
Signal Processing� vol���� no��� Sept ����� pp����	


Decomposition of quantics

in sums of powers of linear forms

P� Comon
���

and B� Mourrain
�

��� CNRS � I�S� ��	 av Albert Einstein� F	���	 Valbonne� pierre�thym�unice�fr

��� THOMSONSINTRA� BP��
� F	��	� SophiaAntipolis Cedex� comon�asm�thomson�fr

��� SAFIR�� INRIA� �		� route des Lucioles� F	���� Valbonne� mourrain�sophia�inria�fr

Abstract

Symmetric tensors of order larger than two arise more and more often in signal and image
processing and automatic control� because of the recent complementary use of HighOrder
Statistics �HOS�� However� very few special purpose tools are at disposal for manipulating
such objects in engineering problems� In this paper� the decomposition of a symmetric
tensor into a sum of simpler ones is focused on� and links with the theory of homogeneous
polynomials in several variables �i�e� quantics� are pointed out� This decomposition may be
seen as a formal extension of the Eigen Value Decomposition �EVD�� known for symmetric
matrices� By reviewing the state of the art� quite surprising statements are emphasized� that
explain why the problem is much more complicated in the tensor case than in the matrix
case� Very few theoretical results can be applied in practice� even for cubics or quartics�
because proofs are not constructive� Nevertheless in the binary case� we have more freedom
to devise numerical algorithms�

Keywords� Tensors� Polynomials� Diagonalization� EVD� HighOrder Statistics� Cumu
lants�

� Introduction

In signal processing� mainly second order statistics have been used for a long time� But the po�
tentiality of higher order statistics has clearly emerged during the last decade� and their possible
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role in industrial products is now recognized� with still some distrust however� For the moment�
only statistics of moderate order are seriously considered �putting aside rank statistics�� Typi�
cally� statistics of integer order used in signal processing applications would involve essentially
quadrics� cubics� or quartics� but not polynomials of higher degree�

Even if it is clear that HOS such as moments or cumulants should be treated as symmetric
tensors� it is much less obvious to know how to do it in practice� preserving fully their properties
�e�g� symmetry� multilinearity�� This is the reason why cumulants are used in signal processing
algorithms after contraction or slicing� In particular whether a tensor can be decomposed into
a sum of simpler ones is a relevant question� and surprisingly has received only partial answers
to date� Since tensors and homogeneous polynomials are bijectively associated �cf section �����
this question is addressed thanks to old results borrowed from algebraic geometry�

In fact� if tensors do not seem to have been widely studied as such in the past� beside speci�c
forms that appear in physics� homogeneous polynomials have� In fact� invariant theory has been
one of the major mathematical research topics in the nineteenth century� Over a long period of
time� researchers as famous as Gauss� Kronecker� Noether� Cayley� Weyl� Hilbert� or Dieudonn	e�
have contributed to this �eld� At that time� a homogeneous polynomial of degree d in n variables
was called a n�ary d�ic 
��� 
��� For d � �� � �� ����� the adopted terminology was the quadric�
the cubic� the quartic� the quintic� the sextic��� The same terminology will be subsequently
retained�

The goal of this paper is �i� to explain why the optimal use of symmetric tensors is di�cult�
�ii� to give a overview of the �unappreciated� state of the art� and �iii� to identify what could be
new directions of investigations� and in particular towards special purpose numerical algorithms�
This work turned out to be very di�cult� the literature in the �eld being very forbidding� perhaps
because algebra and its terminology have evolved� as the reader see himself by looking over
reference 
����

The paper is organized as follows� Notation� statement of the problem� and link with homo�
geneous polynomials are established in section �� The main course is section � which reports
the results most often applicable� before section � succintly addresses the rare cases� The last
section concludes with a summary and some perspectives�

� General

��� Tensors

A tensor of dimension n and order d is an object de�ned in a n�dimensional coordinate system
by a table with d indices� gi����id � � � ik � n� that follows a particular transformation formula if
the coordinate system is changed� More precisely� if a linear transform is applied to the space so
that any vector u is changed into a vector U � Au� where A is a n � n invertible matrix� then
the tensor is transformed into�

gi����id � Gi����id �
X
j����jd

Ai�j� ��Aidjd gj����jd � ���

This property is often referred to as the multilinearity property of tensors� A tensor G is sym�
metric if G��ij��k� � Gij��k� for any permutation �� Denote IR the set of real numbers� The
set T �n� d� of symmetric tensors of dimension n and order d is a vector space on IR � It can be
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checked out that the vector space T �n� d� is of dimension

D�n� d� �
�

n � d� �
d

�
� ���

The set of cumulants of order d of a multichannel real random variable X of dimension n
forms a symmetric tensor of order d and dimension n� The same holds true for moments� For
instance� if the following table is de�ned�

�ij��k � EfXiXj �� Xkg�

then this table is symmetric and satis�es the multilinearity property ���� Actually� moments and
cumulants are more than tensors� since they satisfy the multilinearity property even under non
invertible transformations� matrixA de�ning the transformmay be rank de�cient or rectangular�
See 
��� 
��� for more details�

As a consequence� when statistics of order larger than two �HOS� are utilized� the appro�
priate framework is no longer linear algebra anymore� but multilinear algebra� and the tables
representing those statistics are in fact tensors� but not matrices�

Of course for simplicity� most algorithms taking advantage of HOS resort only to slices or
contracted forms of those tensors� that can be stored in matrices �see for instance 
��� and
references therein�� But it should be borne in mind that information is discarded when proceeding
this way� and symmetry is broken�

