in
the present case or smaller).

5.4 Random 5 × 5 × 5 tensor of rank 4

The goal here is to show the interest of ELS, not only for ALS, but also for the Gra-
dient algorithm. In fact in simple cases, the Gradient algorithm may be attractive,
if it is assisted by the ELS enhancement.
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Figure 5: Reconstruction error of a 5× 5× 5 tensor of rank 4 as a function of the number
of iterations (top) or the number of multiplications (bottom), and for various algorithms.
1: Gradient + ELS with period 2, 2: Gradient + ELS with period 5, 3: ALS + ELS with
period 1 (every iteration), 4: ALS + ELS with period 5, 5: ALS + ELS with period 7,
6: ALS.

We consider the easy case of a 5 × 5 × 5 tensor of rank 4. The latter has
been built from three 5 × 4 Gaussian matrices drawn randomly as before, each
N5×4(0, 1). Results are reported in figure 5, and show that ELS performs similarly
if executed every 2 iterations, or every 5. Results of the Gradient without ELS
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Tensor decompositions and other tales 23

enhancement are not shown, but are as poor as ALS. Convergence of the Gradient
with ELS is reached earlier than ALS with ELS, but this is not always the case in
general. The Gradient with ELS appears to be especially attractive in this example
if computational complexity is considered.

5.5 Double bottleneck in a 30 × 30 × 30 tensor

Now more difficult cases are addressed, and we consider a tensor with two dou-
ble bottlenecks (with R. Harshman terminology). The tensor is built from three
Gaussian matrices A, B and C of size 30× 4, and we have created two bottlenecks
in the two first modes as follows. The first column a(1) of A is drawn randomly
as N30(0, 1). Then the second column is set to be a(2) = a(1) + 0.5v(2), where
v(2) ∼ N30(0, 1). The third and fourth columns of A are generated in the same
manner, that is, a(4) = a(3)+0.5v(4), where a(3) ∼ N30(0, 1) and v(4) ∼ N30(0, 1).
Matrix B is independently generated exactly in the same manner. Vectors belong-
ing to a bottleneck generated this way have a correlation coefficient of 0.89. On the
other hand, matrix C is independently N30×4(0, 1), and its columns are not close
to dependent.

Results reported in Figure 6 show that even when the rank is moderate compared
to dimensions, ELS brings improvements to ALS, despite the fact that its additional
complexity is not negligible according to Equation (9). Surprisingly, a dimension
reduction down to the rank value does not change this conclusion. As previously,
ELS with period 1 cannot be claimed to be always better than ELS with period
p > 1.

ALS with ELS enhancement at every 5 iterations (solid line in Figure 7) benefits
from an important computational complexity improvement thanks to the dimension
reduction down to 4: its convergences needs 6.106 multiplications instead of 8.108.
The improvement is even more impressive for ALS with ELS enhancement at every
iteration (dashed line).

5.6 Swamp in a 30 × 30 × 30 tensor of rank 4

In this last example, we have generated a tensor with two triple bottlenecks, that
is, a tensor that lies in a swamp. Matrices A and B are generated as in Section 5.5,
but matrix C is now also generated the same way.

This tensor is difficult to decompose, and ALS does not converge after 5000
iterations. With the help of ELS every 5 iterations, the algorithm converges with
about a thousand of iterations. This was unexpected since ELS is not always able
to escape from swamps. The reduction of dimensions to 4 allows to decrease the
computational complexity by a factor of 50, even if the number of iterations has
slightly increased.
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6 Conclusion

Our paper was three-fold. Firstly we have surveyed theoretical results, and pointed
out which are still conjectures. Secondly we have described several numerical algo-
rithms and given their approximate complexities for large dimensions. Thirdly, we
have compared these algorithms in situations that Richard Harshman had classi-
fied, and in particular multiple bottlenecks and swamps. Several conclusions can be
drawn.

First, one can claim that dimension reduction by HOSVD truncation is always
improving the results, both in terms of speed of convergence and computational
complexity, provided the new dimensions are not smaller than the rank of the tensor
to be decomposed.

Second, ELS has been shown to be useful to improve ALS2 or the Gradient de-
scent, either as an help to escape from a local minimum or to speed up convergence.
ELS has been often efficient in simple or multiple bottlenecks, and even in swamps.
Its help ranges from excellent to moderate. On the other hand, ELS has never been
able to help LM when it was stuck.

Third, ALS2 can still progress very slowly in some cases where the objective
function is not flat at all. This is a particularity of ALS, and we suspect that it is
“cycling”. In such a case, ELS does not help because the directions defined by ALS2
are not good. One possibility would be to call for ALS1 to give other directions;
this is currently being investigated.

Last, no solution has been proposed in cases of CP-degeneracies. In the later
case, the problem is ill-posed, and the solution should be searched for by changing
the modeling, i.e., either by increasing the rank or by imposing additional constraints
that will avoid factor cancellations. Future works will be focussed on the two latter
conclusions.

Acknowledgment. This work has been partly supported by contract ANR-06-
BLAN-0074 “Decotes”.

References

[1] H. ABO, G. OTTAVIANI, and C. PETERSON. Induction for secant varieties
of Segre varieties, August 2006. arXiv:math/0607191.

[2] J. ALEXANDER and A. HIRSCHOWITZ. La methode d’Horace eclatee: ap-
plication a l’interpolation en degre quatre. Invent. Math., 107(3):585–602, 1992.

[3] D. BINI. Border rank of a p × q × 2 tensor and the optimal approximation
of a pair of bilinear forms. In Proc. 7th Col. Automata, Languages and Pro-
gramming, pages 98–108, London, UK, 1980. Springer-Verlag. Lecture Notes
in Comput. Sci., vol. 85.

[4] D. BINI. Border rank of m × n × (mn − q) tensors. Linear Algebra Appl.,
79:45–51, 1986.

ha
l-0

04
10

05
7,

 v
er

sio
n 

1 
- 1

6 
Au

g 
20

09



Tensor decompositions and other tales 25

[5] M. C. BRAMBILLA and G. OTTAVIANI. On the Alexander-Hirschowitz the-
orem. Jour. Pure Applied Algebra, 212:1229–1251, 2008.

[6] R. BRO. Parafac, tutorial and applications. Chemom. Intel. Lab. Syst., 38:149–
171, 1997.

[7] R. BRO and C. A. ANDERSSON. Improving the speed of multiway algorithms.
part ii: Compression. Chemometrics and Intelligent Laboratory Systems, 42(1-
2):105–113, 1998.
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Figure 6: Reconstruction error of a 30×30×30 tensor of rank 4 with 2 double bottlenecks
as a function of the number of iterations or the number of multiplications, and for various
algorithms. Solid: ALS + ELS with period 5, dashed: ALS + ELS with period 1 (at
every iteration), dotted: ALS. Top: without dimension reduction, bottom: after reducing
dimensions down to to 4.
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Figure 7: Reconstruction error of a 30 × 30 × 30 of rank 4 with 2 triple bottlenecks as
a function of the number of iterations (top) or the number of multiplications (bottom),
and for various algorithms. Solid: ALS + ELS with period 5, dotted: ALS. Top: without
dimension reduction, bottom: after reducing dimensions down to to 4.
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