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Abstract—Speech is a complex process involving a wide range
of biosignals, including but not limited to acoustics. These
biosignals - stemming from the articulators, the articulator
muscle activities, the neural pathways, and the brain itself -
can be used to circumvent limitations of conventional speech
processing in particular, and to gain insights into the process of
speech production in general. Research on biosignal-based speech
processing is a wide and very active field at the intersection of
various disciplines, ranging from engineering, computer science,
electronics and machine learning to medicine, neuroscience,
physiology, and psychology. Consequently, a variety of methods
and approaches have been used to investigate the common
goal of creating biosignal-based speech processing devices for
communication applications in everyday situations and for speech
rehabilitation, as well as gaining a deeper understanding of spo-
ken communication. This article gives an overview of the various
modalities, research approaches, and objectives for Biosignal-
based Spoken Communication.

Index Terms—biosignals, spoken communication, multimodal
technologies, speech recognition and synthesis, speech rehabil-
itation, electromyography, ultrasound, functional near-infrared
spectroscopy, electroencephalography, electrocorticography

I. INTRODUCTION

Human speech production is a complex motor process, that
starts in the brain and ends with respiratory, laryngeal, and
articulatory gestures for creating acoustic signals of verbal
communication. Physiological measurements using specialized
sensors and methods can be made at each level of speech pro-
cessing, including the central and peripheral nervous systems,
muscular action potentials, speech kinematics (tongue, lips,
jaw, etc), and sound pressure. Together, these physiological
measurements are known as speech-related “biosignals” and
have been used for decades to better understand the under-
lying mechanisms of human speech production. Modeling
the mapping between physiological parameters and acoustic
consequences of speech still remains a very active research
field. Propelled by technological advances, an increasing num-
ber of studies have investigated speech-related biosignals in
applied research focused on developing spoken communica-
tion (SC) systems. This field is referred to as “Biosignal-
based Spoken Communication,” and encompasses two primary
tracks for converting: (1) biosignals into text (biosignal-based
speech recognition), and (2) biosignals into a synthetic voice
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(biosignal-based speech synthesis). Examples of these two
technical tracks include Brain-Computer Interfaces (BCI) for
restoring communication by directly decoding cortical brain
activity [1], [2], [3] into speech representations, and Silent-
Speech Interfaces (SSI) [4], which offer a way to communicate
privately without disturbing bystanders and / or provide voice
communication for people with severe speech impairments
(e.g., laryngectomy patients). Furthermore, several studies
have recently investigated biosignals as a means to provide
valuable articulatory biofeedback to speakers about their own
voice production for increasing articulatory awareness in
speech therapy or language learning (e.g., [5], [6], [7]).

The field of Biosignal-based Spoken Communication has
rapidly advanced in recent years and the IEEE Special Issue
on this subject is intended as a snapshot and comprehen-
sive review of the current state-of-the-art. This survey paper
provides an overview and definition of the methods, sensor
technologies, signal processing algorithms, and applications
used across the field. We provide specific focus on the process-
ing, analysis, classification, recognition, and interpretation of
a large variety of biosignals representing speech and language,
including a discussion on advanced machine learning ap-
proaches, as well as theory and applications related to spoken
language processing. With its broad scope, this survey intends
to bridge the gap between the disciplines, provide a linking
structure within the special issue, and to generally provide an
entry point for readers interested in this very active field of
research and development.

The remainder of this survey paper is organized in five
sections. Following this introduction, Section II provides a
definition of “biosignals”, as well as the different modes
of speaking. Section III describes methods used to acquire
speech-related biosignals, ranging from respiratory, laryngeal,
and articulatory kinematics, to muscular and neurological
activity. Section IV summarizes processing methods needed
to analyze each speech-related biosignal and includes de-
scriptions of relevant features, dimensionality reduction and
compression methods. This section also discusses the usage
of biosignal-based automatic speech recognition and speech
synthesis. The paper ends with a discussion of the wide variety
of use cases and existing applications in Section V, and a
view toward the future of Biosignal-based Communication in
Section VI

II. GENERAL DEFINITIONS AND USES OF BIOSIGNALS

In this section we provide a definition for biosignals along
with a description of the most important biosignals in speech.
We also define a variety of speaking modes referred to
throughout the article.
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Fig. 1. Biosignal-based Spoken Communication resulting from (1) Speech-related Activities of the Human Body, (2) Signal Acquisition using various activity-
dependent Sensor Technologies, (3) Biosignal processing including Feature Extraction followed by Output Generation for (4) various target Applications.

A. Biosignals

We define Biosignals as autonomous signals produced by
human activities measured in physical quantities using dif-
ferent sensor technologies. Autonomous signals result from
chemical, physical, and biological processes of the human
organism and serve the functions of control, regulation, and
information transmission throughout the body. Sensor tech-
nologies can be used to measure each signal, in terms of
kinetic (force, torque, movement), kinematic (position, ve-
locity, acceleration), optical (radiance, luminance), chemical
(concentration, pH, olfactory), electrical (potential, current, re-
sistance), acoustic (sound pressure and intensity, impedance),
and thermal (temperature) quantities, resulting in the corre-
sponding categories of biosignals.

Biosignals have been used in medical diagnostics [8] for
decades. More recently, rapid advances in sensor technologies
in accuracy, resolution, miniaturization, integration, connec-
tivity, mobility, usability, costs, availability, and many other
features, have propelled the application of biosignals to other
contexts, including information technologies. In particular, the
human-computer interaction (HCI) community has embraced
biosignals to extend the number of modalities available for
developing robust and intuitive devices. Information obtained
from the biosignals is used to interpret not only physical states,
but also affective and cognitive states, and activities of a user.
Thereby, biosignals provide an inside perspective on human
mental processes, intentions, and needs that complement tradi-
tional means of observing human interaction from the outside,
and thus enable personalized and adaptive services [9].

In speech and language, biosignals are used for basic
and translational research and development, including: voice-
driven HCI, human-human interaction and communication,
speech therapy, and language learning. At a basic level,
biosignals can provide a comprehensive description of speech

processing by reflecting all speech-related activities of the
human body as depicted Figure 1 (step #1), found in the
brain, the peripheral nervous system, the muscles, the speech
anatomy of articulation (jaw, lips, tongue, and other orofa-
cial structures), phonation (vocal folds), and respiration. The
biosignals of speech then result from being captured through
a wide variety of sensors and capturing techniques (step #2 in
Figure 1, see Section III).

The remainder of this article focuses on biosignals be-
yond traditional acoustic waveforms captured by techniques
such as electromyography (EMG), electroencephalography
(EEG), electrocorticography (ECoG), intracranial microelec-
trodes, functional near-infrared spectroscopy (fNIRS), ultra-
sound (US), and permanent magnet articulography (PMA).
While acoustic biosignals can only be captured during vo-
calizations that displace particles of the surrounding medium
(usually air) by a vibrating object (usually the vocal folds),
kinematic, kinetic, electrical, and optical biosignals do not rely
on such air particle displacement and thus extend to many
speaking modes beyond the audible one.

