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Abstract

We discuss how recently discovered techniques and tools from compressed sensing can be used in tensor decompo-
sitions, with a view towards modeling signals from multiple arrays of multiple sensors. We show that with appro-
priate bounds on a measure of separation between radiating sources called coherence, one could always guarantee
the existence and uniqueness of a best rank-r approximation of the tensor representing the signal. We also deduce
a computationally feasible variant of Kruskal’s uniqueness condition, where the coherence appears as a proxy for
k-rank. Problems of sparsest recovery with an infinite continuous dictionary, lowest-rank tensor representation, and
blind source separation are treated in a uniform fashion. The decomposition of the measurement tensor leads to
simultaneous localization and extraction of radiating sources, in an entirely deterministic manner.

Résumé

Traitement du signal multi-antenne : les décompositions tensorielles rejoignent l’échantillonnage compressé.
Nous décrivons comment les techniques et outils d’échantillonnage compressé récemment découverts peuvent être uti-
lisés dans les décompositions tensorielles, avec pour illustration une modélisation des signaux provenant de plusieurs
antennes multicapteurs. Nous montrons qu’en posant des bornes appropriées sur une certaine mesure de séparation
entre les sources rayonnantes (appelée cohérence dans le jargon de l’échantillonnage compressé), on pouvait toujours
garantir l’existence et l’unicité d’une meilleure approximation de rang r du tenseur représentant le signal. Nous en
déduisons aussi une variante calculable de la condition d’unicité de Kruskal, où cette cohérence apparaı̂t comme une
mesure du k-rang. Les problèmes de récupération parcimonieuse avec un dictionnaire infini continu, de représentation
tensorielle de plus bas rang, et de séparation aveugle de sources sont ainsi abordés d’une seule et même façon. La
décomposition du tenseur de mesures conduit à la localisation et à l’extraction simultanées des sources rayonnantes,
de manière entièrement déterministe.
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multisensors
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Version française abrégée

Nous expliquons comment les décompositions tensorielles et les modèles d’approximation apparaissent naturel-
lement dans les signaux multicapteurs, et voyons comment l’étude de ces modèles peut être enrichie par des contri-
butions provenant de l’échantillonnage compressé. Le vocable échantillonnage compressé est à prendre au sens large,
englobant non seulement les idées couvertes par [1, 4, 7, 14, 15, 18], mais aussi les travaux sur la minimisation du
rang et la complétion de matrice [3, 5, 17, 19, 31, 38].

Nous explorons notamment deux thèmes : (1) l’utilisation de dictionnaires redondants avec des bornes sur les
produits scalaires entre leurs éléments ; (2) le recours à la cohérence ou au spark pour prouver l’unicité. En particulier,
nous verrons comment ces idées peuvent être étendues aux tenseurs, et appliquées à leur décomposition et leurs ap-
proximations. Si nous qualifions les travaux [1, 4, 7, 14, 15, 18] d’ “échantillonnage compressé de formes linéaires”
(variables vectorielles) et [3, 5, 17, 19, 31, 38] d’ “échantillonnage compressé de formes bilinéaires” (variables matri-
cielles), alors cet article porte sur l’échantillonnage compressé de formes multilinéaires (variables tensorielles).

Les approximations tensorielles recèlent des difficultés dues à leur caractère mal posé [9, 12], et le calcul de la
plupart des problèmes d’algèbre multilinéaire sont de complexité non polynomiale (NP-durs) [20, 22]. En outre, il
est souvent difficile ou même impossible de répondre dans le cadre de la géométrie algébrique à certaines questions
fondamentales concernant les tenseurs, cadre qui est pourtant usuel pour formuler ces questions (cf. Section 4). Nous
verrons que certains de ces problèmes pourraient devenir plus abordables si on les déplace de la géomérie algébrique
vers l’analyse harmonique. Plus précisément, nous verrons comment les concepts glanés auprès de l’échantillonnage
compressé peuvent être utilisés pour atténuer certaines difficultés.

Enfin, nous montrons que si les sources sont suffisamment séparées, alors il est possible de les localiser et de les
extraire, d’une manière complètement déterministe. Par “suffisamment séparées”, on entend que certains produits sca-
laires soient inférieurs à un seuil, qui diminue avec le nombre de sources présentes. Dans le jargon de l’échantillonnage
compressé, la “cohérence” désigne le plus grand de ces produits scalaires. En posant des bornes appropriées sur cette
cohérence, on peut toujours garantir l’existence et l’unicité d’une meilleure approximation de rang r d’un tenseur, et
par conséquent l’identifiabilité d’un canal de propagation d’une part, et l’estimation des signaux source d’autre part.

