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Abstract

Visual biofeedback is the process of gaining awareness of physiological functions through the

display of visual information. As speech is concerned, visual biofeedback usually consists in showing

a speaker his/her own articulatory movements, which has proven useful in applications such as

speech therapy or second language learning. This article presents a novel method for automatically

animating an articulatory tongue model from ultrasound images. Integrating this model into a

virtual talking head enables to overcome the limitations of displaying raw ultrasound images, and

provides a more complete and user-friendly feedback by showing not only the tongue, but also the

palate, teeth, pharynx, etc. Altogether, these cues are expected to lead to an easier understanding

of the tongue movements. Our approach is based on a probabilistic model which converts raw

ultrasound images of the vocal tract into control parameters of the articulatory tongue model. We

investigated several mapping techniques such as the Gaussian Mixture Regression (GMR), and in

particular the Cascaded Gaussian Mixture Regression (C-GMR) techniques, recently proposed in

the context of acoustic-articulatory inversion. Both techniques are evaluated on a multispeaker

database. The C-GMR consists in the adaptation of a GMR reference model, trained with a large

dataset of multimodal articulatory data from a reference speaker, to a new source speaker using a

small set of adaptation data recorded during a preliminary enrollment session (system calibration).

By using prior information from the reference model, the C-GMR approach is able (i) to maintain

good mapping performance while minimizing the amount of adaptation data (and thus limiting the

duration of the enrollment session), and (ii) to generalize to articulatory configurations not seen

during enrollment better than the GMR approach. As a result, the C-GMR appears to be a good

mapping technique for a practical system of visual biofeedback.
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1. Introduction

Several studies have shown that providing a speaker with visual information about his/her

tongue can be useful in the context of speech therapy and second language (L2) pronunciation

training (see [1] for a short overview). This paradigm can be referred to as visual biofeedback (see

[2, 3, 4]). The combination of visual information with acoustic and tactile feedback is expected to

increase the articulatory awareness of the speaker (i.e. the patient or the L2 learner, see [5, 6]).

Several techniques can be used to capture the tongue movements during speech production. For

instance, electropalatography (EPG) provides an accurate description of the tongue-palate contacts

occurring when speaking, in terms of both timing and localization. This technique has been used in

the context of speech therapy [7, 8] and of L2 pronunciation training [9]. EPG is more relevant for

consonants, but can be also used to a certain extent for vowels [10, 11]. Note that EPG requires the

speaker to wear an artificial palate with embedded contact sensors that must be fitted to his/her

palate, which makes its deployment in the clinical field relatively limited.

More recently, the use of medical ultrasound imaging for biofeedback has also been investigated.

Ultrasound imaging is a non-invasive and clinically safe technique able to monitor tongue movements

during speech [12], for both vowels and consonants. Moreover, affordable and portable devices are

now available. In a typical setup, the probe is placed beneath the speaker’s chin and the vocal tract

is imaged in the midsagittal plane. This configuration provides a partial view of the upper surface

of the tongue as illustrated in Fig. 1. Promising results have been obtained in various contexts,

such as the speech rehabilitation of the English /r/ [13, 14] and persisting speech sound disorders

[15, 4].

However, as mentioned in [3, 17], the raw ultrasound images may sometimes be difficult to

interpret by a non-specialist. We conjecture several explanations: (i) Raw ultrasound images are

quite noisy due to the presence of speckle, see for instance Fig. 1(right); (ii) Some parts of the

tongue contour might be poorly imaged when the tongue surface is oriented nearly parallel to the

ultrasound beam (e.g. the back of the tongue when pronouncing the phoneme /u/); (iii) For some

phonemes and some subjects, the apex (tongue tip) and parts of the tongue root can be hidden
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Figure 1: Raw ultrasound images in the midsagittal plane recorded during the realization of phonemes /a/ (left)

and /i/ (right). The brightest white line is the reflection from the air just above the tongue surface, and the large

conical black regions anterior to the tongue tip and posterior to the tongue back are the acoustic shadows of the jaw

and hyoid bone respectively [16].

.

by ultrasonic shadows created by the jaw and hyoid bones, respectively; and (iv) Importantly, the

tongue is displayed out of any spatial context since the palate, teeth and pharynx are not visible in

an ultrasound image of the vocal tract.

Finally, visual biofeedback may be provided by estimating articulatory movements from speech

acoustics (rather than directly capturing them). This problem is known as the acoustic-articulatory

inversion problem. It has been extensively addressed in the speech processing literature as a topic

on its own [18, 19, 20, 21, 22, 23, 24, 25, 26]. Estimated articulatory movements can be visualized

in an intuitive way by means of a computer-animated talking head displaying the internal speech

production apparatus, i.e. not only the tongue but also the palate, jaw, teeth and pharynx. Such

a tool is here referred to as an articulatory talking head (ATH) [27, 28, 29, 30]. The combination

of an acoustic-articulatory inversion system with an ATH has been proposed in our previous work

[31, 32]. Such an approach is interesting since it does not require expensive and sophisticated

sensors during practical usage of the system (since only a microphone is needed to capture the

user’s voice). However, this approach suffers from the following two limitations: i) the user should

be able to vocalize, which may not be the case for some pathologies or when training a specific

articulatory motor skill, and ii) the performance of the mapping is often phoneme-dependent (and

can be limited for occlusives).

Based on this overall analysis of existing techniques, we focus in this work on the direct capture
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of the articulatory movements using ultrasound imaging. We aim to design a visual biofeedback

system based on ultrasound imaging and able to deliver a clear and easy-to-understand view of

the tongue movements in real-time. For that purpose, we combine ultrasound imaging with a

computer-animated ATH. Such combination has somehow already been proposed in [29], in the

context of L2 pronunciation training. In that study, an ATH was used in a Wizard-of-Oz paradigm,

where a hidden expert controls the feedback provided to the participant. The ATH, based on a 3D

tongue model built from MRI data, was used to help French speakers pronounce unfamiliar Swedish

phonemes (the alveolar trill /r/ and the velar fricative /Ê/). The expert phonetician evaluated the

acoustic production of the learner. Then, he selected the most similar movement from a database

of pre-calculated talking head animations and provided it as a feedback to the learner. During this

experiment, the tongue movements of the learner were monitored using ultrasound imaging.

The automatic animation of an articulatory tongue model from ultrasound images has been

addressed in [33]. In this preliminary study, the authors propose to control a 3D tongue model from

tongue ultrasound images, using either a contour tracking method as in [34], or by tracking speckle

patterns.