B. Speaking Modes

Speech results from modulation of the expiratory air flow
from the lungs through the glottis, which is filtered by the
vocal tract [10]. The acoustic transfer function of the vocal
tract depends on the geometry of both oral and nasal cavities,
which are configured by positions of the tongue, lips, jaw,
and velum. For the purpose of Biosignal-based Spoken Com-
munication, we distinguish different speaking modes based on
glottal activity and intensity in Tables I & II.

Each speaking mode in Tables I & II produces sound pres-
sure waves that can be captured by traditional acoustic-based
sensors resulting in acoustic biosignals. This survey focuses
specifically on biosignal acquisition from speech produced
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TABLE I
SPEAKING MODE DEPENDENT ON GLOTTAL ACTIVITY

The vocal folds vibrate for voiced sounds or do not
vibrate for unvoiced sounds.

Modal speech

Whispered
speech

Turbulent flow through a constant aperture formed be-
tween the vocal folds results in only unvoiced sound.

TABLE I
SPEAKING MODE ACCORDING TO LEVEL OF EFFORT.

Normal modal
speech

Modal speech at normal intensity: the “standard” mode
of speaking.

Modal speech characterized by higher intensity, higher
pitch, and more open articulation than speech at normal
intensity. It shares common properties with Lombard
speech produced in noisy environments [11].
Characterized by very low-intensity (voiced/unvoiced)
sounds that are barely perceptible to bystanders. Resid-
ual acoustic activity can, however, be recorded using a
specific microphone (see Section III-B).

Shouted speech

Murmured
speech

without making any sound. The current literature refers to
“speech-without-sound” rather inconsistently, and sometimes
equivalently as, imagined, silent, covert, or inner speech,
despite differences in their behavioral components. In the
context of spoken communication studies, the confusion and
inconsistency of terminology might be a result of different
instructions given to subjects - or the lack of instructions.
In Table IIT we propose the classification of speech-without-
sounds into three levels: silent, imagined, and inner speech.

TABLE III
CLASSIFICATION OF SPEECH MODES WITHOUT ACOUSTIC OUTPUT.

Silent
speech

Speakers are instructed to move their articulators as if pro-
ducing normal modal speech, but to suppress their pulmonary
airstream so that no sound is emitted. Silent speech production
can be measured by monitoring articulatory movements using
motion-capture devices, imaging techniques, or by measuring
the activity of muscles (see Section III).

Similar to silent speech, except movements of the articulators
are also suppressed. Imagined speech in this context is
identical to first-person motor imagery of speaking in which
the speakers should feel as though they are producing speech
rather than simply talking to themselves. Since imagined
speech is produced without any articulatory movements, this
speaking mode requires observations at the neural level.

Though there is a range of descriptions for inner speech (e.g.,
self-talk, verbal thinking, inner voice, inner dialogue) [12], we
adopt Vygotsky’s model [13] that defines inner speech as an
internalized process in which one thinks in pure meanings.
In contrast to imagined and silent speech, no phonological
properties and turn-taking qualities of an external dialogue
are retained. Thus, inner speech is even more difficult to
investigate, even at the neural level of observation.

Imagined
speech

Inner
speech

Each speaking mode in Table III has distinct challenges and
opportunities for signal acquisition and application to spoken
communication. Some opportunities include: (1) robustness to
adverse environments, e.g., measuring articulation is less prone
to acoustic noise than airborne signals; (2) less disturbing or
more secure, e.g., whispered or silent speech is favored over
normal modal speech in quiet environments, and silent or
imagined speech allows one to communicate confidentially;
and (3) rehabilitation / restoration applications for individ-

uals with voice problems or speech disabilities, e.g., silent
speech interfaces as a voice prosthesis for individuals with
laryngectomy, and possibly as a neural prosthesis for speech
using imagined speech (i.e., speech brain-computer interfaces)
for individuals with paralysis and mutism due to neurological
disease or trauma (e.g., locked-in syndrome).

In addition to challenges of recording and processing
biosignals for speech without sound (section IV-D), a major
challenge is precisely due to the lack of auditory feedback and,
for imagined and inner speech, a complete lack of behavioral
landmarks. Some specific challenges for silent, imagined, and
inner speech include: (1) difficulty distinguishing speech from
non-speech activity, (2) a lack of temporal information about
the speech content, and (3) difficulty for study participants
to utter silent speech [14] due to the absence of auditory
feedback. Another confound for silent speech is that articu-
lation may change depending on the communication situation:
e.g., a silent speaker communicating in a public place may
hypo-articulate to prevent lip-reading and maintain privacy.
Careful instruction of study participants is therefore necessary
to obtain consistent signals.

III. CAPTURING SPEECH-RELATED BIOSIGNALS

This section describes the production of speech as a result of
(1) respiratory, laryngeal, and articulatory activity, (2) intraoral
residual acoustic activity, (3) muscle activity, and (4) brain
activity, and gives an overview of methods and techniques for
their acquisition, (see step #2 in Figure 1).

A. Respiratory, Laryngeal, and Articulatory Activity

Breathing is central to speech production by providing the
airflow required to generate sounds. Breathing kinematics can
be recorded by means of a face/nose mask or by chest and
abdominal plethysmography; their properties during speech
production have been extensively studied for more than 40
years (e.g., [15]). More recently, Rochet-Capellan et al. [16]
revealed that breathing may contribute to timing and co-
ordination between dialogue partners in face-to-face spoken
communication.

Laryngeal activity refers to vocal fold oscillations (in modal
and murmured speech), and can be estimated either indirectly
from speech acoustics using inverse filtering, or directly by an
electroglottography (EGG) [17]. With EGG, the degree and
rate of vocal fold contact is related to changes in electrical
resistance between two electrodes placed around the neck.
This technique is very sensitive to the exact positioning of
the electrodes relative to the location of the vocal folds.

Articulatory activity refers to the movements of the speech
articulators, and can be measured using a number of different
techniques. Here, we distinguish techniques based on sensors
attached along the vocal tract from imaging techniques.

Magnetic Articulography (EMA/PMA): Two techniques
Electromagnetic Articulography (EMA) [18] and Permanent-
Magnetic Articulography (PMA) [19], [20] are available to
measure articulator configurations during speech production
using magnetic field sensing. The location where magnetic
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field generation and sensing take place differentiates each
approach.

To record EMA, participants are seated with their head
inside an alternating magnetic field, generated by transmitter
coils. This field induces an electrical current in receiver coils
glued to the main articulators (tongue, lips, velum). Multiple
transmitter and receiver coils are used to recover real-time
articulatory movements in a 2D or 3D Cartesian space. EMA
records articulatory data with very high spatial and temporal
resolution (<1 mm, ~500 Hz), and is used to model articu-
latory dynamics during speech production. These data have
been explored in different areas of speech technology, such as
automatic speech recognition [21], low bit-rate speech coding
[22], and speech synthesis [23]. EMA is an invasive procedure
and requires wires to be run inside the mouth, which can cause
discomfort, and is not portable. As a result, EMA is typically
used in laboratory settings.

