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Abstract 
This paper presents recent developments on our “silent speech 
interface” that converts tongue and lip motions, captured by 
ultrasound and video imaging, into audible speech. In our 
previous studies, the mapping between the observed 
articulatory movements and the resulting speech sound was 
achieved using a unit selection approach. We investigate here 
the use of statistical mapping techniques, based on the joint 
modeling of visual and spectral features, using respectively 
Gaussian Mixture Models (GMM) and Hidden Markov 
Models (HMM). The prediction of the voiced/unvoiced 
parameter from visual articulatory data is also investigated 
using an artificial neural network (ANN). A continuous speech 
database consisting of one-hour of high-speed ultrasound and 
video sequences was specifically recorded to evaluate the 
proposed mapping techniques.  
Index Terms: silent speech interface, GMM, HMM, 
ultrasound, video, multimodal, statistical mapping 

1. Introduction 
A “silent speech interface” (SSI) is a device that allows speech 
communication without the necessity of vocalizing. SSI could 
be used in situations where silence is required (as a silent cell 
phone), or for communication in very noisy environments. 
Further applications are possible in the medical field. For 
example, SSI could be used by laryngectomized patients as an 
alternative to electrolarynx which provides a very robotic 
voice; to oesophageal speech, which is difficult to master; or 
to tracheo-oesoephageal speech, which requires additional 
surgery. The design of SSIs has recently received considerable 
attention from the speech research community [1]. Different 
approaches have been proposed in the literature. A speaker 
may for example produce small airflow in his vocal tract and 
capture the resulting “murmur” with a stethoscopic (or NAM) 
microphone as in [2] and [3]. Other approaches, based on 
completely non-acoustic features have also been proposed, as 
for example in [4] where electromyographic electrodes placed 
on the speaker’s face (or on his neck in [5]) record muscular 
activity. In our approach, articulatory movements are captured 
by a non-invasive multimodal imaging system composed of an 
ultrasound transducer placed beneath the chin and a video 
camera in front of the lips.  

In our previous work ([6] [7]), the “visuo-acoustic” 
mapping problem, i.e the synthesis of an audible speech signal 
from visual articulatory data only, has been addressed using a 
concatenative synthesis approach. The system was composed 
of two distinct modules: a HMM-based “visual” phonetic 
decoder and a segmental vocoder exploiting a unit dictionary 
that associates visual to audio segments. Given a test sequence 

of visual features, a phonetic target sequence was first 
predicted. Then, a unit selection algorithm found in the 
dictionary the optimal sequence of units that best matched the 
input test data. Finally, the speech waveform was generated by 
concatenating the acoustic segments for all selected units. This 
approach gives encouraging results but presents some 
drawbacks. First, the quality of the synthesis depends strongly 
on the performance of the phonetic decoding: an error during 
the recognition stage corrupts necessarily the synthesis. 
Second, since the visual and the audio modality are processed 
separately, this approach does not model explicitly the 
dependency between the articulatory and the acoustic 
variables. In this paper, we investigate the use of statistical 
mapping techniques to address the visuo-acoustic conversion. 
We describe two techniques based on the joint modeling of 
articulatory and acoustic data using respectively Gaussian 
Mixture Models (GMM) and Hidden Markov Models (HMM). 
We also address the problem of the prediction of the 
voiced/unvoiced parameter using an artificial neural network 
(ANN).  

This article is organized as follows. The data acquisition 
and the feature extraction are described respectively in Section 
2 and 3. Theoretical and practical aspects of the proposed 
GMM, HMM and ANN-based mapping techniques are 
detailed in Section 4. Experimental results are presented in 
section 5. Conclusions and perspectives are presented in the 
last section. 

2. Data acquisition 
The experimental setup used for data acquisition is presented 
in figure 1. The hardware component of the system is based on 
the portable Terason T3000 ultrasound system, a 140° 
microconvex transducer, an industrial USB Bayer color 
camera and a standard sound system. In order to automate the 
two imaging devices (the ultrasound system and the video 
camera), we developed a dedicated software, named 
Ultraspeech1. Ultraspeech processes the ultrasound, video and 
audio streams in parallel using multithreading programming 
techniques and prevents data loss using a FIFO-based buffer 
management approach. This software was used to record 
simultaneously, and synchronously: the acoustic signal (16 
bits, 16 kHz); the ultrasound stream (320x240 pixels) and the 
video stream (640x480 pixels). The ultrasound and video 
stream were both recorded at a frame rate of 60 fps (frames 
per second), which was twice as high as in our previous 
studies [6] [7] (for which a different acquisition setup were 
used). 
                                                                    
 
1 http://www.ultraspeech.com 
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The recorded dataset used in this work consists of the 1132 
sentences of CMU ARCTIC corpus [8], uttered by a female 
native English speaker. To prevent speaker fatigue, the 
acquisition was split into 10 sessions, spaced in time. An inter-
session re-calibration mechanism (detailed in [9]), was used to 
maintain the positioning accuracy of the sensors across all 
sessions (and thus the data consistency). A typical pair of 
ultrasound and video images is shown in figure 2.  