In the present article, we introduce a method for animating automatically and in real-time the

ATH’s tongue model from the ultrasound images obtained from any arbitrary speaker, referred here

to as the source speaker. We use the ATH developed at GIPSA-lab [28], illustrated in Fig. 2(c) and

(d-right). Similarly to [29], this ATH embeds a geometrical model of the tongue built from static

3D MRI data recorded on a so-called reference speaker (Fig. 2(b)). In [35], it was shown that this

tongue model can be controlled by a set of 2D coordinates representing the positions of three flesh

points of the surface of the tongue in the midsagittal plane (see Fig. 2(d)). These 2D coordinates

were obtained from articulatory data recorded by electromagnetic articulography (EMA) on the

same reference speaker. In the following, we refer to this set of 2D coordinates as the EMA control

parameters, which are combined in an EMA control parameters vector (or simply EMA vector).

Given this framework, the core issue addressed in the present study is thus “how to convert

a raw ultrasound image of the source speaker’s tongue into a set of EMA parameters controlling

the articulatory tongue model of the reference speaker?” At first sight, this problem is a regression

problem between data lying in different spaces, that can be addressed with standard supervised

machine learning techniques: A statistical conversion model between input and output features has
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Figure 2: Articulatory talking head [28] built from video data (a) and static 3D MRI data (b) of the reference

speaker. (c) 3D display of the articulatory talking head revealing the tongue, jaw and velum models built from the

manual segmentation of MRI images. (d) EMA coils attached to the reference speaker’s tongue; these coils can be

used to animate the tongue model of the talking head (and thus referred to as the EMA control parameters). The

EMA coils and the corresponding numbers are displayed here on the talking head (d,right) for clarification.

to be designed and trained from data. Popular choices for such a model include artificial neural

networks (ANN) and Gaussian mixture regression (GMR). The GMR, which is central in this study,

is the regressor derived from the well-known Gaussian mixture model (GMM), both being widely

used in voice conversion [36, 37].

This data-driven machine learning approach requires a joint dataset of inputs (ultrasound images

from the source speaker, i.e. the system user) and outputs (EMA control parameters from the

reference speaker) for the supervised training of the conversion model. We propose the following

usage scenario: in a preliminary enrollment session, the source speaker is invited to pronounce a

set of training utterances, for which the EMA control parameters (from the reference speaker) are

available. This scenario is illustrated in Fig. 3. Once the training is done, the system can be used

for biofeedback: new ultrasound images are converted into EMA parameters which are finally used

to animate the tongue model of the talking head.

However, two particular constraints must be carefully taken into account in the derivation of an
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appropriate machine learning methodology to solve the present problem:

• Reducing the amount of training data required from the source speaker. For practical reasons,

the enrollment session should be as short as possible, i.e. the input dataset should be as limited

as possible, while keeping acceptable mapping performance.

• Optimizing the generalization capability of the conversion model. Indeed, this would be useful

to deal with pathological speech or speech produced by a L2 learner. The model should be

able to generalize to articulations not seen during training. For instance, the source speaker

may not be able to pronounce a phoneme during the enrollment session, but (s)he is expected

to pronounce it correctly after the therapy/learning, and thus (s)he should be given the

appropriate visual feedback.

Besides, it is important to note that we do not aim at fitting the geometry of the ATH to the

geometry of the source speaker’s vocal tract. Our goal is to represent the tongue movements of the

source speaker in the reference speaker’s vocal tract (i.e. in the ATH). In a clinical scenario, this

would allow to use the same ATH to display the patient’s pathological articulation and the correct

articulation. This correct articulation could be provided by pre-recorded animations of the ATH,

or by the speech therapist with a system adapted to his/her articulation patterns. 1

In this study, we first considered the above mapping problem using a conventional GMR. This

starting point is reminiscent of our previous work [38]. Then, in order to better cope with the two

particular constraints of a clinical or a L2 pronunciation training scenario, we investigated the use of

the Cascaded Gaussian Mixture Regression (C-GMR) techniques, recently proposed in the context

of acoustic-articulatory inversion [32].2 Indeed, the core idea of C-GMR is to benefit from prior

information coming from a large dataset of both input and output data from the reference speaker.

In the present study, this dataset is composed of ultrasound images of the reference speaker’s tongue

1Here, the therapist/teacher will have first to record a set of training utterances used to estimate a conversion

model. Then, he/she will be able to animate automatically the tongue model of the ATH from ultrasound images of

his/her own tongue.
2More specifically, in [32] we mapped acoustic features, (Mel-Frequency Cepstral coefficients, MFCC) extracted

from audio speech signals to Electro-Magnetic Articulatory (EMA) parameters. The C-GMR was used to adapt the

mapping model trained on a reference speaker to a new speaker using audio-only adaptation data .
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Figure 3: Usage scenario for the proposed visual biofeedback system: During the enrollment session (top), the source

speaker (i.e the system user) records a set of utterances for which the corresponding EMA control parameters are

available. The recorded ultrasound images and the reference’s speaker EMA control parameters are used to train the

conversion model. During the mapping/biofeedback stage (bottom), new EMA control parameters, used to animate

the ATH, are estimated directly from the raw ultrasound images.

and corresponding EMA control parameters, all recorded in advance. These data are used to build

a robust conversion model between the input and output spaces. The model is then adapted using

a limited amount of ultrasound data of a new source speaker and is then used to convert inputs

from this speaker. This prior knowledge provided by this reference model is expected to reduce the

amount of data required from the source speaker while increasing the generalization capability of

the system, which are precisely the two critical aspects mentioned above.

The experimental evaluation was conducted on a multispeaker dataset (one reference speaker

with ultrasound, EMA and audio, and two source speakers with ultrasound and audio), recorded for

this study. We compared two different C-GMR approaches with the conventional GMR. We showed

that one particular C-GMR model called the Integrated C-GMR copes well with the two constraints

mentioned above and is thus a good candidate for a practical system of visual biofeedback.

The rest of the paper is organized as follows. Section 2 presents the different techniques proposed

to address the mapping problem considered in this study, including the conventional GMR and the
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Cascaded-GMR. Then we describe the experiments conducted to validate the proposed system. The

experimental set-up is detailed in Section 3. The results are reported and discussed in Section 4.

Limitations and perspectives are presented in Section 5. Section 6 concludes the paper.

2. Mapping Methodology

2.1. Gaussian mixture model and Gaussian mixture regression

First, we briefly recall the principle of Gaussian mixture regression (GMR) which is central in

this study. Let X and Y be two random column vectors of dimension DX and DY respectively. Let

J denote the concatenation of X and Y such as J = [X>,Y>]> (where > denotes the transpose

operator). Let p(x; ΘX) denote the probability density function (PDF) of X, parametrized by the

set of parameters ΘX.3 Let N (x;µX,ΣXX) denote the Gaussian distribution on X with mean

vector µX and covariance matrix ΣXX. Let ΣXY denote the covariance matrix between X and Y.