��� Homogeneous polynomials

As a �rst obvious statement� it can be pointed out that there exists a bijective relation between
the space of tensors T �n� d� and the space of homogeneous polynomials of degree d in n variables�
which will be denoted here F�n� d�� Indeed� let G be a tensor of T �n� d�� then the polynomial

p�xj� � xj�� ��� xjn� �
nX

i��i����id��

Gi�i���id xi� xi���xid ��

can be bijectively associated with G� In the above expression� it is clear that because of the
symmetry of G� some terms appear several times� Actually� there is another way of writing
polynomials of F�n� d� by resorting to a standard compact notation 
��� 
��� 
���� widely used in
invariant theory�

Let IN be the set of integers f�� �� �� ��g� and J�n� the subset f�� �� ��ng� A multi�index of
size n is a vector of n indices� i � IN n� By convention� if a � IRn and i � IN n� ai denotes
the product

Q
k a

ik
k � and �i�� �

Q
k�ik��� The length of a multi�index i is de�ned as jij �

P
k ik�

Lastly� c�i� denotes the multinomial coe�cient� namely c�i� � jij���i��� With these notations�
any homogeneous polynomial of F�n� d� can be written as

p�x� �
X
jij�d

��i� p� c�i�xi� ���

Each coe�cient ��i� p� characterizing polynomial p��� is associated with one entry of the corre�
sponding symmetric tensor� Gj� The exact expression of the mapping f � i � IN n � j � f�i�� j �
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J�n�d is as follows� The kth component ik of multi�index i represents the number of times index
k appears in j� For example� with d �  and n � �� we would have f������ � ��� Even in the
community of engineers using HOS� these two notations are simultaneously used 
����

With these notations� it is also clear that expression �� can be written in compact form as

p�x� �
X

j�J�n�d

G�j�xf
���j�� ���

Now� as seen in section ���� the dimension of T �n� d� is D � �n�d��
d �� and so is the dimension

of F�n� d�� The set of monomials B�n� d� � fxi� jij � dg is chosen as a basis of F�n� d��
The scalar product between two polynomials of F�n� d� is de�ned as�

hp� qi �
X
jij�d

c�i� ��i� p� ��i� q�� ���

which means in particular that monomials in the basis B are orthogonal and have a squared
norm hxi�xii � �i���d� � ��c�i�� The projection of any polynomial p�x� onto basis B yields then
its components ��i�� Sometimes� the apolar scalar product is used instead� and is de�ned as d�
times the previous one�

The choice of this Euclidian scalar product has other advantages� Suppose ���� is a linear
form acting on IRn� and de�ned by its n�dimensional vector �� Denote ��d� the polynomial
of F�n� d� obtained by raising the form to the dth power� Then its scalar product with any
polynomial q of F�n� d� turns out to be� from ����

hq� ��d�i �
X
i

c�i� ��i� q��i � q���� ���

Moreover� if �a�x � a�
�
�x�

�� � ��an
�

�xn
and a�x� � a� x��� � �an xn then we have �p � F�n� d����

d hq� a�x� pi � h�a�x�q�� pi�

which is another nice invariant property of this inner�product�
During the last century� one objective of invariant theory was to classify polynomials based

on canonical forms� valid up to a change of variables� The methods used at that time were in
some way� quite e�cient 
��� 
�� 
���� Then� came the modern theory of algebraic geometry�
which gave a very theoretical and general setting for this �eld 
�� 
���� Our discussion borrows
results from both frameworks�

��� Statement of the problem

It is known that symmetric matrices can be diagonalized by a change of coordinates� and that
there are in�nitely many ways of doing it� Sylvester�s theorem on inertia states an invariance
property enjoyed by minimal representations� The question is whether this holds true for tensors
of higher order� and in particular of order  or ��

This problem can be rephrased in terms of polynomials� Given a polynomial p of F�n� d��
d � �� under what conditions� if any� can this polynomial be written as a sum of N dth powers
of linear forms � Then several more basic questions can be raised� �i� What is the minimal value
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of N required in general �the generic case� valid for almost every polynomial� � �ii� Given p� can
one compute the exact minimal value of N �i�e� the width� as de�ned in de�nition �� � �iii� Once
N is determined� how many such decompositions exist � �iv� Can something be done when N is
imposed � �v� How can a decomposition be computed in practice � Some answers are attempted
to be given in this paper�

It is pointed out in particular that Sylvester�s theorem for quadratic forms does not extend
easily to higher degrees� and the search for canonical forms is still an open problem for many
values of the pair �n� d�� The goal of this paper is to show how large is the di�culty� and to give
an idea of the state of the art� as accurately as is possible in a few pages� Other approaches have
been also proposed recently but are not discussed subsequently� In 
��� for instance� an extension
of the Singular Value Decomposition to third order tensors is proposed� In 
��� a canonical
decomposition of tensors of T �n� �k� into nk powers is suggested� based on the assimilation of
tensors to linear operators� whereas in 
�� an approximate decomposition is described that always
yields n powers� See also 
�� for a discussion of the two latter approaches�

��� Application in array processing

Decompositions of quadrics in sums of powers are already used in antenna processing� and related
areas in signal processing� The principle consists of approximating a symmetric matrix �the
covariance of the observations� by another of lower rank� allowing to partition the space into
signal and noise subspaces 
��� Now in order to apply the same principle to higher order tensors�
one would like to approximate a tensor ofF�n� d� by another of lower width� with our terminology�

More precisely� the linear statistical model assumed in array processing is of the form�

z�	� �
rX

j��

Aj�	� sj�	� � 
 v�	��

where z�	� are observed random vectors of dimension n� Aj�	� are unknown deterministic vec�
tors� sj�	� are random scalar variables� also referred to as �sources�� and 
 v�	� accounts for
background and measurement noises� Standard identi�cation algorithms exist when the array
is known �that is� every Aj�	� belongs to a known manifold A��� 	��� and when the number of
sensors n� is strictly larger than the number of sources� r� This constraint comes from the fact
that only second order statistics are utilized�

Here� it is not assumed that n � r� On the contrary� n and r are allowed to take any value� Of
course� if r is too large� identi�ability problems will occur� As will be pointed out in section ���
there is in fact an upper bound to r �namely the width of the approximating tensor�� depending
on n and on the order d of the statistics to be used� Contrary to 
���� the array manifold is not
required� to be able to detect and estimate the sources sj � as well as to identify the source vectors
Aj � If one desires to perform localization� the array manifold can be used only in a second stage�
and an improved robustness �against calibration errors for instance� is expected� compared to
standard procedures where the array manifold is utilized right from the beginning�

Thus� a cumulants�based approach would not only permit to get rid of Gaussian noise� or to
improve on robustness� but also to identify r � n signal components� However� several problems
need to be �xed before the framework proposed in this paper can be e�ciently utilized in array
processing� Potential applications� currently under study in the case where r � n� include channel
identi�cation and equalization� Air tra�c control in Radar� Super�resolution in Sonar� Speech
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deconvolution� Texture analysis� Object recognition� or Reactor monitoring� Some of them are
resorting presently to Independent Component Analysis �ICA�� a suboptimal decomposition� see

�� and references therein�

� Decompositions in the generic case

��� Introduction

Denote by IK the �eld on which we are working� From a practical point of view it will be IR �
but if we need to use geometrical properties �and �nd all the roots of a polynomial for instance��
it will be lC � Let p be a polynomial of F�n� d�� and Lk� � � k � N � N linear forms such that�

p�x� �
NX
j��

Ld
j �x�� Lk�x� �

nX
j��

ak�jxj� ���

The expansion of this sum of powers in the basis of monomials B�n� d� de�nes a map � from the
set X � IK nN of coe�cients ak�j onto Y � IKD� with D de�ned as in ����

� � X � IK nN � Y � IKD

a � ��a��i�� � � � �aN�i�� �� �cI�ai�j��

where coe�cients cI�ai�j� are given by c�i�� as de�ned in ���� The image of this polynomial map

contains a dense open subset U of the algebraic manifold �or variety� ��X � �the closure of ��X ��
in Y �see 
��� th�� p� ����� The complementary of U in ��X � is then a closed subset de�ned
by algebraic equations� If the closure ��X � is whole space Y� then the image is dense in Y� In
applications� coe�cients are always given with some uncertainty� so that we are interested in
properties that are true only on a �open� dense subset of Y� To precise this notion� we introduce
the following de�nition�

De�nition � � A property will be true in the generic case� or for generic polynomials� if it is
true in a dense algebraic open subset of Y�

Example� Generic quadratic forms of a vector space of dimension n are sums of n squares�
The case where this is not true corresponds to quadratic forms whose determinant vanishes�
This determinant de�nes a closed set and its complementary is an open dense subset of the set
of quadratic forms�

De�nition � � Given a polynomial p of F�n� d�� the �width� of p refers to the minimal number
of forms� ��p�� necessary to write p as a sum dth powers of linear forms� The width of a generic
polynomial of F�n� d� is denoted g�n� d��

Thus g�n� d� denotes the minimal value to be given to N so that ��� holds true in the generic
case 
���� Then g�n� d� is obviously smaller than D� by de�nition� On the other hand� it is
also larger than D�n� In fact the dimension of the image cannot be greater than the number of
parameters in function � �which is nN �� If nN were smaller than D then the image would lie
in an hypersurface and would not be dense� But these bounds are clearly too loose to be really
useful�
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It has been shown recently by Reznick 
��� that

�p � F�n� d�� ��p� �
�

n� d � �
d � �

�
� ���

which is a much tighter bound� Moreover� this bound holds true when p ranges in the whole
space F�n� d�� and not only in a dense subset �i�e� the inequality is valid not only in the generic
case��

There is no general expression that gives the exact value of g�n� d�� To be accurate� it is
necessary to study each case separately� and this has been done mostly during the nineteenth
century in the frame of invariant theory� Table � summarizes known values of g�n� d�� Again�
these values correspond to the generic case� and there are smaller and larger reachable values
�see example in section ���

Example� To show how careful we have to be� consider for instance a generic ternary quartic�
Counting the number of parameters on each side� we would expect that it could be decomposed
into � linear forms since � �  	 ����� but the correct number of linear forms is � �see Clebsh�s
Theorem 
��� p ��� and table ���

��� Number of forms required� the generic width

The generic width� g�n� d�� is known for some values of degree d and dimension n� The easy case
is when d � �� since it is dealt with quadratic polynomials �quadrics�� and the decomposition
into a sum of n squares is possible� though not unique� This is equivalent to saying that the
rank of a quadratic form is generically n� Another case has already been well studied� namely
the case of binary forms� It is handled by the following theorems�

Theorem � �Sylvester� � A generic binary form of odd degree �m � � can be decomposed
into a sum of m powers of linear forms�

For binary forms of even degree d � �m� there are in�nitely many such decompositions in
m�� powers 
��� section ��� unless some determinant is null �as explained in the theorem below��
and a decomposition in m powers is in general impossible� Unicity can be insured by various
constraints� The other cases �non�generic� are treated by the following theorem�

Theorem � �Sylvester� � A polynomial p�x� y� �
P

i �ic�i�x
iyd�i can be decomposed into a

sum of r powers as p�x� y� �
Pr

j�� j ��j x� �j y�d if and only if the form

qc�x� y� �
rY

j��

��j x� �j y� �
rX

l��

gl x
l yr�l

satis�es

�
����

�� �� � � � �r
�� �� � � � �r��
���

���
�d�r � � � �d

�
����

�
����

g�
g�
���
gr

�
���� � ��

and has r distinct roots �real if the problem is real��
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See 
�� p ���� 
��� p ��� or 
��� section �� p ���� In fact� the last theorem implies an
algorithm to decompose any binary polynomial into a minimal sum of powers� as will be seen in
section ����

Partial proof� If p�x� y� is decomposable as p�x� y� �
Pr

j�� j ��j x� �j y�
d with r � d then

it is not hard to see that for any monomialm of degree d�r in �x� y�� we have hmqc�x� y�� pi � ��
These equations correspond to the rows of the previous matrix� The determinant of this matrix
is called the catalecticant�

Example� A normal form of any binary quartic is u� � v� � u�v�� If the catalecticant of
order  vanishes then  � � and the polynomial is a sum of two squares� 
�� p �����

Example� The case of ternary cubics is also well known� Their general normal form is
u	 � v	 � w	 � �u v w 
�� p ���� 
� p ����� but there are seven other possible forms 
��� 
���
section �� p���� Knowing the minimal number of powers in the decomposition of a polynomial
p� one can then determine a canonical form of p� that makes it possible to classify polynomials�
The case of ternary quartics is discussed in 
��� for instance�

For larger values of n or d� in order to know whether the dimension of Y reaches D�n� d� or
not� we compute the rank of the Jacobian of � �de�ned in section ���� which gives the dimension
of a generic tangent space to this variety� or equivalently the dimension of the variety� If this rank
is maximal �equal to D� then the image is dense� Else the image is an open�subset of an algebraic
variety of dimension strictly less than D�n� d�� The Jacobian of � � a ��

P
i L

d
i can be computed

in the following way � di�erentiating � with respect to a��i yields to d xiL
d��
� � so that the Jaco�

bian of � is the matrix of �x�L
d��
� � � � � � xnL

d��
� � x�L

d��
� � � � � � xnL

d��
� �� � � � x�L

d��
N � � � � � xnL

d��
N �

in B�n� d�� This yields the following theorem�

Theorem � �Lasker�Wakeford� � A generic polynomial of degree d in n variables can be
decomposed minimally in a sum of N powers of linear forms if and only if there exist lin�
ear forms L�� � � � � LN such that the rank of �x�L

d��
� � � � � � xnL

d��
� � x�L

d��
� � � � � � xnL

d��
� �� � � �

x�L
d��
N � � � � � xnL

d��
N � is equal to D�n� d��

See 
���� 
��� 
���� 
��� for more details� Another way to formulate this theorem is to say that
there exist linear forms L�� � � � � LN such that there is no polynomial of degree d orthogonal �for
the scalar product de�ned in ���� to the forms Ld��

� � � � � � Ld��
N �

Remark that it is enough to �nd a point a such that the corresponding Jacobian is of maximal
rank� for the rank will be the same in a neighborhood �for the Zariski topology� of this point� In
other words� the rank will be generically D�n� d� if we can �nd one point for which it is true�

An incremental algorithm for computing g�n� d�

Here a probabilistic algorithm is described� that computes the generic width of polynomials of
F�n� d�� According to theorem �� we have to check the rank of the matrix

M �x�N � � �x�L
d��
� � � � � � xnL

d��
� � x�L

d��
� � � � � � xnL

d��
� � � � � � x�L

d��
N � � � � � xnL

d��
N � ����

in the basis of all monomials of degree d�
This is done incrementally� adding at each step a block �x�L

d��
k � � � � � xnL

d��
k � and �nd values

of the coe�cients such that the rank and the generic rank are equal at this step� When the
iteration stops� we are left with g�n� d� linear forms such that the corresponding matrix is of
maximal rank�
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�� Take for the �rst n linear forms � L� � x�� � � � � Ln � xn� Set initially k � n� ��

�� Take a new form Lk ��
Pn

i�� ai�kxi and compute the rank of the matrix M �x� k� de�ned
in ����� which depends only on the variables ak�i �the other coe�cients are numerical��

� Find randomly numerical values for ak�i such the corresponding matrix has the same rank
as the matrix in variables ak�i�

�� If the rank of matrix M �x� k� is full� then stop and set g�n� d� � k� Else go to step � with
k
 k � ��

This algorithm has been implemented inMaple� and the results are reported in table �� The
values of g�n� d� obtained coincide with those obtained already algebraically� when they were
indeed known� But the program also allowed to �ll the values that were yet unknown� �indicated
in bold face��

��� Number of solutions

Now� given a generic polynomial� we want to know how many decompositions there are� In fact�
as we are dealing with algebraic varieties� this means that we want to know what is the dimension
and the degree of these varieties�

Proposition 	 � Given a generic polynomial p� the solutions a such that ��a� � p form an
algebraic variety of dimension nN �D�

Proof� The set of coe�cients a such that ��a� � p is the �ber ����p� of � over p� This map
between two a�ne spaces of dimension nN and D �with nN 	 D� is regular� According to 
���
th �� p ���� the dimension of the �ber is at least nN �D� The latter bound is reached for generic
polynomials �on a non�empty open subset of Y��

Example� Consider the case of polynomials of degree � in n variables� A well�known theorem
of Sylvester tells that a generic quadric is a sum of n signed squares� Consequently� as the
dimension of X is n� and the one of Y is �

�n �n � ��� the dimension of a generic �ber is n� �
�
� n �n��� � �

� n �n���� It is the dimension of the orthogonal group of the corresponding quadric
�set of matrices that leaves the quadratic form unchanged��

In the case where the dimension of a generic �ber is null� it contains a �nite number of
points� This number of points �by de�nition� is the degree of the map �� As it is de�ned by
D polynomials of degree d� a rough bound on the degree is dD �according to B	ezout�s theorem

�����

��� Calculation of a decomposition

To date� constructive algorithms for calculating a decomposition into powers of linear forms exist
only for cubics and binary forms�

�We discovered recently a work borrowing tools from another area of algebraic geometry ���� Although it
was addressing a di	erent question 
interpolation�� the results presented allow to compute the generic width in a
di	erent way� especially for d � ��
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�
�
� Completion of the cube

The �rst �well known� constructive method is based on a simple idea that is usually applied to
quadrics�

Theorem � � Any polynomial of F�n� � can be decomposed as

p�x� �
nX

j��

y	j � q�x�� ����

where yj are linear forms in the xi�s� and q a polynomial of partial degree in x� equal to d� � ��

Proof� As now brie�y explained� the proof may be described in � stages in the case of cubics
�d � �� Even if the principle of the proof could be generalized to d � � the theorem would
not yield a means of recursion� and thus would not give any possibility of computing the desired
decomposition�

�� Any polynomial ��x� of F�n� � can be written p�x� � u	� � u�� h� � u� h� � h	� where
hk are polynomials of F�n� �� k� in variables u�� ��un�

�� Letting v� � u� � h� and vi � ui for i � �� yields an expression where the term in v��
disappears� p�x� � v	� �  v�H� �H	� where H� � h� � h�� and H	 � �h	� � h�h� � h	�

� The quadratic form H� can be diagonalized after an appropriate linear transformation in
the variables v�� ��vn� keeping v� unchanged� Denoting yi the new variables� and k the rank of
H�� k � n� p�x� � y	�� y�

Pk
j�� y

�
j�G	� where G	 is a polynomial of F�n��� � in the variables

y�� ��yn�
�� Lastly� the two �rst terms of the last expression of p above can be transformed into the

sum
Pk

i�� f
	
i � by de�ning the linear forms fi � k���	y� � k���� �yi � 

Pk
j�� yj�� where  is a

root of �k� � k�� � ��� � k�� � � � 
����
The conclusion is that any polynomial p of F�n� � can always be decomposed into a sum of

at most n�n � ���� � � powers of linear forms�

�
�
� Simultaneous diagonalization

Now the inconvenience of the previous approach is that the number of forms obtained in the
decomposition is in general much larger than the achievable bound� D� The approach described
below leads to a smaller number of forms� and was proposed by Reznick 
���� Our attempts to
extend this result to the real case have not succeeded�

Theorem � �Reichsteins canonical form� � Any polynomial of F�n� � can be decomposed
as

p�x� �
nX

j��

y	j � q�x�� ��xn�� ����

where yj are linear forms in the xi�s� and q a polynomial of F�n� �� ��

Proof� This proof was given by Reznick in 
���� Consider the partial derivatives f� � �p��x�
and f� � �p��x�� Since these are quadratic forms� they can be written as f� � xTS�x and
f� � xTS�x where S� and S� are symmetric� Yet� the pencil �S�� S�� admits generically distinct

���



eigenvalues� Thus� there exist a basis of �possibly complex� vectors ai such that f� �
P

i y
�
i �

f� �
P

i y
�
i � and yi � aTi x� Integrating f� and f� with respect to x� and x�� respectively� leads

to two expressions of p�

p�x� �
X
i

�

ai�
y	i � q��x�� x	� ��� xn� �

X
i

i
ai�

y	i � q��x�� x	� ��� xn��

On the other hand� it can be seen that i ai� � ai�� by checking out the second derivative� As
a consequence the �rst terms coincide in both sides� and so do the remainders q� and q�� which
must then be independent of both x� and x��

Thus� this theorem allows to reduce by half the number of variables recursively� As a conse�
quence� the polynomial p of F�n� � can be decomposed into a sum of at most n�n� ���� cubes
of linear forms if n is even� and at most �n� ����� if n is odd� This is about twice as less as the
number of forms obtained in section �����

�
�
� Binary forms

Theorem � actually gives an algorithm to compute the decomposition of any binary form in sums
of powers� We have implemented the Matlab program listed in �gure ��

We show now the results obtained with some examples� Take p�x� y� � ��x�y����x�� y���

� p�convd�����	�
��convd����
	�
�
p � � 
� ��� ��
 ��

� �lambda�q	�binarydec��p�
err � ������e��

lambda �
������

��������
q �
������ ������
������ ������

So we �nd the original canonical expression as expected� as shows the small reconstruction
error� err� Let�s take now another example with p�x� y� � ��x� y�
 � ���x� y�
 � �x� y�
�

� p�convd�����	����convd������	����convd�����	���
p � �
� ��� �
�� ���� ���� �
�

� �lambda�q	�binarydec��p��
err � �����e���

� �lambda�q	 �
������ ������ ������
������ ������� ������

�
������ ������ ������

The polynomial is reconstructed correctly with  linear forms �
 � ���� Now let�s see a last
example� Take p�x� y� � ��x� y�� � �x� �y�� � ���x� y�� � �x� y��� and get�

� p�convd�����	����convd������	����convd������	����convd�����	���
��� ���
 ���� ��
�� �
��� ����

 �����

� �lambda�q	�binarydec��p��
err � ������

���



In the present case� the reconstructed polynomial is di�erent from the original� p� In fact� we
are here in the generic case and the �ber is of dimension �� �� �� � �� � � �see table ��� So we
have one degree of freedom to choose a solution�

Another interesting analysis is to look at the e�ect of measurement noise on the robustness
of this algorithm� For this purpose� we took the polynomial p��x� y� � ��x�y����x�� y��� and
tried to identify the linear forms generating the polynomial p�x� y� � p��x� y� � 
 g�x� y�� where
the coe�cients of g�x� y� were generated randomly� Two noise distributions were envisaged�
uniform in the interval 
�� ��� and Gaussian�

The algorithm outputs r linear forms qi�x� y� and r coe�cients i� This allows to reconstruct
the polynomial  p�x� y� �

Pr
i�� i qi�x� y�

d� As 
 increases� we can measure two kinds of errors�
The �rst one is  p�x� y� � p�x� y�� and measures the ability of the algorithm to reconstruct an
arbitrary polynomial� The second error is  p�x� y� � p��x� y�� and represents the deviation to the
original noise free polynomial� This error also accounts for the ability to reject additive noise� In
table � the norm of the errors are reported� in the canonical metric previously introduced in ����
and detailed in the function binarydec�� Since the null space of the Hankel matrix is estimated
with a given tolerance thanks to the use of SVD� the algorithm proves some robustness� It is
more robust against uniform noise� but on the other hand Gaussian noise is more realistic if the
tensor is formed of sample cumulants�

�
�
� General case

In the general case� to date� there is no really e�cient way to �nd a decomposition of a generic
polynomial� Given a polynomial p� the problem is equivalent to �nding a solution of a polynomial
system in the coe�cients ai�j of the linear forms� In practice� the size of the polynomial system
is so huge that usual techniques based on resultants and elimination 
�� cannot work� For
instance for a generic polynomial of degree � in  variables� we need to consider � linear forms
or �� variables� The system corresponds to �� equations of degree � in the variables ai�j� so
that a classical multivariate resultant would yield a polynomial in one variable of degree ��
 �
����������

A more feasible approach to this problem is now given� It is based on a classical Least�
Squares method� that starts from a given point and minimizes the square of the Euclidian
distance �de�ned in section ���� between the polynomial

P
iL

d
i and the polynomial p that we

want to decompose�
This program as been implemented inMaple and the C�language� The �rst system computes

the Jacobian of the norm and its Hessian with respect to variables ai�j� and generates a C�code
that evaluates these matrices� This C�code is then linked with a general�purpose minimization
algorithm �developed by J� Grimm� SAFIR Project�� One could also use a more so�sticated
method 
����

We illustrate this method on the following polynomial�

x�
� � x�

	 x� � x�
	 x	 � x�

� x�
�

� x�
� x� x	 � x�

� x	
� � x� x�

	 � x� x�
� x	 � x� x� x	

� � x� x	
	 � x�

� � x�
	 x	

� x�
� x	

� � x� x	
	 � x	

�

The decomposition found is

������������x�� ����������x�� ��������x	�
�

���



� ��������������x�� �����������x�� �����������x	�
�

� �������������x�� �����������x�� ������������x	�
�

� ������������x�� ������������x�� ���������x	�
�

� ����������x�� �����������x�� ������������x	�
�

� ������������x�� ������������x�� ��������x	�
�

and the error is
���������������������

The �gure shows the projection of the approximation on the plane of the �rst two coordinates�
It ends on the point ������ � � � � ����� � � �� which corresponds to the �rst coordinates of the �rst
linear form in the decomposition� This method converges more easily when the initial polynomial
is �generic� �the number of linear form is the generic number� and when the number of solution
is big� When the initial polynomial is not a sum of the generic number of linear forms� the
convergence often fails�

The advantage of the proposed method is that the larger the dimension of the �ber� the more
chances to converge to a solution� The drawback is that we are not sure to �nd an acceptable
solution and that the formula of the norm� the Jacobian� and the Hessian� become huge when the
dimension and the degree increase� It is expected that combining algebraic methods �using the
symmetry of the problem� and numerical techniques such as homotopies� would help to achieve
this decomposition in generic cases�

� Minimal decompositions in non�generic cases

We consider now the problem of determining the minimal number of powers� ��p�� that needs to
be used to decompose a given polynomial p� This happens to be a problem closely related to the
classi�cation of orbits of polynomials under linear change of variables� which is in itself a hard
problem of algebraic geometry �see for instance 
�� p ����

As we have seen in section ���� we can describe explicitly when a binary form can be
decomposed in a sum of r powers and this decomposition can be achieved by a simple algorithm�
One surprising property of this decomposition is that in some non�generic case the number of
powers can be larger than in the generic case� For instance� the binary polynomial x� y cannot
be decomposed in less than a sum of  powers � x� y � �

� ��x � y�	 � ��x � y�	 � � y	�� In the
other cases� the characterization of width r polynomials in F�n� d� is not so simple�

Let Lr be the set of polynomials of width ��p� � r� We propose here a general method to
characterize the closure of these sets� Denote R � IK 
�i� ak�l�� � � k � n� � � l � r� the set of
polynomials in the variables �i� ak�l� We note aj � �aj��� � � � � aj�n� the coe�cients of the jth linear
form and aij � ai�j�� � � �a

in
j�n� Let Ir be the ideal of R generated by the polynomial �i �

Pr
l��

ail�
In the case of one power �� � ��� the map � de�nes another map between projective spaces�

� � IP n�� � IP D��

a � �a�� � � �an� �� �ai�� � � �a
in
n �i������in�d

�

where IP m�� is the projective space associated with IKm� This map is known as the Veronese
map and its image is called the Veronese Variety� It is a closed variety whose ideal is generated

���



by all the polynomials satisfying�

��i�� � � � � in���j�� � � � � jn�� ��k�� � � � � kn���l�� � � � � ln� � � ���

with is � js � ks � ls for all � � s � n �see 
��� p ����� So a polynomial p is a power of a linear
form if and only if its coe�cients satisfy the previous relations ����

For a sum of two powers �� � ��� the map cannot be extended as a map between polynomial
spaces in this way� because we can �nd non�zero elements �ai�j� such that the image by � is the
zero polynomial in xi� If d is odd� take for instance L� � �L�� Thus the image is not necessarily
closed� and cannot be de�ned by equations but also needs inequalities� A polynomial p is a sum
of two powers if by a change of variables� it is of the form xd� � xd�� Conversely� the orbit of the
previous polynomial under the action of Gln �the group of invertible n� n matrices� is the set
L�� The closure of L� is de�ned by the polynomials in IK 
�i� � I� where I� is the ideal of R
generated by the equations �i � �ai� � ai�� � �� Indeed these are the polynomials which vanish
by substitution �ai� � ai�� for �i� Moreover� a polynomial vanishes on L� �resp� L�� if and only
if it vanishes by substitutions �ai� � ai�� for �i� These relations can be computed by elimination
techniques �for instance using Gr!obner Bases 
����

This technique extends naturally to sums of any powers in the following way� The relations
satis�ed by the points in Lr are the polynomials of IK 
�i� � Ir� They give information only on
the closure� and as we be seen with an example below� more information is needed to compute
the width of a polynomial�

As many forms as the dimension

The special case where a polynomial p into n variables is decomposable in a sum of n powers
of independent linear forms is worth considering� By a change of variables� it can be written
in the form xd� � � � �� xdn� The Hessian of this polynomial in these variables is det��xi�xj �p�� �

�d �d � ���n
Qn

i�� x
d��
i � If p is decomposable in a sum of n powers then its Hessian� being

a covariant� will be the product of n linear forms with multiplicity d � � after any change
of variables� The linear forms that appear as factors of it are precisely �up to a scalar� the
forms that appear in the decomposition of p� Geometrically� the hypersurface de�ned by the
Hessian is the union of hyperplanes with multiplicity d��� This can be checked easily by taking
the intersection of a varying line with this hypersurface� The intersection points should vary
�linearly� with the line� Once these hyperplanes are known Li�x� � �� one has to compute the
scalars i such that p �

Pn
i�� iL

d
i �

An algorithm for cubics

We illustrate this problem with polynomials of degree  in  variables� In this case� we have
three varieties� L�� L�� L	� and L� � F �� �� since the generic width is �� Of course� we have
L� � L� � L	 � F �� ��

Equations of these varieties have been computed by the preceding technique� but are not
reported here for reasons of space� This allows to classify all the possible orbits of a polynomial
of degree  in  variables by considering all possible forms of decomposition up to a linear change
of coordinates�

 A polynomial of the orbit of x	� is in L�� and any polynomial of L� is in this �closed� orbit�

���



 A polynomial of the orbit of x	� � x	� is in L��

 A polynomial of the orbit of p � x	� � x	� � �a x� � b x��	 also satisfy the equations of L��

In this case the variety of IP n�� de�ned by p �
Q	

i����ix� � �ix�� is the the union of 
�parallel� hyperplanes� In other words� these polynomials lie in L� � L	�

 A polynomial of the orbit of x	� � x	� � x		 is in L	� Its Hessian is a product of  linear
forms�

 A polynomial of the orbit of x	� � x	� � x		 � �a x� � b x� � c x	�
	 �with �a� b� c� �� ��� �� ���

is a generic polynomial� thus of width ��

 The other polynomials are of width �� and are in the orbit of x� �x� x�� x�	�� according to

���� These polynomials are in L	� which means that L
 � L	�

Other cases such as x	� � x	� � �a x� � b x��	 � �a� x� � b� x��	 can be reduced to sums of less
powers and do not appear in this list� In the previous case for example� a sum of � powers in
two variables can be rewritten as a sum of at most  powers�

Given a homogeneous polynomial p of degree  in  variables� we proceed as follows to
determine its width�

�� If its coe�cients satisfy the equations of L�� then p is the cube of a linear form�

�� Else if they satisfy the equations of L�� then p can be factorized in a product of  dependent
linear forms� p � L� � L� � L	�

�a� either the linear forms L�� L�� L	 are distinct and p is in the orbit of x� x� �x� � x��
which admits a decomposition in a sum of � cubes� The width of p is ��

�b� or two linear forms coincide and p is in the orbit of x��x� �with a� b �� ��� The width
of p is �

� Else if the coe�cients of p satisfy the equation of L	� then

�a� either the Hessian of p is a product of  independent linear forms and p is in the orbit
of x	� � x	� � x		�

�b� or its Hessian is a cube �in L��� the Hessian of x� �x� x� � x�	� being ��x	�� and the
polynomial p is of maximal width ��

�� The remaining cases corresponds to generic polynomials of width ��

More generally� for any dimension and degree the number of orbits Lr will be related to the
possible relative con�gurations of r linear forms in a space of dimension n and this classi�cation
of orbits remains a hard algebraic open problem�

Example� Consider for instance�

p � �x	
	���x	

�x����x	
�x����x	x�

���x	x�x����x	x�
����x�

	���x�
�x����x�x�

���x�
	

which factors through  distinct linear forms�

���� i�x� � ��� i�x� � ��� i�x	� ��� � i�x� � �� � i�x� � �� � i�x	� ��x� � x� � �x	�

���



So� we are in the case ���a� and p has the following approximated decomposition

������������ ������������x�� ���������x�� �����������x	�
	

� ������������ �����������x�� �����������x�� ����������x	�
	

which has been computed using the algorithm on binary forms�
Example� Consider now

p � �x	
�x� � x	

�x� � �x	x�
� � �x	x�x� � x	x�

� � �x�
	 � �x�

�x� � x�x�
� � �x�

	

which does not satisfy the equations of L� nor L� but is in L	� Its Hessian is

����x	
	 � ��x	

�x� � ��x	
�x� � ��x	x�

�

����x	x�x� � ��x	x�
� � ���x�

	 � ��x�
�x� � ��x�x�

� � ���x�
	

which factors through
���� �x� � x� � x	�

	
�

Consequently� we are in the case ��b� and p is a sum of � linear forms�

� Concluding remarks

In this paper� some results of invariant theory have been surveyed� In particular� we emphasized
the �perhaps surprising� fact that a symmetric tensor has generally a width larger than its
dimension� This is to be compared to matrices� that cannot have a rank larger than their
dimension� Another even more striking fact is that the generic width is di�cult to compute in
some cases� and that the maximal achievable width is known only through upper bounds in most
cases�

Four new algorithms have been proposed� that solve �yet only very partially� the problem�
In section ��� an incremental algorithm is suggested for computing the generic width� in section
���� an algorithm is described that is able to compute explicitly the decomposition of a binary
polynomial of any degree� in section ����� the technique described allows to �nd the width
of a non generic polynomial� lastly in section �� an iterative algorithm allows to compute the
corresponding decomposition explicitly�

Applications have been pointed out in section ���� The fact that tensors can have a width
larger than their dimension is a richness that can be exploited in array processing to detect and
identify more sources than sensors� However� di�culties remain to be overcome before higher
order decompositions become feasible in really useful situations� and several directions of research
are worth mentioning� The �rst is to handle optimally more than n forms� since they would not
de�ne a partition anymore� Second� it is wished to de�ne decompositions where forms can be
sorted by decreasing importance� in order to cope with noise� as we suggested in the binary case�
Third� e�cient numerical algorithms are still lacking� even for moderate degrees� in particular
for cubics or quartics� Fourth� it is also possible to decompose quantics into sums of powers of
quadrics �instead of linear forms�� All these directions are being currently investigated�
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Table �� Generic width g�n� d� of polynomials of degree d in n variables�

nnd �  � � � � �

� � � � � � � �
  �  � � � �
� � � � � � � 
� �� � � � � � �
� �� � � � � � 
� �� � � � � � �
� �� � � � � � �

Table �� Generic dimension of the �ber of solutions�
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Table � median � �resp� ��� of reconstruction error  p�p �resp�  p�p��� and standard deviation
� �resp� ��� with respect to � �resp� ���� over �� trials of additive noise� Top� uniform noise�
Bottom� Gaussian noise�
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function �mu�Q	�binarydec��p�
� Decomposition of a generic binary polynomial p
� into the sum of N dth powers of linear forms
� mu� vector of N coefficients
� Q� N by � matrix whose rows are the sought forms
s���r���d�length�p����eta���e�
�
fd�facto�d��c�ones���d����
for i���d���c�i����fd�facto�i��facto�d�i��end�
p��p�p�p��c�v��	�
while s�eta�r�d�r��� r�r���
M�hankel�p���d�r����p�d�r���d�����
�U�S�V	�svd�M��
J�find�diag�S��eta��

if length�J����s�S�J�J���J�J����
elseif r���d�r���s���J�r���
end�

end�
v�V���J��q�roots�v��
Q��q�ones�length�q����	�
mu�convd�Q�d���p���
sol��mu��convd�Q�d���W�diag�ones���d�����c��
� Output of the reconstruction error
err�sqrt��sol�p���W��sol�p����

function P�convd�q�d�
� Raising of a polynomial q to the dth power
�a�b	�size�q��P��	�
for i���a�
pd�q�i����for t���d���pd�conv�pd�q�i�����end�
P��P�pd	�

end�

Figure �� Matlab code of the algorithm proposed in the binary case�
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Figure �� Projection of the approxmation on the plane of the � �rst coordinates� This illustrates
the trajectory of the algorithm in a particular case�
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