In PMA, the positions of the sensors are reversed:
permanent magnet transmitters are attached to the articulators,
and the sum magnetic field is measured by sensors outside
the mouth. The resulting field is a superposition of all the
transmitter fields, and requires sophisticated analyses to
decode the spatial position of articulators. However, since
PMA requires only permanent magnets to be fixed inside the
mouth without any connecting wires, it is more comfortable
than EMA [19].

Palatography: This technique uses sensors embedded
inside a pseudo-palate that are placed inside the mouth. In
Electropalatography (EPG), contact sensors are used to record
the timing and location of palatal contacts during speech. A
modification by Birkholz et al. added optical distance sensors
to the pseudo-palate (Optopalatography) [24] to record tongue
positions for phonemes that do not involve palatal contacts
(e.g., vowels), and lip movements.

Imaging techniques (IMG): Video imaging is a straight-
forward way to capture the movements of the visible speech
articulators (i.e., lips and jaw) during speech production.
Several sizeable (audio-)visual data corpora are available, such
as GRID [25] and the “Lip Reading in the Wild” corpus [26].

Medical imaging techniques can be used to capture the
movements of the intraoral articulators. Magnetic Resonance
Imaging (MRI) is widely used in phonetic research [27], and
obtains high-contrast images of the vocal tract showing all
articulators and internal structures. Moreover, recent advances
in real-time dynamic MRI (RT-MRI) can be used to record
sequences of vocal tract images at 100 fps with acceptable
spatial resolution [28]. However, MRI requires a bulky and
expensive equipment which prevents its use as a portable
communication device.

Ultrasound imaging of the vocal tract is a clinically safe
technique that records images of tongue movements during
speech in the mid-sagittal or coronal planes with good spatial
and temporal resolution (~1 mm, ~80 Hz), see [29] for a
complete review. Data is recorded by placing an ultrasonic
transducer beneath the chin (held manually or using a head
strap) to emit ultrasonic waves and detect reflections from the

upper surface of the tongue. Ultrasound images have relatively
low quality due in part to the presence of speckle noise and
to a loss of signal from tongue structures with poor alignment
to the ultrasound beam (i.e., non-orthogonal). However, light-
weight ultrasound scanners are now available making this
technology suitable for practical communication systems.

B. Intraoral Acoustic Activity

The acoustic output of very soft vocal productions such
as murmured speech is too small to be recorded using a
conventional microphone, though it can be captured using
a stethoscopic (i.e., tissue-conducted), non-audible murmur
(NAM) microphone [30]. The device is placed just below the
ear, and is capable of detecting very low-amplitude sounds
generated inside the vocal tract by a soft laryngeal airflow.
The main application for NAM microphones is the design of
silent speech interfaces. Intraoral acoustic activity can also
be exploited for spoken communication (in normal speech) in
very noisy / adverse environments (e.g., a helicopter cockpit).
Some examples include throat microphones that detect the
acoustic variations propagating through the neck tissues [31],
and bone-conducted microphones that detect intraoral activity
via a sensor placed on the skull [32].

C. Muscle Activity

Muscular activity can be observed using electromyography
(EMG) to capture electrical signals generated during muscle
fiber contraction [33]. EMG can be recorded in two ways:
invasively via needle electrodes inserted into muscle tissue
or non-invasively using surface electrodes. Surface electrodes
are most common in the context of speech processing systems
since using needle electrodes requires medical expertise and
hygiene precautions, and they are susceptible to dislocation
when applied to moving tissue [33].

Surface Electromyography (EMG): Speech-related sur-
face EMG is acquired using electrodes attached to the face
positioned either over specific muscles [34], [35] or arranged
in a grid [36]. Signals are acquired as a potential difference
between two electrodes, measured either in a monopolar
(reference-versus-active) or bipolar (active-versus-active) con-
figuration. The recorded voltage potentials are separated from
their generators (i.e., motor units) by layers of tissue with
varying conductivity; therefore, they represent a superposition
of many activity sources, possibly even several muscles. The
EMG signal is further attenuated by skin tissue and the skin-
electrode interface, which both act as a low-pass filter [37].
However, EMG is advantageous for speech synthesis and
recognition because the signal appears approximately 60 ms
before actual articulatory movements [38], [39].

D. Brain Activity

Brain activity can be measured based on its hemodynamic
(fMRI, {NIRS) or electrophysiological (EEG, MEG, ECoG,
microelectrodes) dynamics.
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Functional Magnetic Resonance Imaging (fMRI):
Neural activity can be acquired using fMRI by observing
the changing concentrations of oxygenated and deoxygenated
hemoglobin, which are related to the increased demand for
oxygen as neurons are active and engaged. Oxygenated and
deoxygenated hemoglobin have different magnetic properties
that can be detected by the strong magnetic fields produced in
the MRI environment. Due to its high spatial resolution over
the entire brain, fMRI is the de-facto standard in neuroimaging
and has been instrumental in a variety of studies investigating
speech and language, for reference, see [40] for a review. The
slow nature of the hemodynamic response, noisy environment,
and the large chamber required for fMRI significantly limits
the utility for practical communication interfaces.

Functional Near Infrared Spectroscopy (fNIRS): fNIRS
is a brain imaging technique pioneered by Jobsis [41] that
also detects changes in the amount of hemoglobin present in
the brain as an indirect marker of neural activity. Light in the
near infrared spectrum is absorbed by hemoglobin, but not
by biological tissue (e.g., bones, skin, muscle). Therefore, the
amount of hemoglobin present can be estimated by placing
near infrared light emitters and detectors around the head
and calculating the amount of light absorbed. Similar to
fMRI paradigms, neural activity increases the demand for
energy, which is supplied by fresh oxygenated blood that
carries hemoglobin to the site of neural processing. fNIRS
is well suited to investigate speech processes in non-clinical
populations as it is less affected by motion artifacts that
plague EEG [42] and can quickly be set up in non-laboratory
environments. fNIRS emitters can also be easily realized
using LEDs [43], which enable low-cost fNIRS devices [44].
Additionally, the light emitters and detectors do not require
additional skin preparation steps common to EEG (e.g., skin
abrasion and application of conductive gel), which simplifies
acquisition.