1. Introduction

We discuss how tensor decomposition and approximation models arise naturally in multiarray multisensor signal
processing and see how the studies of such models are enriched by mathematical innovations coming from compressed
sensing. We interpret the term compressed sensing in a loose and broad sense, encompassing not only the ideas
covered in [1, 4, 7, 14, 15, 18] but also the line of work on rank minimization and matrix completion in [3, 5, 17,
19, 31, 38]. We explore two themes in particular: (1) the use of overcomplete dictionaries with bounds on coherence;
(2) the use of spark or coherence to obtain uniqueness results. In particular we will see how these ideas may be
extended to tensors and applied to their decompositions and approximations. If we view [1, 4, 7, 14, 15, 18] as
‘compressed sensing of linear forms’ (vector variables) and [3, 5, 17, 19, 31, 38] as ‘compressed sensing of bilinear
forms’ (matrix variables), then this article is about ‘compressed sensing of multilinear forms’ (tensor variables), where
these vectors, matrices, or tensors are signals measured by sensors or arrays of sensors.

Tensor approximations are fraught with ill-posedness difficulties [9, 12] and computations of most multilinear
algebraic problems are NP-hard [20, 22]. Furthermore even some of the most basic questions about tensors are often
difficult or even impossible to answer within the framework of algebraic geometry, the usual context for formulating
such questions (cf. Section 4). We will see that some of these problems with tensors could become more tractable
when we move from algebraic geometry to slightly different problems within the framework of harmonic analysis.
More specifically we will show how wisdom gleaned from compressed sensing could be used to alleviate some of
these issues.

This article is intended to be a short communication. Any result whose proof requires more than a few lines of
arguments is not mentioned at all but deferred to our full paper [11]. Relations with other aspects of compressed sens-
ing beyond the two themes mentioned above, most notably exact recoverability results under the restricted isometry
property [2] or coherence assumptions [35], are also deferred to [11]. While the discussions in this article are limited
to order-3 tensors, it is entirely straightforward to extend them to tensors of any higher order.
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2. Multisensor signal processing

Tensors are well-known to arise in signal processing as higher order cumulants in independent component analysis
[8] and have been used successfully in blind source separation [10]. The signal processing application considered here
is of a different nature but also has a natural tensor decomposition model. Unlike the amazing single-pixel camera [16]
that is celebrated in compressed sensing, this application comes from the opposite end and involves multiple arrays
of multiple sensors [30].

Consider an array of l sensors, each located in space at a position defined by a vector bi ∈ R3, i = 1, . . . , l.
Assume this array is impinged by r narrow-band waves transmitted by independent radiating sources through a linear
stationary medium. Denote by σp(tk) the complex envelope of the pth source, 1 ≤ p ≤ r, where tk denotes a point
in time and k = 1, . . . , n. If the location of source p is characterized by a parameter vector θp, the signal received by
sensor i at time tk can be written as

si(k) =
∑r

p=1
σp(tk) εi(θp) (1)

where εi characterizes the response of sensor i to external excitations.
Such multisensor arrays occur in a variety of applications including acoustics, neuroimaging, and telecommu-

nications. The sensors could be antennas, EEG electrodes, microphones, radio telescopes, etc, capturing signals in
the form of images, radio waves, sounds, ultrasounds, etc, emanating from sources that could be cell phones, distant
galaxies, human brain, party conversations, etc.

Example 2.1. For instance, if one considers the transmission of narrowband electromagnetic waves over air, εi(θp)
can be assimilated to a pure complex exponential (provided the differences between time delays of arrival are much
smaller than the inverse of the bandwidth):

εi(θp) ≈ exp(ψi,p), ψi,p := ı
ω

c

(
b$i dp −

1
2Rp
‖bi ∧ dp‖22

)
(2)

where the pth source location is defined by its direction dp ∈ R3 and distance Rp from an arbitrarily chosen origin
O, ω denotes the central pulsation, c the wave celerity, ı2 = −1, and ∧ the vector wedge product. More generally,
one may consider ψi,p to be a sum of functions whose variables separate, i.e. ψi,p = f(i)$g(p), where f(i) and g(p) are
vectors of the same dimension. Note that if sources are in the far field (Rp ( 1), then the last term in the expression
of ψi,p in (2) may be neglected.