A Gaussian mixture model (GMM) on (X, Y) consists of a weighted sum of Gaussian PDFs:

p(j; ΘJ) =
M∑

m=1

πmN (j;µJ,m,ΣJJ,m) , (1)

where M is the number of components of the mixture. For each component m, πm = p(m) is the

prior probability satisfying
∑M

m=1 πm = 1, µJ,m = [µ>X,m, µ
>
Y,m]> is the mean vector and ΣJJ,m is the

covariance matrix given by:

ΣJJ,m =

ΣXX,m ΣXY,m

ΣYX,m ΣYY,m

 . (2)

The classical Expectation-Maximization (EM) algorithm (see [39] (ch. 9)) for GMM can be used to

estimate these parameters given a training set of joint observations (x,y). The GMR used to map

x into an estimated value ŷ of y is defined as in [40]:

ŷ = E[Y|x; ΘJ] =
M∑

m=1

p(m|x; ΘX)µY|x,m (3)

3p(x; ΘX) is a shortcut for p(X = x; ΘX).

Bold upper-case letters denote random vectors, and corresponding bold lower-case letters denote their realizations.
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Figure 4: Graphical representation of Direct-GMR (D-GMR), Split Cascaded GMR (SC-GMR) and Integrated

Cascaded GMR (IC-GMR). In this study, Z and X refer to ultrasound features for the source and reference speaker

respectively. Y refers to EMA control parameters of the ATH. m and k refer to the mixture component index. The

large blank arrow in the SC-GMR indicates the direction of cascading (i.e. the output X of the first model is sent as

input of the second model). All horizontal thin arrows are right-to-left because these graphical models represent the

generative models associated to the presented equations. At inference time, right-sided variables are inferred from

left-sided variables.

with

µY|x,m = µY,m + ΣYX,mΣ−1XX,m(x− µX,m), (4)

p(m|x; ΘX) =
πmN (x;µX,m,ΣXX,m)∑M
i=1 πiN (x;µX,i,ΣXX,i)

. (5)

This mapping amounts to minimizing the mean squared error (MSE) between y and ŷ assuming

statistical independence and identical distribution of the observations.

2.2. Direct mapping from source speaker’s ultrasound to reference speaker’s EMA data (D-GMR)

Let Z denote a random vector of ultrasound features derived from the raw ultrasound images

of the source speaker (the extraction of such features will be detailed in Section 3.2). Let Y be a

corresponding vector of EMA control parameters, describing the tongue position of the reference

speaker while uttering the same phoneme (the alignment procedure between source and reference

speakers’ data is described later). Let N0 denote the number of ultrasound images recorded by the

source speaker during the enrollment session, and let {zn}N0
n=1 = z1:N0 denote the corresponding set

of ultrasound feature vectors derived from these images.

A first straightforward way to address the regression problem considered in this study is to

directly model the statistical relationship between the ultrasound feature vector of the source speaker

Z and the EMA parameter vector of the reference speaker Y. This can be done with a Z-Y GMM,

from which we can directly derive the corresponding Z-to-Y GMR (as described in Section 2.1).
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This approach addresses simultaneously the cross-speaker and cross-modality mapping issues and

is here referred to as the “direct” GMR (D-GMR; see Fig. 4 (left)). Importantly, training this

model requires to associate the z1:N0 enrollment data with “corresponding” y1:N0 EMA data from

the reference speaker. This is done by time-aligning each recorded sentence pronounced by the

source speaker with the same sentence pronounced by the reference speaker, using a dynamic time

warping (DTW) algorithm. However, since ultrasound features lie in a totally different space than

the EMA features, the DTW cannot be applied directly to these data. Therefore, we perform

this alignment in the acoustic space, and extend it to the ultrasound images and the EMA for

the source speaker and the reference speaker respectively. Complementary technical details on the

alignment procedure are given in Section 3.3. After this procedure, the source speaker’s dataset

z1:N0 is assumed to be aligned with the reference speaker’s dataset y1:N0 . The EM algorithm for

GMM can then be applied to the set {z1:N0 ,y1:N0}. Note that the need for recording the audio signal

in addition to the ultrasound data during the enrollment session is one drawback of the D-GMR

approach.

2.3. Cascaded Gaussian Mixture Regression (C-GMR)

As briefly stated in the introduction, the core motivation of the C-GMR framework [32] is to

benefit from prior information on the reference speaker’s articulatory space. Such prior information

is given by a GMM trained on a set of joint observations {(xn,yn)}Nn=1 = {x1:N ,y1:N}, where X is

a feature vector derived from an ultrasound image of the reference speaker. This dataset can be

obtained by recording the tongue movements of the reference speaker simultaneously using ultra-

sound imaging and EMA.4 Therefore, the X-Y GMM models the statistical relationships between

two different “articulatory” vectors representing the same tongue movement, for the same reference

speaker, but captured using two different devices (i.e. ultrasound imaging and EMA). Since this

reference model does not involve the source speaker, it can be trained “in the laboratory” on a

very large dataset. In practice, this means that the number N of (x,y) vector pairs in this dataset

can be chosen to be significantly larger than the number N0 of z vectors in the dataset recorded

by the source speaker in the enrollment session (in short, N0 ≤ N and potentially N0 � N). The

4However, this was not directly achievable due to practical experimental issues, and the two modalities had to be

recorded separately, and then aligned. This is detailed in Section 3.1.
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reference model is thus expected to be well-estimated and to finely describe the articulatory space

of the reference speaker, in both the ultrasound and EMA modalities.

The C-GMR approach exploits the reference X-Y GMM by splitting the Z-to-Y regression in

two steps:

1. a Z-to-X mapping step which models the statistical relationships between source and reference

speaker’s ultrasound data (i.e. a cross-speaker monomodal mapping)

2. a X-to-Y mapping step derived from the reference X-Y GMM, which models the statistical

relationships between the ultrasound data and the EMA data of the reference speaker (i.e. a

single-speaker cross-modal mapping).

In our previous work [32], we proposed two versions of the C-GMR framework. As shown in

Fig. 4(middle), the first one, referred to as the Split C-GMR (SC-GMR), is a straightforward

chaining of two GMRs. The output of the first GMR is calculated before being injected as input

of the second GMR. In other words, we have ŷ = E[Y|x̂; ΘJ] with x̂ = E[X|z; ΘI] (with I =

[Z>,X>]>), where both expectations follow (3) with their respective parameters. Importantly, in

the SC-GMR, the two GMRs may have a different number of mixture components. As stated above,

the reference X-Y GMR is trained from the N available (x,y) joint observations of the reference

speaker, whereas the Z-X GMR is trained on a (much) smaller dataset that consists of z1:N0 and

a corresponding subset x1:N0 of ultrasound feature vectors extracted from the reference speaker

dataset.5 The number of components of the reference X-Y GMR is thus expected to be larger than

the number of components of the Z-X GMR.