Electroencephalography (EEG): EEG is the measurement
of the electrical activity of the brain using electrodes placed on
the surface of the scalp. EEG signals observed at individual
electrode sites are the result of the simultaneous activation
of millions of neurons whose summed voltage is conducted
through the brain volume, skull, and scalp layers [45]. The
large number of neurons contributing to the EEG signal,
combined with the low-pass filter properties of the skull and
scalp, result in a spatial resolution on the order of centimeters
and spectral bandwidth on the order of 80 Hz. As a non-
invasive measure of electrophysiological activity, EEG has
desirable temporal properties to adequately characterize the
neural processing of speech production. Unfortunately, EEG is
highly susceptible to myoelectrical, motion, and environmental
artifacts, which interfere with EEG recordings made during
overt speech production (e.g., modal, whispered, and silent
speech) [46]. Though some methods have been developed to
cancel this interference (e.g., [47]), validation is still needed
to ensure only artifacts are removed from the EEG signal.
An alternative is to record EEG during imagined speech
(see Table III), or to restrict analysis to the speech motor

planning and preparation phases (e.g., [48]). See [49] for a
comprehensive review of the EEG components involved in
speech and language processing.

EEG is typically recorded and processed using time-locked
averages (i.e., event-related potentials, ERPs) to overcome
its comparatively low signal-to-noise ratio [50]. However,
EEG can also be analyzed as single-trial ERPs and for
changes in spectral content over time (e.g., event-related
(de)synchronization) [51]. Despite the disadvantages for
studying speech, EEG remains the most common technique
used in BClIs for communication [1].

Microwire Electrodes & Microarrays: Intracranial wire
microelectrodes and microarrays, such as the Utah array [52],
provide unparalleled spatial and temporal resolution down to
single neuron action potentials. The electrodes are typically 1-
2 mm long and have recording surfaces that range from 20 —
80 microns [53]. They record extracellular potentials of only
those neurons nearest to the recording tip, and as an array
they can record small brain areas of a few square millimeters
simultaneously. Extracellular recordings contain both neural
spiking data (action potentials, 300 — 6000 Hz) and the local
field potential (<300 Hz), which represents the neural activity
from a larger area around the electrode tip [54].

The invasive procedure to implant microarrays or
microwire electrodes into the cortex is only rarely performed
with humans and few studies exist investigating speech
processes using this technique. In these few examples,
implants in cortical areas for speech-motor control have
been used to analyze and decode intended phone production
[55], [56], and to control a vowel speech synthesizer [57], [58].

Electrocorticography (ECoG): ECoG is an invasive tech-
nique for measuring the electrical activity of the brain from
sites directly on the cortical surface. The opportunity to
measure ECoG in humans is most common in patients with
severe cases of epilepsy, who require temporary implantation
of electrode grids for pre-surgical planning, or intra-operative
monitoring [59]. The implanted sub-dural electrode grids can
remain on the brain surface for a period of several days to
two weeks, during which patients consent to participate in
scientific experiments.

Clinical ECoG recordings typically have an electrode spac-
ing on the order of 10 mm, while micro-ECoG recordings can
have spacing on the order of 1 mm. In contrast to scalp EEG,
ECoG signals measured on the brain surface do not suffer from
spatial blurring from dura matter, skull, and scalp [60], record
electrical activity from neural tissue directly underneath each
electrode, and are less susceptible to muscle and environmental
artifacts. ECoG recordings have a spectral bandwidth in excess
of 200 Hz, and special emphasis has been placed on the
high-gamma band (>70 Hz), which is not readily observable
in scalp EEG [61]. The high-gamma range is very spatially
localized and highly correlated with cognitive functions and
behavioral output, including speech processes [62].
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IV. PROCESSING BIOSIGNALS FOR SPOKEN
COMMUNICATION

While the analysis of the described speech-related biosig-
nals can be used to gain a better understanding of speech
processes in general, the development of biosignal-based ap-
plications for spoken communication requires further process-
ing (see step #3 of Figure 1). Biosignals are first processed to
extract suitable features and to handle artifacts, followed by
classification or regression methods to generate the output for
the targeted application. The classification approach typically
consists of using automatic speech recognition for the trans-
formation of spoken commands or continuous speech into text
(e.g., phones, words, phrases or complete sentences), which
then can be displayed on a screen or synthesized using text-
to-speech synthesis. The regression method typically involves
using speech synthesis for the direct mapping of biosignal-
captured spoken input to audible speech output. While the
boundaries between these three steps are sometimes blurred in
practice, for simplicity, we describe them separately. Thus, this
section starts with a summary of feature extraction methods
for each biosignal, followed by short overviews of speech
recognition and synthesis approaches applied to biosignal-
based spoken communication with emphasis on the pecu-
liarities of non-acoustic speech-related biosignals. Finally, we
summarize the current status of these systems and discuss open
challenges.

A. Extracting Relevant Features from Biosignals

Following the acquisition of speech-related biosignals
(Section III), relevant features are extracted according to
mode-specific standards in physiological signal processing.

Acoustic signals, limited here to body conduction
microphones (including NAM), are typically processed
similarly to standard speech signals from normal (modal)
speech. For example, Mel-Frequency Cepstral Coefficients
(MFCC) plus context features can be estimated from NAM
recordings [30].

Visual articulatory data (e.g., video images of the lips,
ultrasound images of the tongue, etc.) are usually acquired
as high-resolution 2D or 3D data. We briefly review three
main approaches that have been investigated in the context of
audio-visual and visual-only speech recognition, silent speech
interfaces, and articulatory biofeedback. See [63] for a more
detailed review.

In one approach, automatic segmentation of the articulators
in each video image (i.e., the extraction of their contours)
has been used to track lip movements using the active shape
model (ASM) [64], active appearance model (AAM) [65], and
more recently constrained local neural fields (CLNF) [66]. For
ultrasound images, the robust and fully automatic tracking of
the tongue is still an unsolved issue and has been investigated
using ASM [67], AAM [68], and neural networks (shallow
[69], deep [70]). A second approach uses dimensionality
reduction techniques in which an entire region-of-interest is
processed without focusing on a particular object (e.g., lip or

tongue contours). Some examples of this approach include
the discrete cosine transform to process lip images [71]
and principal components analysis for lip [72], and tongue
images [73]. A third approach has recently emerged using
the deep learning paradigm in which both discriminative
feature extraction and classification can be jointly achieved.
One powerful deep architecture is the so-called Convolutional
Neural Network (CNN) [74], which has been used in a
few recent studies for encoding lips [75], and for extracting
high-level articulatory abstractions from the joint observation
of lips and tongue images [76].

Magnetic-articulography techniques (i.e., EMA or PMA)
commonly provide a low-dimensional data vector representing
the positions of the speech articulators, and requires only
minimal pre-processing. EMA systems directly measure the
2D or 3D coordinates of the receiver coils attached to the
articulators, and are usable in raw form by a classifier or a
regression model. PMA data are less explicit and may require
more preprocessing such as low-pass filtering, background
cancellation, and normalization for proper identification of
articulatory positions and movements [19].

Palatography (i.e., EPG and OPG) EPG provides an
exact 2D plus time representation of tongue-palate contact
patterns and does not require any post-processing. Additional
procedures are required for OPG in order to calibrate the
distance sensors (the user must touch each sensor once with
the tongue while the pseudopalate is in the mouth) and to
compensate for measurement errors made when the tongue is
not oriented perpendicular to the axes of the optical sensors
[77]. Once completed, no further data post-processing is
required.