2.1. Structured multisensor arrays
We are interested in sensor arrays enjoying an invariance property. We assume that there are m arrays, each having

the same number l of sensors. They do not need to be disjoint, that is, two different arrays may share one or more
sensors.

From (1), the signal received by the jth array, j = 1, . . . ,m, takes the form

si, j(k) =
∑r

p=1
σp(tk) εi, j(θp). (3)

The invariance property 1 that we are interested in can be expressed as

εi, j(θp) = εi,1(θp)ϕ( j, p). (4)

In other words, variables i and j decouple.
This property is encountered in the case of arrays that can be obtained from each other by a translation (see Fig.

1). Assume sources are in the far field. Denote by ∆ j the vector that allows deduction of the locations of sensors in
the jth array from those of 1st array. Under these hypotheses, we have for the first array, ψi,p,1 = ı

ω
c (b$i dp). By a

translation of ∆ j we obtain the phase response of the jth array as:

ψi,p, j = ı
ω

c
(b$i dp + ∆

$
j dp).

1. So called as the property follows from translation invariance: angles of arrival remain the same. The term was probably first used in [33].
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(a) (b) (c)

Figure 1: From the same array of sensors, several subarrays can be defined that differ from each other by translation: (a) two (overlapping) subarrays
of 4 sensors, (b) two subarrays of 3 sensors, (c) three subarrays of 2 sensors.

Observe that indices i and j decouple upon exponentiation and that we have ϕ( j, p) = exp
(
ıωc ∆

$
j dp
)
.

Now plug the invariance expression (4) into (3) to obtain the observation model:

si, j(k) =
∑r

p=1
εi,1(θp)ϕ( j, p)σp(tk), i = 1, . . . , l; j = 1, . . . ,m; k = 1, . . . , n.

This simple multilinear model is the one that we shall discuss in this article. Note that the left hand side is measured,
while the quantities on the right hand side are to be estimated. If we rewrite ai jk = si, j(k), uip = ε̂i,1(θp), v jp = ϕ̂( j, p),
wkp = σ̂p(tk) (where the ‘hat’ indicates that the respective quantities are suitably normalized) and introduce a scalar
λp to capture the collective magnitudes, we get the tensor decomposition model

ai jk =
∑r

p=1
λp uipv jpwkp, i = 1, . . . , l; j = 1, . . . ,m; k = 1, . . . , n,

with ‖up‖ = ‖vp‖ = ‖wp‖ = 1. In the presence of noise, we often seek a tensor approximation model with respect to
some measure of nearness, say, a sum-of-squares loss that is common when the noise is assumed white and Gaussian:

min
λp,up,vp,wp

∑l,m,n

i, j,k=1

[
ai jk −

∑r

p=1
λp uipv jpwkp

]2
.

Our model has the following physical interpretation: if ai jk is the array of measurements recorded from sensor i of
subarray j at time k, then it is ideally written as a sum of r individual source contributions

∑r
p=1 λp uip v jp wkp. Here,

uip represent the transfer functions among sensors of the same subarray, v jp the transfer between subarrays, and wkp
the discrete-time source signals. All these quantities can be identified. In other words, the exact way one subarray can
be deduced from the others does not need to be known. Only the existence of this geometrical invariance is required.

3. Tensor rank

Let V1, . . . ,Vk be vector spaces over a field, say, C. An element of the tensor product V1 ⊗ · · · ⊗ Vk is called an
order-k tensor or k-tensor for short. Scalars, vectors, and matrices may be regarded as tensors of order 0, 1, and 2
respectively. For the purpose of this article and for notational simplicity, we will limit our discussions to 3-tensors.
Denote by l,m, n the dimensions of V1, V2, and V3, respectively. Up to a choice of bases on V1,V2,V3, a 3-tensor in
V1 ⊗ V2 ⊗ V3 may be represented by an l × m × n array of elements of C,

A = (ai jk)l,m,n
i, j,k=1 ∈ Cl×m×n.