The second version of the C-GMR framework is referred to as the Integrated C-GMR (IC-GMR)

since it integrates the two GMRs listed above into a single GMR-based mapping process, as shown

in Fig. 4(right). Very importantly, this combination is made at the component level of the GMR,

as opposed to the SC-GMR. In other words, the plugged Z-to-X and X-to-Y regressors share the

same component assignment variable m. The goal is here to make the source input vector Z benefit

from the partitioning of the articulatory space of the reference speaker (i.e. X-Y) which is assumed

to be well estimated on a large dataset. Mathematically, this principle is implemented as follows

(see [32] for a complete description). In the IC-GMR model, the statistical dependencies between

5Again, this requires an alignment procedure, which is detailed in Section 3.3.

11



X, Y and Z are modeled as:

p(x,y, z; Θ) =
M∑

m=1

p(m)p(y|m; ΘY,m)p(x|y,m; ΘX|Y,m)

× p(z|x,m; ΘZ|X,m), (6)

where for each component m, πm = p(m) is the prior component weight, p(y|m; ΘY,m) is a Gaus-

sian distribution, and the conditional PDFs p(x|y,m; ΘX|Y,m) and p(z|x,m; ΘZ|X,m) are Linear-

Gaussian distributions (i.e. a Gaussian distribution with the mean being an affine function of the

conditional variable). All Gaussian distributions have full-covariance matrices. The minimum MSE

estimation ŷ of y given z is given by its posterior mean (see [32] for the complete derivation):

ŷ = E[Y|z] =
M∑

m=1

p(m|z; ΘZ)(µY,m + ΣYX,mΣ−1XX,mΣXZ,mΣ−1ZZ,m(z− µZ,m)). (7)

The component weights p(m|z; ΘZ) are obtained by applying the classical formula (5) with the

marginal distributions p(z|m; ΘZ,m), which can be obtained from the distributions defined above.

Similarly to the GMR, the above equation enables the mapping to be performed in real-time.

The full derivation of the exact EM training algorithm of the IC-GMR was presented in [32].

This EM algorithm jointly exploits the large dataset (x1:N ,y1:N) from the reference speaker and

the small (aligned) enrollment dataset z1:N0 . Remember that the amount of source speaker’s data

may be relatively small since the enrollment stage is generally limited in time. It can also be sparse

because the source speaker may not be able to pronounce one or several phonemes. Interestingly, the

proposed training algorithm explicitly applies the missing data methodology of machine learning

[41, 40] to deal with this limited and/or sparse aspect of the enrollment dataset. The core idea of

this training approach is to infer the missing information of the source speaker from the reference

speaker data, which is assumed to be (much) larger (i.e. N > N0) and denser (i.e. the reference

speaker is able to pronounce correctly all the phonemes of a given language).6

6Technically, this probabilistic inference occurs during each iteration of the E-step: The observations zN0+1:N

which are considered as missing (i.e. they lack in the “ideal” joint set of z1:N ,x1:N ,y1:N of N training observations)

are replaced with their conditional mean µZ|xn,m for n ∈ [N0 + 1, N ]. This inference can be seen as a X-to-Z GMR

which can be calculated using (4), for each component of the IC-GMR. Then the responsibility of each component m

is calculated following (5), given the completed dataset z1:N ,x1:N ,y1:N (which includes the true observations z1:N0

and the inferred observations zN0+1:N ) and the current values of model parameters. See [32] for details.
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3. Experimental set-up and protocol

The D-GMR and C-GMR approaches (i.e. SC-GMR and IC-GMR) were evaluated on a mul-

tispeaker database, with special focus on the impact of the enrollment stage, in terms of size and

content, on the mapping performance. In this section, we describe the experimental set-up and

protocol. The results will be reported and discussed in the next section.

3.1. Data acquisition

As mentioned earlier, the training of the reference X-Y GMM requires to simultaneously record

a large amount of ultrasound and EMA tongue data on the reference speaker. Such simultaneous

recordings have recently been showed to be feasible by Aron et al. [42]. In their study, the ultrasound

probe was held manually by the speaker and could move up and down with the jaw. EMA was used

to track the displacement of the probe (with sensors attached to it). Calibration and registration

techniques were then used to combine the two modalities. This approach is probably the most

suitable for recording the data for the reference speaker in our case, and should be investigated

in future studies. In the setup available in our laboratory, the probe is kept fixed with respect to

the speaker’s head by means of a stabilization helmet, manufactured by the Articulate Instruments

company. Since we found that the ultrasound system, and mainly the helmet, interfered with

the magnetic field of the EMA device, resulting in measurement distortion, we built the parallel

“ultrasound-EMA” dataset in two steps, using a different approach.

We started from an existing EMA+audio dataset recorded on the reference speaker [31]. These

data were recorded using the Carstens AG200 EMA system with a sampling rate of 100Hz. They

consist of approximately 17 minutes of speech (after removing the long pauses), for a total of 1, 109

sequences (i.e. all French vowels, 224 VCVs, 109 isolated words, 88 sentences, all items being

repeated twice). Then, in another session, we recorded an ultrasound+audio database with the

same reference speaker. The speaker was asked to pronounce the same speech material as for the

EMA+audio dataset.

Ultrasound images (640× 480 grayscale images, 60 fps) were acquired using the Terason T3000

medical ultrasound system, with a 128-element microconvex transducer. Ultrasound frequency

range was set to 3 MHz-5 MHz, scanning angle to 140◦, and penetration depth to 7 cm. The

acoustic speech signal (44.1 kHz, 32 bits) was recorded synchronously with ultrasound thanks to
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the Ultraspeech 1.3 software [43]. The ultrasound images were processed with the feature extraction

procedure described in Section 3.2 and aligned with the EMA vectors as detailed in Section 3.3.

Two additional ultrasound databases were recorded for this study for evaluating the cross-

speaker (source-to-reference) and cross-modality (ultrasound-to-EMA) articulatory mapping using

D-GMR, SC-GMR and IC-GMR. For that purpose, one male subject (distinct from the reference

speaker) and one female subject, neither having articulation disorders, were asked to pronounce

the same database while being recorded using ultrasound (and audio), with the same experimental

setup as for the reference speaker. In the following, these two source speakers will be referred to

as M1 and F1. As for the reference dataset, each of these two enrollment ultrasound datasets was

processed with feature extraction and alignment, as described in the next subsections.