Electromyography provides a timecourse of muscular
activation for each recording electrode. Initial approaches
used simple thresholding techniques [78] and comparisons of
whole-word EMG averages between channels [79] to identify
muscles active during speech. Modern approaches now use
time-domain features [39] similar to the Hudgins feature set
[80] and spectral features [81], [34], [82], [35], [83].

Hemodynamic responses measured by fMRI and fNIRS
depend on metabolic processes and are relatively slow
as a result. Simple features such as the linear data trend
well describe neural activity in fNIRS [84], and newer
approaches subsample the hemodynamic response and
employ classification methods to determine information
bearing spatio-temporal filters [85].

Electrical brain signals measured by EEG and ECoG use
similar techniques for analyzing their respective signals to
describe the neural processes underlying speech production,
and focus on spatial, temporal, and spectral properties. With
EEG, it is common to apply a bandpass filter from 1-30 Hz
since signals >30 Hz are often unreliable due to low SNR.
After filtering, ERPs can be aligned to the onset of speech
production and averaged to focus on either the time periods
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preceding or following production onset. The times preceding
speech have been well studied and have revealed two major
slow-wave potentials that systematically vary with speech
production: (1) the bereitschaftspotential (BP), a negativity
that occurs in the 1-2 s prior to self-paced speech production
[48], and (2) the contingent negative variation, a negativity
that occurs prior to cued speech production [86]. Analysis
of the intervals during speech production is difficult due to
EMG contamination (cf. [46]); Alternatively, EEG can be
used to intepret neural processes involved in cued imagined
speech using both the broadband (1-30 Hz) ERP [87] and
narrowband (alpha, beta, and theta) power modulations [88].
The amplitude envelope of the high-gamma band (>70 Hz) in
ECoG closely tracks aspects of the acoustic speech signal and
can provide an even more detailed view of the spatio-temporal
progression of brain activity during speech processes [3], [89].
Similar analyses can be applied to microarray recordings using
features such as rate codes and tuning curves [55], [56].

B. Biosignal-based Speech Recognition

Automatic speech recognition (ASR) systems convert
speech (typically audio) into text, i.e., a sequence of written
words. The ASR task is characterized by its multi-level
sequential nature: small units, usually (context-dependent)
phones, are concatenated into words, which in turn are con-
catenated into continuous sentences. In addition, prior proba-
bilities are assigned to word sequences by means of language
models. For more than 30 years ASR has been dominated by
multi-level statistical modeling schemes, in particular hidden
Markov models (HMMs) [90] and n-gram language models
[91]. Recent applications of artificial neural networks have
revolutionized ASR with the development of hybrid Deep
Neural Network Hidden Markov Model systems [92], and end-
to-end systems that directly map speech features into text [93].

Fundamentally, biosignal-based speech recognition can be
approached by replacing the acoustic signal processing front-
end with methods tailored to each biosignal while leaving
the statistical modeling back-end unchanged. Examples of
this approach include isolated word recognition using image-
specific features for lipreading [94], and continuous phone-
based HMM recognition using SEMG signals [39]. However,
there are interdependencies at each processing level in the
speech recognition pipeline that allow for adaptation / im-
provement to back-end systems for each biosignal.

One important design aspect of biosignal-based speech
recognition is the way in which smaller units are concatenated
into words and sentences. Large units may be easier to
recognize, but harder to share between different words, leading
to difficulty recognizing unseen vocabulary and additional
training data requirements. Short units may be unstable due
to coarticulatory effects, or they might not contain enough
information to reliably identify a pattern of articulation. In
visual speech recognition, viseme units have been defined by
visually grouping phones of similar appearance, or by consid-
ering articulatory gestures [95]. However, speech recognition
with visemes causes ambiguities that must be resolved, e.g.,
by language models. Bundled Phonetic Features [96] are a

data-driven approach that has been successful for EMG-based
speech recognition. Finally, biosignal-based speech recogni-
tion has been explored using syllables [97] and context-
independent or context-dependent phones [98], [99], [100].

In multi-modal speech recognition, combining sources of
information is of particular interest, both for recognition
and for possible audio-based bootstrapping. The reliability
of each biosignal modality is highly variable, depending
on phonetic properties [101] and on the environmental
conditions (e.g., noise). Frameworks for dynamic estimation
of stream weights have been developed for audio-visual
and audio-plus-myoelectric speech recognition [102], [103].
Furthermore, manifestations of the articulation (e.g., brain
signal, EMG onset, visible muscle contraction, and sound)
are not synchronous [72], [39] due to the multi-step nature
of speech motor control and the complex relation between
articulatory gestures and speech sounds [104], [105].
Articulatory information (place, manner voicing) can also
be used to augment conventional (i.e., audio-based) ASR.
Incorporating explicit speech production knowledge in ASR
can improve the recognition of spontaneous speech and
increase robustness to noise, by modeling more efficiently
some co-articulation effects, see [106] for a complete review
on this line of research.

Visual articulatory data: Audiovisual speech recognition
(AVSR) combines video of a speaker’s lips / face with tra-
ditional speech audio signals to improve ASR performance
in adverse conditions (i.e., background noise) [107]. AVSR
continues to be widely investigated (see [108] for a com-
plete review) and has been extended to purely visual speech
recognition (VSR). In that case, no audio signal is used and
speech recognition is performed only from visual information.
Lip movements observable by video provide only partial
information on speech articulation; therefore, recent efforts
have also explored the combination of video and ultrasound
imaging to capture both lip and tongue movements [109].

Similar to audio-based speech recognition, classification
in AVSR or VSR systems is often accomplished using
models that explicitly account for speech dynamics including:
HMM [110], [94], [99], deep neural networks [111] and
long short-term memory neural networks [112]. Though the
addition of visual to audio modalities can augment speech
representations, they may be acquired with different temporal
structures that must be reconciled, e.g., coupled-HMM [113]
and dynamic Bayesian network [114].

Magnetic articulography: Automatic continuous speech
recognition from EMA data have been investigated for
English [115] and French [116] (in conjunction with the
audio signal), and small vocabulary recognition using PMA
[117] using standard ASR techniques.

Electromyographic signals: Early EMG-based speech
recognition used just three surface EMG electrodes to
discriminate Japanese vowels [78] and has since been
combined with auditory signals for better performance
in noisy environments [118]. More recently, EMG-based



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

recognition has been applied to silent speech applications
[81], including whole phrases spoken in silent and normal
modal speech [34], [39], syllables [97], and phones [100].
Further developments include modeling context-dependent
Bundled Phonetic Features to address data sparsity [96],
adaptation to cope with recording session discrepancies [119],
and development of a hybrid neural network — HMM system
for EMG-based ASR [120].