These are sometimes called hypermatrices 2 and come equipped with certain algebraic operations inherited from the
algebraic structure of V1 ⊗ V2 ⊗ V3. The one that interests us most is the decomposition of A = (ai jk) ∈ Cl×m×n as

A =
∑r

p=1
λp up ⊗ vp ⊗ wp, ai jk =

∑r

p=1
λp uipv jpwkp, (5)

2. The subscripts and superscripts will be dropped when the range of i, j, k is obvious or unimportant.
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with λp ∈ C, up ∈ Cl, vp ∈ Cm,wp ∈ Cn. For u = [u1, . . . , ul]$, v = [v1, . . . , vm]$, w = [w1, . . . ,wn]$, we write
u ⊗ v ⊗ w := (uiv jwk)l,m,n

i, j,k=1 ∈ Cl×m×n. This generalizes u ⊗ v = uv$ in the case of matrices.
A different choice of bases on V1, . . . ,Vk would lead to a different hypermatrix representation of elements in

V1 ⊗ · · · ⊗ Vk. For the more pedantic readers, it is understood that what we call a tensor in this article really means a
hypermatrix. The decomposition of a tensor into a linear combination of rank-1 tensors was first studied in [21].

Definition 3.1. A tensor that can be expressed as an outer product of vectors is called decomposable (or rank-one if
it is also nonzero). More generally, the rank of a tensor A = (ai jk)l,m,n

i, j,k=1 ∈ Cl×m×n, denoted rank(A), is defined as the
minimum r for which A may be expressed as a sum of r rank-1 tensors,

rank(A) := min
{
r
∣∣∣∣ A =

∑r

p=1
λp up ⊗ vp ⊗ wp

}
. (6)

We will call a decomposition of the form (5) a rank-revealing decomposition when r = rank(A). The definition of
rank in (6) agrees with matrix rank when applied to an order-2 tensor.

Cl×m×n is a Hilbert space of dimension lmn, equipped with the Frobenius (or Hilbert-Schmidt) norm, and its
associated scalar product:

‖A‖F =
[∑l,m,n

i, j,k=1
|ai jk |2

] 1
2
, 〈A, B〉F =

∑l,m,n

i, j,k=1
ai jkbi jk.

One may also define tensor norms that are the 'p equivalent of Frobenius norm [27] and tensor norms that are analo-
gous to operator norms of matrices [22].

4. Existence

The problem that we consider here is closely related to the best r-term approximation problem in nonlinear ap-
proximations, with one notable difference — our dictionary is a continuous manifold, as opposed to a discrete set,
of atoms. We approximate a general signal v ∈ H with an r-term approximant over some dictionary of atoms D,
i.e. D ⊆ H and span(D) = H. We refer the reader to [7] for a discussion of the connection between compressed
sensing and nonlinear approximations. We denote the set of r-term aproximants by Σr(D) := {λ1v1 + · · · + λrvr ∈ H |
v1, . . . , vr ∈ D, λ1, . . . , λr ∈ C}. Usually D is finite or countable but we have a continuum of atoms comprising all
decomposable tensors. The set of decomposable tensors

Seg(l,m, n) := {A ∈ Cl×m×n | rank(A) ≤ 1} = {x ⊗ y ⊗ z | x ∈ Cl, y ∈ Cm, z ∈ Cn}
is known in geometry as the Segre variety. It has the structure of both a smooth manifold and an algebraic variety,
with dimension l+m+ n (whereas finite or countable dictionaries are 0-dimensional). The set of r-term approximants
in our case is the rth secant quasiprojective variety of the Segre variety, Σr(Seg(l,m, n)) = {A ∈ Cl×m×n | rank(A) ≤ r}.
Such a set may not be closed nor irreducible. In order to study this set using standard tools of algebraic geometry
[6, 26, 37], one often considers a simpler variant called the rth secant variety of the Segre variety, the (Zariski) closure
of Σr(Seg(l,m, n)). Even with this simplification, many basic questions remain challenging and open: For example, it
is not known what the value of the generic rank 3 is for general values of l,m, n [6]; nor are the polynomial equations 4

defining the rth secant variety known in general [26].
The seemingly innocent remark in the preceding paragraph that for r > 1, the set {A ∈ Cl×m×n | rank(A) ≤ r} is in

general not a closed set has implication on the model that we proposed. Another way to view this is that tensor rank
for tensors of order 3 or higher is not an upper semicontinuous function [12]. Note that tensor rank for order-2 tensors
(i.e. matrix rank) is upper semicontinuous: if A is a matrix and rank(A) = r, then rank(B) ≥ r for all matrices B in a
sufficiently small neighborhood of A. As a consequence, the best rank-r approximation problem for tensors,

argmin
‖up‖2=‖vp‖2=‖wp‖2=1

‖A − λ1u1 ⊗ v1 ⊗ w1 − · · · − λrur ⊗ vr ⊗ wr‖F , (7)

unlike that for matrices, does not in general have a solution. The following is a simple example taken from [12].