 
Figure 1: Experimental setup used for 

 data acquisition. 

 
Figure 2: Example of an ultrasound vocal tract image 

(in the midsagittal plane) with lip frontal view. 

3. Feature extraction 
Regions of interest (ROI) selected in ultrasound and video 
images were first resized to 64x64 pixels. The EigenTongues 
decomposition technique was used to encode each ultrasound 
frame [10]. In this method, the vocal tract configuration is 
interpreted as a linear combination of standard configurations, 
the EigenTongues, obtained by performing a Principal 
Component Analysis (PCA) on a phonetically balanced subset 
of frames. A similar technique was used to encode lip images 
(EigenLips). The numbers of projections onto the set of 
EigenTongues/EigenLips used for coding were determined by 
keeping the eigenvectors carrying at least 80% of the variance 
of the training set; typical values used on this database were 30 
coefficients for each of the two streams. In order to be 
compatible with the speech analysis rate, the 
EigenTongues/EigenLips coefficient sequences were 
oversampled from 60 Hz to 100 Hz. Finally, they were 
concatenated with their first and second derivative in one and 
same visual feature vector.  

The spectral content of the audio speech signal was 
parameterized by 25 mel-cepstrum coefficients (Blackman 
window, 25 frame length, 10 ms frame shift). The 
voiced/unvoiced characteristic and the fundamental frequency 
were also extracted. All the audio manipulations were done 
using the SPTK tools. Silence frames were removed from the 
training set using an automatic (threshold-based) silence 
detection method. 

4. Visuo-acoustic mapping 
4.1. GMM-based mapping 
We investigate the use of the GMM mapping framework 
originally proposed by Stylianou [11] for voice conversion. In 
this study, we used the implementation proposed by Kain [12] 
which is based on the modeling of the joint probability density 
of source and target vectors p(Z ) = p(X ,Y )  with:  
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where X  and Y  are respectively the sequence of N source 
and target vectors (dx and dy are respectively the  dimensions 
of the source and target vectors).  

The mapping function that predicts the target vector ŷt  

from the given source vector x
t
, observed at time t, is 

formulated as a weighted sum of linear models such as:  

ŷt = F(xt ) = (Wmxt + bm ) ⋅ P(cm | xt )
m=1

M

∑  (3) 

with Wm and µm the transformation matrix and bias vector 
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and P(c
m
| x

t
) , the probability that the source vector 

“belongs” to the mth component, defined as: 

P(cm | xt ) =
αmN (xt ,µm

X ,∑m

XX )

α pN (xt ,µ p

X ,∑ p

XX )
p=1

M

∑
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where N (., µ, Σ)  is a normal (Gaussian) distribution with 
mean µ  and covariance matrix Σ . In our implementation, the 
GMM is initialized using the k-means algorithm.   

4.2. HMM-based mapping 
In the proposed HMM-based mapping approach, the sequence 
of target vectors ŷ , predicted from the given sequence of 

source vectors x , is defined as ŷ = argmax
y

p(y | x){ }  with: 

p(y | x) = p(y | λ, q)P(λ, q | x)

            = p(y | λ, q)p(x | λ, q)P(λ) (with p(x) = 1)
 (6) 

where λ is the parameters set of the HMM and q the HMM 
state sequence. As shown in Equation 6, the HMM-based 
mapping can be achieved with a recognition followed by 
synthesis approach which means: 1) finding the optimal state 
sequence for a given source vector, and 2) inferring the target 
vector from the decoded state sequence. The HMM can be 
defined and trained in different ways. In this paper, we 
describe a method based on the use of phonetic information.   