Hemodynamic responses: Both fMRI and fNIRS have
mostly been used to study speech neuroscience examining
the averaged hemodynamic responses over many repetitions
of speech tasks. However, a successful silent speech interface
must be able to detect speech events in a single trial. A
few studies have investigated this decoding approach using
fMRI for decoding three Dutch vowels [121], nouns [122],
and functional representations of natural speech [123]. Initial
applications of fNIRS to speech recognition have focused
on discriminating between the speech modes: modal, silent,
and imagined [124], [125]. Using fNIRS, these modes can
be discriminated from each other and from intervals without
speech activity in single trial. However, the slow nature of
the hemodynamic response prohibits investigation on a more
fine-grained time scale than whole sentences, and thus does
not scale up to spoken communication in any speaking style.

Electrical brain signals: The earliest attempts for speech
recognition in EEG were used to predict the word a participant
was attending to in a passive listening paradigm, without any
speaking involvement (silent, imagined, or other) [126]. This
approach has been improved using ECoG to reconstruct a stim-
ulus from auditory cortical activity during passive listening
[127]. Additional attempts have focused on speech production
(actual or imagined) paradigms for decoding acoustic features
and phonemes (EEG: [87], [128], [129]; ECoG: [130], [131];
microelectrodes: [55], [56]), syllables (EEG: [88]; ECoG:
[132]), and words (ECoG: [133]). ECoG has also been used
to decode speech articulatory features [134], and recently
HMM-based ASR was applied to ECoG signals to decode
continuously spoken speech [98].

C. Biosignal-based Speech Synthesis

In contrast to speech recognition approaches, speech syn-
thesis is a means to artificially produce human speech from a
given input signal. Current biosignal-based approaches usually
consist of three processing steps: (1) features extraction from
biosignals and (intended) speech (e.g., Mel-cepstral features),
(2) biosignal features are mapped to speech features, and (3)
speech is synthesized from the predicted speech features, for
example by a vocoder (a digital filter that models the spectral
envelope and is excited with a proper signal). In this section
we focus on the second step.

The mapping between biosignal and speech features is
usually described as a regression problem between multidi-
mensional continuous variables. Gaussian Mixture Regression
is a classical approach inspired by statistical voice conversion
[135], [136] and has been used for EMG [137], PMA [20]

and US [138] applications. Specifically, the joint probability
density function of biosignal inputs and speech outputs is
modeled by a Gaussian Mixture Model (GMM). The mapping
from biosignal to speech is accomplished either frame-by-
frame using the conventional mean square error estimator
[135], or sequence-by-sequence using a maximum-likelihood
estimator [136]. Artificial Neural Networks are also powerful
regressors that can be used for direct biosignal-to-speech
mapping, and have been used for EMA-to-speech [139], [140],
EMG-to-speech [141], and ultrasound/video-to-speech [73].
An HMM-based regression technique based on full-covariance
GMM has been proposed to explicitly model phoneme-specific
dynamics of articulation, and to use linguistic priors for regu-
larizing biosignal-to-speech conversion [138]. A performance
comparison of different mapping approaches in terms of real-
time capabilities and conversion quality has been carried out
for EMG-to-speech in [142].

Brain-based biosignals have primarily been used for speech
recognition applications (Section IV-B), and do not directly
incorporate speech synthesis into their decoding models. Only
very few attempts have been made for direct speech synthesis
using electrophysiological signals from the human brain. In
one example, a microelectrode device implanted into the
speech motor cortex was used to control a formant frequency
speech synthesizer [57], [58]. This BClI-speech synthesizer
converted changes in neural activity into the first two formant
frequencies using an adaptive filter neural decoder, followed
by synthesis for immediate audio output. A recent study has
extended the BCI-based formant synthesizer technique for use
with EEG instead of implanted microelectrodes [143]. ECoG
has also been used for direct synthesis BCIs by applying
regression methods to reconstruct the speech spectrogram
which can then be converted to an audio waveform [144].

Finally, we note that biosignal-based speech synthesis can
be achieved by performing speech recognition followed by
applying conventional text-to-speech systems. This method
produces high-quality output, but is constrained by the limita-
tions of the underlying recognizer. In particular, speech recog-
nition operates on limited vocabulary, produces recognition
errors, and there is an unavoidable delay between articulation
and synthesis since words must be completely articulated
and recognized before synthesis is possible. This delay is
often undesired, particularly in biofeedback applications (see
section V-B), which encourages further work on direct speech
synthesis from biosignals.

D. Current Research and Open Challenges

All systems described above have made substantial progress
in recent years, particularly in algorithm improvements, system
miniaturization, and field studies. This section summarizes the
status of different biosignal processing systems, their current
applicability, and open challenges identified from both the
literature and our own work.

The reviewed technologies can be grouped into two cate-
gories based on their practical applicability and maturity: (i)
a stable baseline system is being tested in field studies with a
substantial number of potential users (including patients where



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

applicable); (ii) studies are performed on a small number of

subjects under laboratory conditions. Technology in category

(1) must necessarily provide an easy-to-use recording system

and a reasonable speech recognition / synthesis quality.

Visual articulatory data are typically in category (i); large
visual speech corpora exist and have been used in various
AVSR and VSR studies [111], [112], [26], benefiting from the
fact that data can be recorded without special equipment, or is
already available. One study achieved 65.4% word accuracy
for the recognition of 333 word classes without use of a
language model applying television broadcasts data [26]. This
result is considered state-of-the-art given the large variation
in the data and the size of the vocabulary. Yet, improvements
can be made considering that short words were excluded due
to the presence of visual ambiguities.

EMG-based speech recognition is also considered in cate-
gory (i); it has been used with large amounts of data from
many subjects [145] and has even been extended to speech
restoration applications for individuals with laryngectomies
[83]. Also, PMA-based speech recognition [117] and EMA-
based speech synthesis [140] have been successfully applied
to speech restoration, and EPG-based biofeedback to speech
therapy [146]. Recognition accuracy has sufficiently improved
for feasibility in basic communication scenarios using EMG,
e.g., Word Error Rate of 10.3% on a 2000-word vocabulary
[83]. In addition, EMG recording systems are mobile and non-
intrusive, though it requires time and experience to properly
attach the recording electrodes, and best results are obtained
when training and test data are recorded in ome session,
without intermediate removal of the electrodes. Unsupervised
adaptation schemes show potential to compensate for these
session dependencies [119].

Speech recognition from electrical brain signals has so far
been limited to laboratory environments (category (ii)), due
to methodological complexity and in some cases surgical
intervention is required to be performed in specialized hospital
environments (e.g., ECoG). Progress using hemodynamic ap-
proaches is limited by portability constraints and limited tem-
poral resolution of metabolic processes (e.g., fMIR, fNIRS).