3. Roughly speaking, this is the value of r such that a randomly generated tensor will have rank r. For m × n matrices, the generic rank is
min{m, n} but l × m × n tensors in general have generic rank > min{l,m, n}.

4. For matrices, these equations are simply given by the vanishing of the k × k minors for all k > r.
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Example 4.1. Let ui, vi ∈ Cm, i = 1, 2, 3. Let A := u1 ⊗ u2 ⊗ v3 + u1 ⊗ v2 ⊗ u3 + v1 ⊗ u2 ⊗ u3 and for n ∈ N, let

An := n
(
u1 +

1
n

v1

)
⊗
(
u2 +

1
n

v2

)
⊗
(
u3 +

1
n

v3

)
− nu1 ⊗ u2 ⊗ u3.

One may show that rank(A) = 3 iff ui, vi are linearly independent, i = 1, 2, 3. Since it is clear that rank(An) ≤ 2 by
construction and limn→∞ An = A, the rank-3 tensor A has no best rank-2 approximation. Such a tensor is said to have
border rank 2.

This phenomenon where a tensor fails to have a best rank-r approximation is much more widespread than one
might imagine, occurring over a wide range of dimensions, orders, and ranks; happens regardless of the choice of
norm (or even Brègman divergence) used. These counterexamples occur with positive probability and in some cases
with certainty (in R2×2×2 and C2×2×2, no tensor of rank-3 has a best rank-2 approximation). We refer the reader to [12]
for further details.

Why not consider approximation by tensors in the closure of the set of all rank-r tensors, i.e. the rth secant variety,
instead? Indeed this was the idea behind the weak solutions suggested in [12]. The trouble with this approach is that
it is not known how one could parameterize the rth secant variety in general: While we know that all elements of the
rth secant quasiprojective variety Σr(Seg(l,m, n)) may be parameterized as λ1u1 ⊗ v1 ⊗ w1 + · · · + λrur ⊗ vr ⊗ wr, it
is not known how one could parameterize the limits of these, i.e. the additional elements that occur in the closure of
Σr(Seg(l,m, n)), when r > min{l,m, n}. More specifically, if r ≤ min{l,m, n}, Terracini’s Lemma [37] provides a way
to do this since generically a rank-r tensor has the form λ1u1 ⊗ v1 ⊗ w1 + · · · + λrur ⊗ vr ⊗ wr where {u1, . . . ,ur},
{v1, . . . , vr}, {w1, . . . ,wr} are linearly independent; but when r > min{l,m, n}, this generic linear independence does
not hold and there are no known ways to parameterize a rank-r tensor in this case.

We propose that a better way would be to introduce natural a priori conditions that prevent the phenomenon in
Example 4.1 from occurring. An example of such conditions is nonnegativity restrictions on λi,ui, vi, examined in
our earlier work [27]. Here we will impose much weaker and more natural restrictions motivated by the notion of
coherence. Recall that a real valued function f with an unbounded domain dom( f ) and limx∈dom( f ), ‖x‖→+∞ f (x) = +∞
is called coercive (or 0-coercive) [23]. A nice feature of such functions is that the existence of a global minimizer
is guaranteed. The objective function in (7) is not coercive in general but we will show here that a mild condition
on coherence, a notion that frequently appears in recent work on compressed sensing, allows us to obtain a coercive
function and therefore circumvent the non-existence difficulty. In the context of our application in Section 2, coherence
quantifies the minimal angular separation in space or the maximal cross correlation in time between the radiating
sources.

Definition 4.2. Let H be a Hilbert space and v1, . . . , vr ∈ H be a finite collection of unit vectors, i.e. ‖vp‖H = 1. The
coherence of the collection V = {v1, . . . , vr} is defined as µ(V) := maxp!q|〈vp, vq〉|.

This notion has been introduced in slightly different forms and names: mutual incoherence of two dictionaries
[15], mutual coherence of two dictionaries [4], the coherence of a subspace projection [5], etc. The version here
follows that of [18]. We will be interested in the case when H is finite dimensional (in particular H = Cl×m×n or Cm).
When H = Cm, we often regard V as an m × r matrix whose column vectors are v1, . . . , vr. Clearly 0 ≤ µ(V) ≤ 1,
µ(V) = 0 iff v1, . . . , vr are orthonormal, and µ(V) = 1 iff V contains at least a pair of collinear vectors.