In the training stage, a multistream HMM (MSHMM) is 
trained on articulatory-acoustic data for each of the 40 
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phonetic classes. Two streams are dedicated to the modeling 
of the visual features (ultrasound/video), one stream is used to 
model the spectral features (mel-cepstrum coefficients). For 
each stream, the emission probability density of each state is 
modeled by a GMM with diagonal covariance matrix. The 
initialization of the HMMs requires temporal segmentation of 
the training data at phonetic level. As articulatory and acoustic 
data were recorded synchronously, this segmentation was 
obtained by annotating the acoustic data. This was done 
automatically using a forced-alignment procedure and an 
initial set of acoustic HMMs trained on the multi-speaker 
TIMIT database. After initialization, HMM parameters were 
estimated using a standard procedure (similar to that described 
in [13]): models are trained first separately, using the standard 
Baum-Welch re-estimation algorithm and then processed 
simultaneously, using an embedded training strategy. Since 
articulatory and acoustic features are naturally sensitive to 
context effects such as co-articulation and anticipation (which 
can lead to a potential asynchrony between articulatory and 
acoustic modalities), context-dependency was then introduced 
in the modeling. Triphone models were created by adding 
information about left and right contexts to the phone models. 
A tree-based state-tying strategy based on the Minimum 
Description Length (MDL) criterion, was adopted to address 
the problem of data sparsity (triphones having only a few 
occurrences in the training dataset). Each resulting 
multistream HMM were then split into two distinct HMMs: a 
2-streams “visual HMM” and a 1-stream “acoustic HMM”. 
Visual HMMs were finally refined by increasing incrementally 
the number of Gaussian mixture components.   

The prediction of the sequence of acoustic feature vector 
y, for a given test sequence of visual feature vectors x, was 
achieved in two stages. First, phonetic and state decoding was 
performed by the visual HMMs, using the Viterbi algorithm. 
Second, given the predicted sequence of phones and the 
decoded HMM state sequence, target vector sequence was 
inferred by the acoustic HMMs, using the speech parameter 
generation algorithm proposed by Tokuda for HMM-based 
speech synthesis [14]. This algorithm determines the vector 
sequence that maximizes the likelihood of the model with 
respect to a continuity constraint on the predicted feature 
trajectories. In the proposed HMM-based mapping approach, 
linguistic constraints can be introduced to help the phonetic 
decoding. With that in mind, we implemented two decoding 
scenarios. In the first, considered “unconstrained”, the 
structure of the decoding network was a simple loop in which 
all phones loop back to each other. In the second, or 
“constrained” scenario, the phonetic decoder was forced to 
recognize words contained in the CMU Arctic sentences. In 
that case, the decoding network allows all possible word 
combinations which can be built from a 3k word dictionary. 
No statistical language model was used in the present study. 
All the procedures involving HMM manipulations described in 
this paper, are done using the HTK and HTS toolkits.  

4.3. Prediction of the voiced/unvoiced parameter 

In this study, the synthesis of the audio speech signal is 
achieved using a MLSA digital filter derived from the 
predicted mel-cepstrum coefficients [15]. The generation of 
the excitation signal requires the prediction of the 
voiced/unvoiced parameter as well as the pitch for voiced 
frames. In this paper, we investigate the prediction of the 
voiced/unvoiced parameter from visual articulatory data, using 
an artificial neural network (ANN). A feed-forward neural 
network was trained using a standard gradient descent 
algorithm; the log-sigmoid function was used as the activation 

function for the hidden neurons and the output layer, the mean 
squared error (MSE) was used as the cost function.  

5. Results & Discussion 
The partitioning of the 1132 recorded sentences was done as 
follow. 82 sentences were used as a validation set for the 
determination of the model hyper-parameters which are: (a) 
the optimal number of Gaussians for the GMM/HMM models 
(which was found to be 32 for the GMM and 4 for the HMM), 
(b) the model insertion penalty for the phonetic decoding stage 
in the HMM-based mapping experiment (which was found to 
be -20 for the unconstrained  scenario and -150 for the 
constrained scenario), (c) the optimal number of hidden 
neurons for the prediction of the voiced/unvoiced parameter 
(which was found to be 10). 900 sentences where used for 
training, the remaining 150 sentences composed the test set.   

The quality of the mapping between visual and spectral 
features was evaluated by calculating the Mel-cepstral 
distortion between the target and the predicted mel-cepstrum 
coefficients, defined as: 

            
Mel − CD[dB] =

10

ln10
2 (m̂d − md )

2

d = 0

24

∑   (7)  

For the GMM-based mapping experiment, the Mel-cepstral 
distortion (with the 95 % confidence interval calculated with a 
normal approximation) was found to be 7.6 ± 0.03 dB if the 0th 
cepstral dimension, i.e the component known to correspond to 
overall signal power, was taken into account, and 6 dB ±  0.02 
dB if this term was ignored. As expected, it was difficult to 
estimate correctly the speech signal power only from the 
corresponding articulatory motions.  