Research foci in biosignal-based speech processing natu-
rally follow from the observed limitations of the existing
systems, and include the following:

o Robust and Portable Recording systems: Portability has been
achieved for PMA [20], EMG [34], and to some extent
video/ultrasound [138]. In the case of lipreading, a system
could also be based on fixed cameras (e.g., for forensic
purposes) instead of a personal device, but this only works if
there is an unobstructed view of the subject’s face. EEG data
can in theory be obtained with a portable device, however
in practice high-quality signals are only obtained under
laboratory conditions. ECoG, as described above, requires a
specialized hospital environment.

o Feedback: In Section II-B we note that silent, imagined,
and inner speech may be difficult to utter reliably and
consistently. Real-time feedback [57], [140], is considered
a promising approach to resolve this issue, though it is both
a technical challenge (since data must be processed very
quickly) and a modeling challenge (due to the asynchronic-

ity between different manifestations of the speech process,
see section IV-B).

o System Adaptation for Silent or Inner/Imagined Speech:
Instead of relying on speakers to properly use real-time feed-
back, an alternative approach proposes algorithmic adapta-
tion to account for variability in speaking modes, as has been
done for an EMG-based speech recognizer [147], [148].
While discrimination of speaking modes from brain activity
has been shown to be possible [124], understanding the
difference between modal and imagined speech processes
and creating large-scale recognizers for imagined speech are
still significant open issues.

o Multi-Session and Multi-Speaker systems: Most existing
systems are speaker-specific, with the exception of some
lipreading systems [26]. Even when data is only taken from
one speaker, there may be inter-session differences due to a
variety of factors (e.g., environmental artifacts, sensor posi-
tioning, etc.), which can be remedied by standard methods
(adaptation [119], recalibration [140], integration of session
independence as a neural network training objective [149]).

o Sufficiency of speech representations: Visual speech recog-
nition using only lip images (i.e., lipreading) is insufficient,
and suffers from ambiguities, which can be resolved by
including ultrasound images of the vocal tract as an ad-
ditional input. EMA/PMA and EMG are more sufficient,
though EMA/PMA do not represent facial gestures, and
without needle electrodes, EMG can not represent specific
tongue muscles. That said, these methods provide a fairly
complete representation of the speech process with ambigu-
ities in voicing only (cf. [101]). Acquiring appropriate and
sufficient signals directly from the speech- and language-
related areas of the brain should also provide a complete
representation of the processes needed to understand and
generate speech, though there is a practical limit on signal
acquisition and interpretation. For brain-based techniques,
sufficiently sampling the speech and language-related areas
of the brain remains an open and intriguing challenge.

A comparison between biosignal-based speech processing

systems is difficult at this time since available data corpora

differ in size, vocabulary, recording setup, etc., and benchmark
data have not been established yet. For speech recognition
with medium-sized vocabularies, the three major articulation-
based systems (PMA, video+ultrasound, EMG) all perform
reasonably and similarly, and further improvements are likely
in the near future. The availability of large data corpora will be
crucial in extending these systems to truly large-scale speech
recognition (with tens of thousands of vocabulary words),
and equally to high-quality speech synthesis. Ultimately, the

“best” system will be the one which most convincingly re-

solves the issues summarized above, and will depend upon

the constraints of the intended application, including factors
such as user preference, performance, reliability, environment,

comfort, aesthetics, etc., see section V.

V. USE CASES OF BIOSIGNAL-BASED SPOKEN
COMMUNICATION

Capturing, processing, and interpretation of biosignals re-
lated to speech in the absence of an intelligible airborne
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acoustic signal opens up novel use cases in spoken communi-
cation (see step # 4 in Figure 1). A survey on Silent Speech
Interfaces (SSI) [4] introduced relevant human-computer inter-
faces developed before 2010. Sensor technologies and machine
learning advanced this field in the past few years. Published
use cases and applications of “Biosignal-based Spoken Com-
munication” fall into four main categories, (1) voice prostheses
and devices to restore spoken communication, for individuals
unable to speak due to impairment, disease, or accident; (2)
methods to deliver articulatory biofeedback of voice produc-
tion to increase articulatory awareness for therapy and training
for spoken communication, such as speech therapy and lan-
guage learning; (3) approaches to enhance speech recognition
and synthesis performance for robust spoken communication in
noisy environments, like the fusion of complementary speech-
related biosignals to compensate for signal corruptions under
adverse noise conditions; and (4) strategies for mute spoken
communication in situations, when audible communication is
prohibited or unwanted, e.g., avoiding disruptions in quiet
environments or securing against eavesdropping. The concrete
systems which we describe in this section frequently address
several of these challenges, but often target just a single appli-
cation. This strategic approach affects the direction of research,
requires diverse ethical considerations (e.g., for working with
patients), and also influences the design of the communication
system: for example, individuals with speech impairments may
be willing to invest a significant amount of time into the
optimization of their personal communication system, whereas
healthy users typically expect little or no enrollment time.

A. Restoring Spoken Communication

An important goal for biosignal-based speech synthesis
techniques is to restore spoken communication for individuals
with disordered or absent vocalization. Each of the modalities
described has specific applications and is most appropriate for
specific clinical populations (e.g., individuals with dysarthria,
laryngectomy, or paralysis). In laryngectomy, an individual’s
larynx is surgically removed, and traditional options to restore
voice include: using an electrolarynx device resulting in a
very robotic voice, using oesophageal speech, or using a
tracheosophageal prosthesis, which has to be replaced every
few months. Biosignal-based alternatives for this population
include PMA-synthesis [19], [117] and EMG-based speech
recognition [83].

For individuals with the most severe speech and motor
impairments, the objective is to supplement or bypass the
speech-motor pathways using available biosignals for im-
proved speech output. In this use case, current research focuses
on synthesizing speech during imagined speech, or speech
attempts by individuals with total paralysis, directly from brain
signal recordings. The superior spatial resolution and signal
fidelity of invasive techniques such as microelectrodes and
ECoG make them promising approaches for the design of
practical speech-based BCIs and neuroprosthetics [57], [58],
[98]. Such systems may perform a continuous reconstruction
of speech or a discrete classification and output of sounds,
words, etc. (see Section IV-B), depending on the objective and

constraints of the system. While it may be possible to decode
individual words or phrases discretely, scaling this approach
to a larger vocabulary can become intractable. Alternatively,
the ability to decode basic units of speech, such as formants or
phones [98], will enable the creation of generative models that
are not limited to a fixed vocabulary. In any case, effectively
developing and transferring models trained on normal modal
speech to imagined speech remains an active research chal-
lenge since the neural representations of normal modal and
imagined speech are not identical.

B. Therapy and Training for Spoken Communication

The methods developed for biosignal-based speech process-
ing can also be used for multimodal biofeedback in order to
study speech production, facilitate second language learning,
and rehabilitate speech impairments. Visual feedback of the
articulators (e.g., lip reading) can have a dramatic effect on
perception [150], and can even improve speech perception and
comprehension by individuals with hearing impairments [5].
Articulatory kinematics captured using EMA have been used
for speech training with an emphasis on improving second
language learning [6], and investigating articulatory deficits
in dysarthria [7]. EPG has also been successfully used as a
biofeedback tool for speech therapy [146] and L2 pronuncia-
tion training [151]. Promising results using ultrasound imaging
have also been obtained for rehabilitation of the English /r/
[152] and persisting speech sound disorders [153].