While a solution to the best rank-r approximation problem (7) may not exist, the following shows that a solution
to the bounded coherence best rank-r approximation problem (8) always exists.

Theorem 4.3. Let A ∈ Cl×m×n and letU = {U ∈ Cl×r | µ(U) ≤ µ1}, V = {V ∈ Cm×r | µ(V) ≤ µ2},W = {W ∈ Cn×r |
µ(W) ≤ µ3}, be families of dictionaries of unit vectors of coherence not more than µ1, µ2, µ3 respectively. If

µ1µ2µ3 <
1
r
,

then the infimum η defined as

η = inf
{∥∥∥∥∥A −

∑r

p=1
λpup ⊗ vp ⊗ wp

∥∥∥∥∥

∣∣∣∣∣ λ ∈ Cr,U ∈ U,V ∈ V,W ∈W
}

(8)

is attained. Here ‖ · ‖ denotes any norm on Cl×m×n.
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Proof. Since all norms are equivalent on a finite dimensional space, we may assume that ‖ · ‖ = ‖ · ‖F , the Frobenius
norm. Let the objective function f : Cr ×U ×V ×W → [0,∞) be

f (λ,U,V,W) :=
∥∥∥∥∥A −

∑r

p=1
λpup ⊗ vp ⊗ wp

∥∥∥∥∥
2

F
. (9)

Let E = Cr ×U ×V ×W. Note that E as a subset of Cr(1+l+m+n) is noncompact (closed but unbounded). We write
T = (λ,U,V,W) and let the infimum in question be η := inf{ f (T ) | T ∈ E}. We will show that the sublevel set of
f restricted to E, defined as Eα = {T ∈ E| f (T ) ≤ α}, is compact for all α >η and thus the infimum of f on E is
attained. The set Eα = E ∩ f −1(−∞,α] is closed since E is closed and f is continuous (by the continuity of norm). It
remains to show that Eα is bounded. Suppose the contrary. Then there exists a sequence (Tk)∞k=1 ⊂ E with ‖Tk‖2 → ∞
but f (Tk) ≤ α for all k. Clearly, ‖Tk‖2 → ∞ implies that ‖λ(k)‖2 → ∞. Note that

f (T ) ≥
[
‖A‖F −

∥∥∥∥∥
∑r

p=1
λpup ⊗ vp ⊗ wp

∥∥∥∥∥
F

]2
.

We have
∥∥∥∥∥
∑r

p=1
λpup ⊗ vp ⊗ wp

∥∥∥∥∥
2

F
=
∑r

p,q=1
λpλq〈up,uq〉〈vp, vq〉〈wp,wq〉

≥
∑r

p=1
|λp|2‖up‖22‖vp‖22‖wp‖22 −

∑
p!q
|λpλq〈up,uq〉〈vp, vq〉〈wp,wq〉|

≥
∑r

p=1
|λp|2 − µ1µ2µ3

(∑
p!q
|λpλq|

)

≥ ‖λ‖22 − µ1µ2µ3‖λ‖21 ≥ (1 − rµ1µ2µ3)‖λ‖22.

The last inequality follows from ‖λ‖1 ≤
√

r‖λ‖2 for any λ ∈ Cr. By our assumption 1 − rµ1µ2µ3 > 0 and so as
‖λ(k)‖2 → ∞, f (Tk)→ ∞, which contradicts the assumption that f (Tk) ≤ α for all k.

5. Uniqueness

While never formally stated, one of the main maxims in compressed sensing is that ‘uniqueness implies sparsity’.
For example, this is implicit in various sparsest recovery arguments in [4, 15, 18] where, depending on context,
‘sparsest’ may also mean ‘lowest rank’. We state a simple formulation of this observation for our purpose. LetD be a
dictionary of atoms in a vector space V (over an infinite field). We do not requireD to be finite or countable. In almost
all cases of interest D will be overcomplete with high redundancy. For x ∈ V and r ∈ N, by a D-representation, we
shall mean a representation of the form x = α1x1 + · · · + αrxr where x1, . . . , xr ∈ D and α1 · · ·αr ! 0 (x1, . . . , xr are
not required to be distinct).

Lemma 5.1. Let x = α1x1 + · · · + αrxr be aD-representation. (i) If this is the uniqueD-representation with r terms,
then x1, . . . , xr must be linearly independent. (ii) If this is the sparsest D-representation, then x1, . . . , xr must be
linearly independent. (iii) If this is unique, then it must also be sparsest.