3.2. Extraction of ultrasound feature vectors from raw ultrasound images

Visual features were extracted from raw ultrasound images with the Principal Component Anal-

ysis or PCA-based technique proposed by Turk and Pentland for face recognition (also known as

the EigenFace technique) [44]. At training stage, each image was down-sampled to 64× 64 pixels,

normalized by its mean value, and transformed into a 4096× 1 vector. A PCA was then performed

on the whole training dataset of Ni images (i.e. on a Ni×4096 matrix). The basis vectors that best

explain the variation of the pixel intensities are here called EigenTongue [45]. At feature extraction

stage, each new ultrasound image was pre-processed in the same way and projected onto the set

of EigenTongue. An ultrasound feature vector was finally defined as the set of D first coordinates

in that space. The number of coordinates was determined by selecting the EigenTongue that carry

80% of the variance of the pixels, which was found to be D = 30 in this study, for both the reference

and source speakers. Ultrasound feature vector sequences were finally re-sampled from 60 Hz to

100 Hz in order to fit the sampling rate of EMA.

3.3. Data alignment

The alignment procedure for the reference speaker dataset {x1:N ,y1:N} followed the line already

described in Section 2.2 for the alignment of the {z1:N0 ,y1:N0} dataset, i.e. the alignment was done

using the audio signals: each audio sequence of the ultrasound+audio dataset was aligned with

the corresponding audio sequence of the EMA+audio dataset, using a DTW-based procedure. The

resulting alignment was then applied to the ultrasound feature vector sequences. Note that in all
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our experiments, the spectral content of the acoustic speech signal was parametrized using Mel-

frequency cepstral coefficients (MFCC) decomposition, performed with the HTK toolkit [46] and

a standard configuration: The audio signal was downsampled to 16 kHz, 16 bit quantization, and

analyzed with a 20 ms-length window with 5 ms shift. The MFCC analysis results in vectors of

26 coefficients including static coefficients and their first derivative. MFCC feature sequences were

downsampled from 200 Hz to 100 Hz in order to fit the sampling rate of EMA.

For the SC-GMR and IC-GMR, two approaches were investigated to align the ultrasound data

from the source and reference speakers, in order to build the datasets {z1:N0 ,x1:N0} (for the SC-

GMR) and {z1:N0 ,x1:N ,y1:N} (for the IC-GMR). The first approach is the same as the one used

for the datasets of the D-GMR and of the reference GMR: It exploits the audio signal recorded

simultaneously with the ultrasound images. With the clinical application in mind, the second

approach aims at simplifying the experimental set-up by getting rid of the audio recording. To that

purpose, the DTW was applied directly to ultrasound feature vectors (rather than to audio vectors

(MFCC)). Common EigenTongue basis vectors were thus estimated on a training set containing

an equal number of ultrasound images from both source and reference speakers. This allows to

represent the images of both speakers in the same joint image feature space and thus to align the

sequences of the two speakers using DTW with these features. This approach will be referred to as

“SC-GMR / IC-GMR (no audio)”.

3.4. Training reference, D-GMR and C-GMR models

The X-Y reference GMM was trained using the (large and aligned) parallel ultrasound-EMA

dataset from the reference speaker {x1:N ,y1:N}. As stated in Section 2.2, the D-GMR was trained

using the aligned dataset {z1:N0 ,y1:N0}. The Z-X GMM of the SC-GMR was trained using the

aligned dataset {z1:N0 ,x1:N0}. For these three models, the EM training algorithm for GMM was

used, initialized with k-means clustering (the whole training procedure was repeated 5 times).

A cross-validation procedure was used to determine the optimal number of mixture components

M (from 2 to 16), using 20% of the training set as a validation set. For the X-Y reference GMM, the

optimal value was found to be M = 16. For the D-GMR and the SC-GMR, this number depended

on the amount of enrollment data, i.e. N0 (the more data are available, the phonetically denser the

articulatory space is likely to be, the more components are needed to model it).
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For the reference speaker, and for each step of the cross-validation procedure, the EigenTongue

decomposition basis was built by selecting randomly Ni = 2, 000 images among the available N

training images. The number 2, 000 was chosen empirically. As in [45], we found that it was

sufficient to cover the tongue shape variability and perform the EigenTongue decomposition. For

the source speaker, as well as for the reference speaker for the SC-GMR/IC-GMR (no audio)

experiments (for which a common EigenTongue basis vectors are estimated), all of the N0 frames

of the enrollment dataset were used if N0 ≤ 2, 000, and a subset of 2, 000 images was randomly

selected from the enrollment dataset otherwise.

Finally, the IC-GMR was trained using the aligned dataset {z1:N0 ,x1:N ,y1:N}. By design, it

inherits from the structure of the reference X-Y GMM, with the optimal value M = 16 found in

our experiments. As described in [32], the IC-GMR parameters related to the X-Y mapping were

initialized by the reference GMR.

4. Results

In this section, we first report the performance of the reference model. Then we present and

discuss the performance of the complete cross-speaker cross-modality mapping. Finally, we explore

two issues that are relevant to the target applications (speech therapy and L2 learning): the influence

of the amount of enrollment data on the performance, and the generalization capabilities of the GMR

and C-GMR.

4.1. Evaluation metric

In all the following experiments, the performance of the different models was assessed by calcu-

lating the (average) root mean squared error (RMSE) between original and estimated EMA control

parameters, as:

RMSE(i) =

Õ
1

Nv(i)

1

DY

Nv(i)∑
n=1

DY∑
d=1

(ydn − ŷdn)2, (8)

RMSEAverage =
1

Ns

Ns∑
i=1

RMSE(i), (9)

where i is the utterance index, Nv(i) is the number of feature vectors in utterance i, DY and ydn are

the dimension and the entries of vectors y, respectively, and Ns is the total number of utterances

in the test dataset.
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4.2. Performance of the X-to-Y reference model

First, the performance of the reference speaker’s model (i.e. ultrasound-to-EMA mapping) was

evaluated using a 5-fold cross-validation technique. The ultrasound-EMA database of the reference

speaker was divided into 5 subsets of approximately equal size. For each trial, 4 subsets were used

for training the model, while the remaining subset was used for testing.

For the X-to-Y reference GMR, the RMSEAverage (RMSE averaged over all test sequences and

all EMA control parameters) was found to be 2.2 mm. This performance is globally satisfactory.

Interestingly, it is better than the performance reported in the literature on GMM-based acoustic-

to-articulatory mapping (as in [47]). This may be explained by the fact that the ultrasound-to-EMA

mapping may be less complex than the acoustic-to-EMA mapping since the tongue information is

directly available in the ultrasound image, and not mixed with other articulatory information as it is

in the audio signal (such as the movement of the lips, the laryngeal activity, etc.). This performance

is considered as the baseline of the other mapping methods explored in the following.

The performance of the reference GMR model for each EMA control parameter coordinate is

presented in Table 1. Here, the RMSE was calculated independently for each entry of y (hence no

summation on d was applied in (8); instead the RMSE was calculated for each d value independently;

still the per-entry RMSE is averaged over the complete test dataset). We report also the value of

the Pearson correlation coefficient for each EMA control parameter. With a minimal and maximal

correlation of 0.79 and 0.94 respectively, the performance is satisfactory and relatively homogeneous.

