Directeur de thèse : Emmanuel WITRANT
École doctorale : Electronique, electrotechnique, automatique, traitement du signal (EEATS)
Spécialité : Automatique et productique
Structure de rattachement : UJF
Établissement d'origine : ENS électrotechnique, électronique, informatique, hydraulique, télécom. - ENSEEIHT-Toulouse
Financement(s) : Contrat doctoral
Date d'entrée en thèse : 01/10/2012
Date de soutenance : 24/09/2015
Composition du jury :
M. Nacim RAMDANI - Professeur, Université d''Orléans - Rapporteur
M. Paulo TABUADA - Professeur, University of California - Rapporteur
M. Mazen ALAMIR - Directeur de recherche CNRS, Université Grenoble Alpes - Examinateur
M. Jean-Luc GOUZE - Directeur de recherche INRIA, INRIA Sophia-Antipolis - Examinateur
M. Hervé GUEGUEN - Professeur, Supélec Rennes - Examinateur
Résumé : This thesis provides new control strategies that deal with the heterogeneous and nonlinear dynamics describing the temperature regulation in buildings to obtain a tradeoff between comfort and energy efficiency. We thus focus on the robust control of cooperative systems with bounded disturbances. We first solve this problem with the notion of robust controlled invariant interval, which describes a set where the state can be maintained for any value of the disturbances. A second approach provides dedicated symbolic methods to synthesize a discrete controller on a finite abstraction of the system, realizing safety specifications combined with a performance optimization. We first present a centralized symbolic method using the system dynamics provided by the physical model. To address its limitation in terms of scalability, a compositional approach is considered, where the symbolic abstraction and synthesis methods are applied to partial descriptions of the system under the assume-guarantee obligation that the safety specification is realized for all uncontrolled states. In the final part, the proposed controllers are combined and evaluated on the temperature regulation for an experimental building equipped with UnderFloor Air Distribution.