Proof. Suppose β1x1 + · · · + βrxr = 0 is a nontrivial linear relation. (i): Since not all βi are 0 while all αi ! 0, for
some θ ! 0 we must have (α1 + θβ1) · · · (αr + θβr) ! 0, which yields a different D-representation x = x + θ 0 =
(α1 + θβ1)x1 + · · · + (αr + θβr)xr. (ii): Say βr ! 0, then x = (α1 − β−1

r β1)x1 + · · · + (αr−1 − β−1
r βr−1)xr−1 is a

sparser D-representation. (iii): Let x = γ1y1 + · · · + γsys be a D-representation with s < r. Write y1 =
∑r−s+1

k=1 θky1
with

∑r−s+1
k=1 θk = 1. Then we obtain an r-term D-representation

∑r−s+1
k=1 γ1 θk y1 +

∑s
i=2 γi yi, different from the given

one. They are different since y1, y1, . . . , y1, y2, . . . , ys are linearly dependent, whereas (i) implies that x1, . . . , xr are
linearly independent.

We will now discuss a combinatorial notion useful in guaranteeing uniqueness or sparsity of D-representations.
The notion of the girth of a circuit [29] is standard and well-known in graphical matroids — it is simply the length
of a shortest cycle of a graph. However the girth of a circuit in vector matroids, i.e. the cardinality of the smallest
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linearly dependent subset of a collection of vectors in a vector space, has rarely appeared in linear algebra. This has
led to it being reinvented multiple times under different names, most notably as Kruskal rank or k-rank in tensor
decompositions [24], as spark in compressed sensing [15], and as k-stability in coding theory [38]. The notions of
girth, spark, k-rank, and k-stability [38] are related as follows.

Lemma 5.2. Let V be a vector space over a field F and X = {x1, . . . , xn} be a finite subset of V. Then

girth(X) = spark(X) = krank(X) + 1

and furthermore X is k-stable iff krank(X) = n − k.

Proof. These follow directly from the respective definitions.

These notions are unfortunately expected to be difficult to compute because of the following result [36].

Theorem 5.3 (Vardy). It is NP-hard to compute the girth of a vector matroid over a finite field of two elements, F2.

A consequence is that spark, k-rank, k-stability are all NP-hard if the field is F2. We note here that several authors
have assumed that spark is NP-hard to compute over F = R or C (assuming Q or Q[ı] inputs) but this is actually
unknown. In particular it does not follow from [28]. While it is clear that computing spark via a naive exhaustive
search has complexity O(2n), one may perhaps do better with cleverer algorithms when F = R or C; in fact it is
unknown in this case whether the corresponding decision problem (Given finite X ⊆ V and s ∈ N, is spark(X) = s?) is
NP-hard. On the other hand it is easy to compute coherence. Even a straightforward search for an off-diagonal entry
of X$X of maximum magnitude is of polynomial complexity. An important observation of [15] is that coherence may
sometimes be used in place of spark.

One of the early results in compressed sensing [15, 18] on the uniqueness of the sparsest solution is that if

1
2

spark(X) ≥ ‖β‖0 = card{βi ! 0}, (10)

then β ∈ Cn is a unique solution to min{‖β‖0 | Xβ = x}.
For readers familiar with Kruskal’s condition that guarantees the uniqueness of tensor decomposition, the parallel

with (10) is hard to miss once we rewrite Kruskal’s condition in the form

1
2

[krank(X) + krank(Y) + krank(Z)] ≥ rank(A) + 1. (11)

We state a slight variant of Kruskal’s result [24] here. Note that the scaling ambiguity is unavoidable because of the
multilinearity of ⊗.

Theorem 5.4 (Kruskal). If A =
∑r

p=1 xp ⊗ yp ⊗ zp and krank(X) + krank(Y) + krank(Z) ≥ 2(r + 1), then r = rank(A)
and the decomposition is unique up to scaling of the form αx ⊗ βy ⊗ γz = x ⊗ y ⊗ z for α, β, γ ∈ C with αβγ = 1. This
inequality is also sharp in the sense that 2r + 2 cannot be replaced by 2r + 1.

Proof. The uniqueness was Kruskal’s original result in [24]; alternate shorter proofs may be found in [25, 32, 34].
That r = rank(A) then follows from Lemma 5.1(iii). The sharpness of the inequality is due to [13].