However, it appears that the EMA control parameters related to the middle tongue (mid) are more

accurately estimated than the ones related to the tongue tip and the tongue back. These differences

could be partly explained by the fact that these tongue parts are sometimes hidden in the ultrasound

images by the acoustic shadows of the jaw and hyoid bones.

4.3. Performance of the cross-speaker cross-modality mapping methods

We discuss here the performance of the D-GMR, SC-GMR and IC-GMR techniques as a function

of the amount of enrollment data (i.e. N0). The experimental protocol was the following: i) The

database recorded by the reference and the two source speakers was partitioned in 5 subsets of

approximately equal size; 4 subsets were used to build the training and enrollment dataset while
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EMA control parameter RMSE (in mm) ± CI Pearson corr. coef.

tiph 2.3 ± 1.1 0.89

tipv 2.0 ± 0.9 0.85

midh 1.9 ± 0.9 0.89

midv 1.7 ± 0.9 0.90

backh 1.6 ± 0.9 0.94

backv 2.2 ± 1.1 0.79

Table 1: Performance of the X-to-Y GMR (ultrasound-to-EMA mapping for the reference speaker) in terms of

(average) RMSE with 95% confidence interval (CI) and Pearson correlation coefficient, for each individual EMA

control parameter (tip, mid, back; h and v denote the horizontal and vertical coordinates in the 2D midsagittal

plane, respectively).

the remaining subset was used for test; ii) A set of enrollment sentences was randomly selected from

the sentences available in the 4 subsets used for training; The size of the enrollment dataset varied

from 1/20 to 1/2 of the size of the training set with 8 intermediary sizes; iii) Step (ii) was repeated

for all the five permutations of Step (i) (5-fold validation). This resulted in 50 experiments for each

source speaker F1 and M1.

Results are presented in Fig. 5 for F1 and in Fig. 6 for M1. First, we observe that the RMSE of

all models is significantly larger than the RMSE observed when processing ultrasound images of the

reference speaker (which is 2.2 mm, see Section 4.2 and ”Ref” in Fig. 5 and 6). For example, the

IC-GMR, which is the best method for small N0 values (see extended discussion below), provides

nearly 1 mm worse RMSE for both speaker M1 and F1, for about 1 min of adaptation data (long

silences at the beginning and end of each sentence being excluded). This remains true even for

a relatively large enrollment dataset (though the RMSE decreases with N0, see below). This is

an expected result which can be partially explained by articulatory idiosyncrasies, i.e. differences

between two speakers in terms of morphology and articulatory strategies when pronouncing the

same phoneme. Here, this phenomenon is not taken into account in the evaluation which considers

the articulatory strategy of the reference speaker as the ground truth. Therefore, a vector of EMA

parameters estimated from a source speaker’s ultrasound image can be slightly different from the

one observed when the reference speaker is pronouncing the same phoneme, without leading to an
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Figure 5: Performance of Z-to-Y mapping in RMSE (in mm) with 95% confidence interval as a function of the amount

of enrollment data, for the D-GMR, SC-GMR, and IC-GMR, for source speaker F1. For SC-GMR (no audio) and

IC-GMR (no audio), the alignment of source and reference speakers’ ultrasound data is performed without exploiting

the audio recordings. The ”Ref” line stands for the performance of the reference X-Y GMR

.

incorrect visual feedback.

Then, we observe also that the performances of all mapping techniques considered in this study

(D-GMR, SC-GMR and IC-GMR) increase with N0, as expected. However they do not have the

same starting level (i.e. RMSE value at lower N0 value) and they do not have the same decrease

rate. In a general way, the D-GMR starts with the higher RMSE value and has the fastest decrease,

whereas the IC-GMR starts with the lower RMSE value and has the lower decrease rate. The IC-

GMR curve and the D-GMR curve cross each other at approximately 3.5 min of adaptation data
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Figure 6: Performance of Z-to-Y mapping in RMSE (in mm) with 95% confidence interval as a function of the

amount of enrollment data, for source speaker M1

for speaker F1 and at approximately 1.75 min of adaptation data for speaker M1. The SC-GMR

lies between the D-GMR and the IC-GMR for small N0 values, and performs worse than both

D-GMR and IC-GMR for higher N0 values. For an enrollment dataset larger than about 4 min

for speaker F1 (with statistical significance starting at about 5 min) and 2 min for speaker M1

(with statistical significance starting at about 3 min), the best performance is achieved with the

D-GMR model. As could be expected, this shows that when enough data from the source speaker

is available, there is no need to exploit prior information on the reference speaker. Conversely,

for a small size of the enrollment dataset (which is one of the main goals of this study), the best

performance is clearly obtained with the IC-GMR technique. This tendency is observed for both

source speakers. The IC-GMR outperforms all other methods below approximately 3 min for F1,
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and below approximately 1.5 min for M1. As an example, at 1 min of adaptation data, the gain of

IC-GMR over D-GMR is 0.6 mm for F1, and 0.3 mm for M1. The gain is even higher at smaller

N0 values but the absolute performances of all models decrease significantly. In terms of gain on

data, the RMSE obtained by the IC-GMR on speaker F1 at about 1 min of enrollment data is close

to the RMSE obtained by the D-GMR (and the SC-GMR) at about 2.5 min of enrollment data.

These results demonstrate the effectiveness of the IC-GMR approach and the benefit of exploiting

prior information on the reference speaker to cope with the lack of knowledge on the source speaker.

Interestingly, the IC-GMR outperforms systematically (and significantly) the SC-GMR, for both

speakers. Moreover, the gain of SC-GMR over D-GMR at small N0 values is noticeable for speaker

M1, but more moderate for speaker F1 (for F1, the gain of SC-GMR over D-GMR is significant

only for the two smallest sizes of enrollment dataset; the gain of IC-GMR over D-GMR is here

much larger than the gain of SC-GMR over D-GMR). To explain the difference between IC-GMR

and SC-GMR, we recall that for the SC-GMR, the enrollment dataset is used to train the Z-to-X

GMR “from scratch” while keeping the reference X-to-Y GMR unchanged. In the IC-GMR, the

statistical relationships between all available source and reference speakers’ data (i.e. z, x, and y)

are jointly exploited. Therefore, addressing the cross-speaker and cross-modality mapping issues in

the same probabilistic framework, as it it the case for the IC-GMR, appears to be the most effective

strategy.

Now we discuss the performance of the ”SC-GMR (no-audio)” and ”IC-GMR (no-audio)” models

for which the enrollment stage is done without exploiting the audio signal to align source and

reference speaker’s data. The performance is lower than the one obtained with the SC-GMR

and IC-GMR using audio for data alignment. The difference is significant and amounts to 10%

on average (for both speakers) for the SC-GMR, and about 5% for the IC-GMR. This decrease

of performance can be explained by the difficulty to encode both inter-speaker and intra-speaker

variability in a simple linear model such as the joint EigenTongue model proposed in Section 3.3.