For the HMM-based mapping experiment, the 
performance of the intermediate phonetic decoding stage was 
measured by evaluating the recognition accuracy defined as:  

 P = 100 ⋅
N − D − S − I

N
 (8) 

where N is the total number of phones in the test set, S the 
number of substitution errors, D deletion errors, and I insertion 
errors. The recognition accuracy was found to be 62% for the 
unconstrained scenario and 70% for the constrained scenario. 
Quite naturally, most of the substitution errors were made on 
phones with similar tongue and lip movements, such as 
{p,b,m}, {t,d,n}, {f,v}, {k,g,ɳ}, {ʃ,ʒ}. However, some of these 
mismatches in the phonetic decoding would not necessarily 
lead to unintelligible synthesis; context effects could be used 
to advantage in a real communicative situation. The mel-
cepstral distortion obtained in the unconstrained and 
constrained decoding scenarios were respectively 7.2 ± 0.03 
dB  and 7.1 ± 0.03 dB; 5.8 ± 0.02 dB  and 5.6 ± 0.02 dB  if the 
0th cepstral dimension was ignored. The mel-cepstral distortion 
obtained when the phonetic target is given (i.e P = 100%), was 
found to be 5.4 ± 0.01 dB and 4.6 ± 0.01 dB  when excluding 
the first mel-cepstrum coefficient. Thus, the HMM-based 
approach show better performances compared to the GMM-
based approach, even if the decoded phonetic sequence 
contains some errors.  

The accuracy of the voiced/unvoiced binary classifier 
(section 4.3), its sensibility and its specificity were 
respectively 0.82, 0.80 and 0.84. This means that about 80% of 
the frames were correctly classified. However, this relative 
good performance should be interpreted carefully. Since there 
is no direct relationship between voicing and articulatory 
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configuration, the performance may be partially explained by 
indirect relationships; for instance, stable vocal tract 
configurations are likely to correspond to vowels and thus to 
voiced frames; and “corpus-effects”, since the CMU Arctic 
corpus does not contain the same number of examples for each 
phonetic class. 

A constant pitch was used here for the synthesis of the 
audio signal (for the frames predicted as “voiced”). In order to 
evaluate the intelligibility of the synthesized speech, 3 native 
speakers of American English were asked to transcribe the 
synthetic speech signals corresponding to 15 sentences 
randomly extracted from the test set. The global quality of the 
synthesis was found to be more acceptable with the HMM-
based approach compared to the GMM-based approach. 
However, even if some sentences were well transcribed 
(especially the short ones and those containing “common 
words”), this preliminary subjective evaluation revealed that it 
was not possible to synthesize intelligible speech 
“consistently”, neither with the GMM-based mapping 
approach, nor with the HMM-based approach. For now, 
statistical approaches based on the “joint” modeling of the 
visual and acoustic data do not outperform our previous 
concatenative approach, in which the two modalities were 
processed separately. To measure the impact of the “joint 
modeling” on the phonetic decoding stage (i.e the use of both 
visual and acoustic modalities during training, for the HMM-
based mapping experiment), we evaluated the performance of 
a HMM-based decoder trained only on the two visual 
modalities (following the procedure described in section 4.2). 
The recognition accuracy was found to be 70.8% for the 
unconstrained scenario and 83.3% for the constrained 
scenario, i.e  approximately 10% higher than the performances 
obtained with the joint modeling approach. As a result, it 
could be useful in the future to consider the use of alternative 
strategies to combine visual and acoustic modalities at the 
classifier level. 

6. Conclusions and Perspectives 
The paper presents recent developments on our “silent speech 
interface”, driven by ultrasound and video images of the vocal 
tract. Two techniques, based respectively on the joint 
modeling of articulatory-acoustic data using Gaussian Mixture 
Model (GMM) and Hidden Markov Model (HMM) have been 
proposed to model the relationships between articulatory 
movements and the resulting speech sound. These techniques 
have been evaluated on a database containing one-hour of 
high-speed ultrasound and video data. The best mapping was 
obtained with the HMM-based method in which external 
linguistic information (such as phonological or morphological 
information) can be introduced to constrain the mapping.  

Future work will focus on the improvement of the visuo-
acoustic mapping. We will investigate the adaptation of 
different mapping techniques recently described in the 
literature, such as the GMM-based approach proposed by Toda 
et al. [16] based on the maximum likelihood estimation of the 
feature trajectories, and the approach proposed by Zen et al. in 
[17], which is based on trajectory HMM.  

The specificities of silent articulation will also be studied. 
Preliminary tests showed that the performance of statistical 
models trained on “vocalized” visual speech decreases when 
they are used to decode “silent” visual speech (if no model 
adaptation scheme is applied). This may reveal some 
differences in terms of articulatory strategies between these 
two production modes, which we have started to describe in a 
pilot study [18], using electromagnetic articulography (EMA). 
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