Since spark is expected to be difficult to compute, one may substitute coherence to get a condition [15, 18] that is
easier to check

1
2

[
1 +

1
µ(X)

]
≥ ‖β‖0. (12)

The equation (12) relaxes (10) because of the following result of [15, 18].

Lemma 5.5. Let H be a Hilbert space and V = {v1, . . . , vr} be a finite collection of unit vectors in H. Then

spark(V) ≥ 1 +
1
µ(V)

and krank(V) ≥ 1
µ(V)

.
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Proof. Let spark(V) = s = krank(V) + 1. Assume without loss of generality that {v1, . . . , vs} is a minimal circuit
of V and that α1v1 + · · · + αsvs = 0 with |α1| = max{|α1|, . . . , |αs|} > 0. Taking inner product with v1 we get
α1 = −α2〈v2, v1〉− · · ·−αs〈vs, v1〉 and so |α1| ≤ (|α2|+ · · ·+ |αs|)µ(V). Dividing by |α1| then yields 1 ≤ (s−1)µ(V).

We now characterize the uniqueness of tensor decompositions in terms of coherence. Note that C may be replaced
by R. By “unimodulus scaling”, we mean scaling of the form eiθ1 u ⊗ eiθ2 v ⊗ eiθ3 w where θ1 + θ2 + θ3 ≡ 0 mod 2π.

Theorem 5.6. Let A ∈ Cl×m×n and A =
∑r

p=1 λpup ⊗ vp ⊗ wp, where λp ∈ C, λp ! 0, and ‖up‖2 = ‖vp‖2 = ‖wp‖2 = 1
for all p = 1, . . . , r. We write U = {u1, . . . ,ur}, V = {v1, . . . , vr}, W = {w1, . . . ,wr}. If

1
2

[
1
µ(U)

+
1
µ(V)

+
1
µ(W)

]
≥ r + 1, (13)

then r = rank(A) and the rank revealing decomposition is unique up to unimodulus scaling.

Proof. If (13) is satisfied, then Kruskal’s condition for uniqueness (11) must also be satisfied by Lemma 5.5.

Note that unlike the k-ranks in (11), the coherences in (13) are trivial to compute. In addition to uniqueness, an
easy but important consequence of Theorem 5.6 is that it provides a readily checkable sufficient condition for tensor
rank, which is NP-hard over any field [20, 22].

6. Conclusion

The following existence and uniqueness result may be deduced from Theorems 4.3 and 5.6.

Corollary 6.1. Let A ∈ Cl×m×n. If µ1, µ2, µ3 ∈ (0,∞) satisfy

1
3
√
µ1µ2µ3

≥ 2
3

(r + 1), (14)

then the bounded coherence rank-r approximation problem (8) has a solution that is unique up to unimodulus scaling.

Proof. The case r = 1 is trivial. For r ≥ 2, since µ1µ2µ3 ≤ [2(r+1)/3]−3 < 1/r, Theorem 4.3 guarantees that a solution
to (8) exists. Let Ar = λ1u1 ⊗ v1 ⊗ w1 + · · · + λrur ⊗ vr ⊗ wr be a solution and let U = {u1, . . . ,ur}, V = {v1, . . . , vr},
W = {w1, . . . ,wr}. Since µ(U) ≤ µ1, µ(V) ≤ µ2, µ(W) ≤ µ3,the harmonic mean-geometric mean inequality yields

3
[

1
µ(U)

+
1
µ(V)

+
1
µ(W)

]−1

≤ 3
√
µ(U)µ(V)µ(W) < 3

√
µ1µ2µ3 ≤

3
2(r + 1)

,

the decomposition of Ar is unique by Theorem 5.6.

In the context of our application in Section 2.1, this corollary means that radiating sources can be uniquely lo-
calized if they are either (i) sufficiently separated in space (angular separation viewed by a subarray, or by the array
defined by translations between subarrays), or (ii) in time (small sample cross correlations), noting that the scalar
product between two time series is simply the sample cross correlation. Contrary to more classical approaches based
on second or higher order moments, both conditions are not necessary here — Corollary 6.1 requires only that the
product between coherences be small. In addition, there is no need for long data samples since the approach is deter-
ministic; this is totally unusual in antenna array processing. Cross correlations need to be sufficiently small among
sources only for identifiability purposes but they are not explicitly computed in the identification process. Hence our
model is robust with respect to short record durations. Observe also that the number of time samples can be as small
as the number of sources. Lastly, an estimate of source time samples may be obtained from the tensor decomposition
as a key byproduct of this deterministic approach.
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