Notably, biosignal-based speech recognition and synthesis
performance declines for silent compared to normal speaking,
even when the ASR system is trained and tested exclusively on
the respective speaking modes [148]. Speakers report difficul-
ties to steadily producing silent speech [14], in part due to the
absence of auditory feedback that is critical for normal speech
production [154], [155]. Biofeedback created by real-time
speech output could provide an optimal solution to alleviate
the challenges in BCI and SSI (see section V-D below). In a
closed-loop paradigm, speakers can rely on synthetic speech
for auditory feedback and exploit it to regulate their own
production, as in [140] for SSI and [57] for BCL

C. Robust Spoken Communication in Noisy Environments

Improving spoken communication under adverse noise con-
ditions has long been a challenge for speech research and de-
velopment. Large-scale DARPA programs (e.g., ASE, SPINE,
RATYS) targeted improvements to speech processing in military
and civilian contexts, such as in combat situations, air traffic
control, search-and-rescue operations, and security scenarios.
Beside the development of noise-robust algorithms, this led to
the creation of new sensors like throat and bone-conduction
microphones, which can be combined with traditional micro-
phones for improved, fused biosignal ASR [156]. EMG is
a natural extension of these techniques and has been used
for small vocabulary recognition in acoustically harsh envi-
ronments [157], and spoken communication for firefighters,
pilots, and astronauts through electrodes integrated into self-
contained breathing apparatuses [81], [158]. Like subaudible
microphones, the EMG combined with conventional acoustic
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signals can further improve ASR performance in noisy envi-
ronments [118].

D. Mute-Spoken Communication

In many situations, spoken communication is desired but
making any sounds is prohibited or socially inappropriate.
For example, carrying out phone conversations may disturb
bystanders in quiet environments like libraries or is inappro-
priate during group meetings. Eavesdropping is a risk when
communicating private information in public places. Further-
more, safety and security settings may require a silent commu-
nication. Several different biosignal-based systems address the
challenges of mute-spoken communication. For instance, silent
speech interfaces have been developed using ultrasound imag-
ing, combined with a conventional video camera to capture
tongue and lip movements simultaneously, without any audio
signals [109], [138]. Importantly, several studies show that
performance drops when speaking modes are mixed in training
and testing [138]. In the case of surface electromyography,
signal-based adaptation methods are proposed to reduce the
differences between speaking modes [147] and EMG-based
speech recognizers are designed which are trained and tested
on silent speech [148], [35]. Another way to alleviate the
impact of articulatory differences between modal and silent
speech is to provide a silent speaker with a synthetic auditory
feedback, in real-time [140], [57]. One example involves an
articulatory synthesizer that converts EMA data into spectral
features using a deep neural network, and can be controlled
in real-time by naive subjects articulating silently [140].

PMA-based speech recognition and synthesis has now been
achieved in a highly portable manner [20]. While most pub-
lished research focuses on the aim of restoring speech commu-
nication to speech-impaired persons (see section V-A above),
PMA was originally proposed for mute communication of
individuals without impairment [117]. However, a full study
on using silent speech to drive a PMA-based synthesizer has
not yet been published.

Studies toward EEG-based speech recognition on silent or
imagined speech include classification of single phonemes
[87], [88], [129]. Alternative approaches use limb motor
imagery to control a formant frequency speech synthesizer
without the presence of an acoustic speech signal [143]. Imag-
ined speech decoding has been accomplished with a greater
range of speech output using intracortical recording methods
including formant frequency prediction using microelectrodes
[57], [58], phoneme classification with microelectrodes [55],
spectrotemporal features using ECoG [159], and word pairs
using ECoG [160].

Beyond mute communication, the technologies described
in this survey may be combined with speech translation to
bridge the language barrier [39]. Using current procedures,
simultaneous translation of a spoken conversation results in
the overlap of two voices (one voice from the speaker in the
source language and one voice in the target language, coming
either from a human interpreter or from the synthesized output
of a speech translation system). To avoid such inconvenient
scenarios, speakers could instead silently speak (or imagine)
in their native tongue, while listeners hear only the translated

output. Thus, the combination of mute communication plus
translation creates the illusion of speaking in a foreign tongue.

VI. CONCLUSIONS AND PERSPECTIVES

Biosignal-based Spoken Communication is a rapidly evolv-
ing cross-disciplinary field. Research and development takes
place at the intersection of engineering, computer science,
medicine, psychology, and neurosciences. It requires the mas-
tering of sensor technologies, signal, speech and language
processing, as well as human-machine interfaces.

This survey paper is intended to provide an entry point
for readers interested in this very active field, to define
and describe terminology, to recite relevant publications, and
thereby to bridge the gap between disciplines. It presents a
broad overview over the state-of-the-art technologies, methods,
and applications. Table IV summarizes the applicability of
biosignals for use cases and speaking modes described in
this survey (table cells are grayed out for those speaking
modes prohibited by a certain use case). Cell entries in normal
font identify techniques that have been reported for capturing
speech-related activities of the respective speaking mode and
have successfully applied the resulting biosignals to the use
cases; these studies are cited in this survey. Italic font indicates
applicability but no published results yet, while “-” mark cases
when a capturing technique is not applicable.

TABLE IV
APPLICABLE TECHNOLOGIES FOR USE CASES AND SPEAKING MODES
(GRAYED OUT CELLS = NO TARGET SPEAKING MODE FOR USE CASE, italic

font = APPLICABLE BUT NO PUBLICATIONS YET, “-” = NOT APPLICABLE)
Use Cases Speaking Modes (Section II, Table 1-3)
(Section V) modal murmer whisper | silent imagine
(A) Restore SC EMG EMG -
PMA PMA -
IMG IMG -
ECoG ECoG | ECoG
(B) Therapy & | EMA EMA EMA EMA -
Training EPG EPG EPG EPG -
IMG IMG IMG IMG -
intraoral | intraoral | - - -
(C) Robust SC EMG EMG EMG
EPG EPG EPG
PMA PMA PMA
IMG IMG IMG
intraoral intraoral -
(D) Mute SC NAM EMG -
EMA -
PMA -
IMG -
EEG EEG
ECoG | ECoG
Insights in SC All biosignals captured by described technologies
including fMRI, fNIRS, MEG, and their combination

Driven by recent advances in sensor technologies (resolu-
tion, accuracy, miniaturization, energy consumption, connec-
tivity, mobility, and costs, to name only a few), the large
attention and developments in neurosciences, and the impact
of deep learning approaches to automatic speech processing,
we expect major breakthroughs in the years to come.
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