However, the IC-GMR (no-audio) remains significantly better than the D-GMR for less than 1 min

of enrollment data (which is not the case for the SC-GMR (no audio)). Therefore, in a scenario

where the patient or learner is not able to phonate, the IC-GMR remains the best mapping approach

to design a robust system of visual biofeedback.
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4.4. Generalization capability of C-GMR techniques

As mentioned in the introduction, this study also aims at evaluating the generalization capability

of the D-GMR, SC-GMR and IC-GMR conversion models. This would be of significant interest

in the context of pathological speech or of speech produced by a L2 learner. Ideally, the model

should be able to generalize to articulations not seen during the enrollment stage, but that should

be acquired during the therapy / L2 training.

In a first attempt to test this property, we have simulated such a scenario using the data of

speakers F1 and M1 (none of them being a pathological speaker). For each speaker, we conducted a

series of simulations where one phoneme (or one class of phonemes) was removed from the enrollment

set and used as testing set. More specifically, for the enrollment data, we used the VCV sequences

from the corpus described in Section 3.1, V being in {a i u E o}, and C being in {t k K l s S} (two

repetitions of each sequence). These two sets were selected to maximize the coverage of lingual

articulations for French. For each simulation, we generated an enrollment dataset composed of the

above VCV sequences where one phoneme was excluded (this results in about 1 min of enrollment

data). Hence, either V belongs to a subset of 4 vowels taken from {a i u E o} or C belongs to a

subset of 5 consonants taken from {t k K l s S}. This was done independently for each of the eleven

phonemes in {a i u E o t k K l s S}. For each enrollment dataset (i.e. for each missing phoneme),

a corresponding test dataset was generated: We first selected in the VCV dataset the sequences

where V or C is the phoneme in {a i u E o t k K l s S} not selected in the training set. From these

sequences, only the vectors corresponding to the tested phoneme (i.e. neither taken from the V

part nor the C part of the sequence) were selected to compose the test dataset. Moreover, in the

case of consonants, we added to the test dataset the feature vectors corresponding to the C part of

VCV sequences where C is in {t d n k g K l s S z Z} and with the same place of articulation as the

tested phoneme. This allowed us to increase the size of each test set, while maintaining phonetic

consistency. Let us give an example: when testing the generalization of the model to phoneme

/t/, the training set was composed of all vectors from VCV sequences with V in {a i u E o} and

C in {k K l s S}, and the test set was composed of the vectors extracted from the C part of VCV

sequences with V not in {a i u E o} and C in {t d n}. For each of the eleven phonemes {a i u

E o t k K l s S}, the D-GMR, SC-GMR and IC-GMR models were trained with the corresponding

missing phoneme enrollment dataset, following the procedure described in Section 2.3, and were
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evaluated on the corresponding test set. The same reference speaker model as the one considered

in Section 4.3 was used for the X-to-Y GMR of the SC-GMR, and for the initialization of the

IC-GMR. For comparison, we also carried out a set of baseline experiments, one for each model

(D-GMR, SC-GMR and IC-GMR), where all VCV sequences with the eleven phonemes (and only

those phonemes) were used for enrollment training (i.e. no phoneme among the eleven ones was

missing; testing was made with the same test dataset as for the generalization experiments). These

baseline experiments differ from the ones described in Section 4.3 by the use of VCV sequences only

in the enrollment dataset, instead of VCV and full sentences as done in Section 4.3. Note that, due

to the relatively small size of the VCV corpus, no cross-validation procedure was performed in all

the following experiments.

Fig. 7 displays the boxplots of the RMSE obtained for the generalization experiments and for

the baselines. These boxplots represent the RMSE values obtained on the complete dataset of test

sequences for the 11 considered phonemes (per-phoneme results will be detailed later), for both

the generalization experiments and the baselines, and both F1 and M1 speakers. First, we observe

that the RMSE of the baselines is slightly higher than the one presented in Fig. 5 and 6 for a

similar amount of adaptation data (≈ 1mn) (for D-GMR, SC-GMR and IC-GMR). This may be

explained by the fact that the baseline models are here trained and evaluated on a sparser dataset

(VCV sequences with a limited set of phonemes) as compared to the experiments described in

Section 4.3 (where the training and test sets were composed of a randomly selected set of VCV,

words and sentences). Second, the errors obtained in the generalization experiments are higher than

those obtained with the baselines, for all models and for both speakers. As expected, removing a

phoneme from the enrollment dataset decreases the performance for this phoneme, since the model

has to extrapolate from the other phonemes.

Let us now analyze the performance of all models by distinguishing their absolute performance,

that is the RMSE obtained either in the generalization experiments or the baseline experiments,

and the relative performance, that is the difference between the generalization and the baseline

performances. Similarly to the experiments described in Section 4.3, the best absolute performance

is obtained with the IC-GMR: for speaker F1, the median RMSE obtained by the IC-GMR is

about 0.7 mm lower than that obtained with the SC-GMR (the second best model); for speaker

M1, it is about 0.9 mm below the median error of the D-GMR (the second best model for this
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speaker). Similarly, the IC-GMR has also the best relative performance for both speakers. Indeed,

the degradation observed between the baseline and the generalization conditions is 1.1 mm for F1

and 0.9 mm for M1 for the IC-GMR, whereas if it is 1.4 mm for F1 and 1.3 mm for M1 for the

SC-GMR, and 3.2 mm for F1 and 1.7 mm for M1 for the D-GMR. Hence, the IC-GMR appears to

be the preferential choice for designing an accurate and robust conversion model.

Fig. 7 also displays the output outliers. It can be seen that the outliers produced by the IC-

GMR are less spread than for the other two methods. This is another illustration of the benefit

of relying on a well-estimated reference model. In contrast, building a direct Z-Y (cross-speaker

and cross-modality) model on a very small number of feature vectors may be expected to lead to a

large variability of the estimations. The situation is quite similar for the Z-X (cross-speaker) GMR

model of the SC-GMR.

4.5. Examples of talking head animations

Fig. 8 displays snapshots of animations produced with the proposed system for two VCV se-

quences. These animations were built by converting the ultrasound image sequences of speaker

M1 uttering /ata/ and /uku/ into EMA control parameters. The conversion was performed with

the IC-GMR approach and approximately 1 min of enrollment data. In these two examples, the

tongue position for the initial and final vowels, and well as the place of articulation for the middle

consonant (palatal for /k/ and alveolar for /t/) appear to be correctly mapped into the vocal tract

of the ATH. Video clips of these two animations are provided as supplementary material. We also

provide the same sequences (i.e. /ata/ and /uku/ pronounced by M1) obtained with the D-GMR

and SC-GMR.

5. Discussion

In this section, we discuss some important issues that could be raised when applying the proposed

model to speech therapy or L2 language learning. In particular, in such a context it is expected

that the patient or L2 learner will not be able to articulate all phonemes correctly. Two important

examples of mispronunciation patterns must be mentioned:

• a phonological substitution (e.g. substitution of /t/ in /k/ in /K/ context as in “trotinette”
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Figure 7: Boxplots of the RMSE (in mm) obtained for the different experiments for Speaker F1 (top) and Speaker

M1 (bottom)

which becomes “krotinette”). In that case, each phoneme of the sequence, considered indi-

vidually, exists in the articulatory repertoire of the reference speaker.

• an altered articulation of one or several phonemes (e.g., a voiceless alveolar lateral fricative
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Figure 8: Snapshots of talking head animations generated from raw ultrasound images, for VCV /ata/ (top) and

/uku/ (bottom) for speaker M1, with the IC-GMR approach, and considering approximately 1 min of enrollment

data.

instead of /s/). Such articulation is likely to be not covered by the reference speaker’s model.

In the first case (i.e. phonological substitution), the therapist/teacher could manually re-label

the erroneous item. However, this may be inconvenient (time-consuming) and we thus exclude this

approach. Therefore, in both cases, the only practical approach would be to exclude all erroneous

items from the enrollment dataset for the adaptation of the reference model, since the latter is

a supervised process and any labeling error could degrade the system’s performance. In other

words, the adaptation of the reference model (i.e. the training of the IC-GMR given both the

source speaker adaptation data and the reference speaker data) is to be performed by exploiting

only tongue articulations that can be considered phonetically correct. The increased sparsity of

the resulting enrollment dataset is technically tackled in our approach by exploiting a missing data

methodology that allows models to be trained from incomplete data. Note that this is what we

do in the generalization experiments of Section 4.4: some phonemes are missing but all phonetic

realizations do actually correspond to intended targets, without labeling errors. In practice, the

speech therapist or the language teacher is expected to carefully monitor the ultrasound recordings

and to exclude erroneous items from the enrollment dataset. The therapist/teacher should thus

consider the quality of the phonetic realization produced by the patient/learner, i.e. the articulation
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produced, but not the phonological target.

Then, in order to be used with pathological or non-native speakers, the system should be able

to deal with articulations which were not retained during the enrollment session (i.e. because

considered as phonetically incorrect and thus excluded from the enrollment dataset) for training

the IC-GMR model. In the case of a phonological substitution, we can conjecture an adequate

behavior of the conversion model as long as these phonemes considered individually are covered

by the reference model (even partially). Indeed, the system might be able to provide the correct

feedback even for a target phoneme absent from the enrollment dataset, as demonstrated by the

generalization experiment proposed in Section 4.4 (when the user is finally able to articulate this

phoneme at the end of a set of pronunciation training sessions). In the case of an altered phoneme,

not covered by the reference model, the behavior of the system is difficult to predict, since it likely

depends on many factors. Some of these factors are intrinsic, e.g. the inner interpolation capability

of the machine learning mapping technique. Some of these factors are extrinsic, e.g., the phonetic

proximity between the reference speaker language and the source speaker language, the type of

pathology of the patient, the ability of the patient/learner to integrate the visual information to

adjust his/her motor strategies, etc. Properly evaluating the final interpolation capabilities of

the system (after training with consistent but incomplete data, and taking into account erroneous

realizations of the source speaker) is a problem on its own. Because of the many factors mentioned

above, this deserves a full dedicated study based on multi-speaker, and multi-language or multi-

pathology, ultrasound databases. In a general manner, the capability of GMM-like models (and of

other families of models) to correctly interpolate features between data classes in more or less void

regions of the data space is a topic of research on its own in the machine learning community. In

addition, one way to enhance the overall performance of the system would be to perform the model

adaptation following a close-loop/incremental paradigm: the conversion model could be first trained

using a few “anchor phonemes” that the source speaker is clearly able to pronounce correctly. Then,

during the practical system use, the therapist/teacher could enrich the enrollment dataset with any

new phonetic realization that he/she would consider as valid (resulting from the patient/learner

progress) and retrain (automatically) the conversion model to improve the visual feedback. Note

that, in contrast to the D-GMR model, a very interesting property of the IC-GMR model is that,

even if the patient/learner is unable to pronounce some phonemes at the beginning of the training
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sessions, the components corresponding to these phonemes do exist in the model, since the IC-GMR

is based on the reference speaker’s GMR. During this incremental adaptation process, we can thus

expect these components to be “activated” as soon as the patient/learner’s articulation will be able

to approach them, and thus to behave like “attractors”.

6. Conclusion

In this article, we presented a new method for automatically animating the tongue model of

an articulatory talking head from ultrasound images. The proposed method was developed in the

context of visual biofeedback which aims at showing a speaker his/her own tongue movements

when speaking. The proposed method is based on the statistical mapping between a set of visual

features extracted from raw ultrasound images of the speaker and a set of EMA control parame-

ters of the talking head. This cross-modality and cross-speaker mapping problem was addressed

using supervised machine learning, in the framework of Gaussian Mixture Models. We compared

different approaches and found that the best results were obtained with the Integrated-Cascaded

Gaussian Mixture Regression (IC-GMR) recently proposed in the context of cross-speaker acoustic-

articulatory inversion. The core idea of this approach is to exploit a conversion model pre-trained

on a large dataset recorded on a reference speaker, and to adapt this model to the user.

The main results obtained after an experimental evaluation based on a multi-speaker database in

a simplified usage scenario are that, compared to the other tested models (D-GMR and SC-GMR):

• The IC-GMR approach leads to the best trade-off between conversion performance and amount

of enrollment data,

• The IC-GMR generalizes better to articulatory movements not seen during training.

These two features make this model appropriate for implementing a robust system of visual artic-

ulatory biofeedback.

Future works will mainly consist in testing the system in more realistic scenarios. First, we plan

to record non-native learners, test (offline) the behavior of the system on source speaker realizations

that are not present in the enrollment dataset, and test the influence on the system performance of

erroneous realizations that are not discarded or not properly re-labeled. Then, we will evaluate the

proposed system in realistic practical scenarios, involving speakers with phonetic or phonological
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disorders, as well as L2 learners, in the spirit of what is discussed in Section 5. Besides, a long-

term perspective could be the automatic adaptation of the geometry of the reference ATH to the

geometry of the source speaker’s vocal tract, as recently proposed by [48] (for MRI images).

7. Supplementary material

The source code of the C-GMR technique is publicly available and can be downloaded on the

following Git repository https://git.gipsa-lab.grenoble-inp.fr/cgmr.git . All datasets (audio, ultra-

sound and EMA for both the reference speaker and source speakers M1 and F1) used in this study

will be made publicly available if the paper is accepted. Examples of ATH animations from ultra-

sound images are also provided in the following video file: supplementary material fabre specom 2016.mp4
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