Vous êtes ici : GIPSA-lab > Formation > Thèses soutenues
Chargement
WU Bo

Modélisation physique des écoulements instationnaire et bi-phasique appliquée aux voies aériennes supérieures chez l'humain.

 

Directeur de thèse :     Annemie VAN HIRTUM

École doctorale : Electronique, electrotechnique, automatique, traitement du signal (eeats)

Spécialité : Signal, image, parole, télécoms

Structure de rattachement : CNRS

Établissement d'origine : Northeastern University (NEU) - SHEN YANG , P.R. Chine

Financement(s) : Contrat doctoral ; Bourse région ; contrat à durée déterminée

 

Date d'entrée en thèse : 19/11/2010

Date de soutenance : 23/01/2014

 

Composition du jury :
Rapporteurs :
M. Pierre-Yves Lagrée, Directeur de recherche, Institut Jean le Rond d''Alembert.
M. Christian Lacor, Professeur, Vrije Universiteit Brussel.
Examinateurs :
M. Benoît Fabre, Professeur, Institut Jean le Rond d''Alembert.
M. Thomas Hélie, recherche, IRCAM.
M. Thomas Podgorski, recherche, Université de Grenoble.
Directrice de thèse :
MS. Annemie Van Hirtum, recherche, Université de Grenoble

 

Résumé : Physical models of physiological flow-induced phenomena, such as blood flow through a stenosis or air flow during human speech production, often rely on a quasi-one-dimensional or two-dimensional flow model, so that details of the cross section shape are neglected. Nevertheless, boundary layer development is known to depend on the cross section shape. The aim of this thesis is to model, simulate and characterize the potential impact of the cross section shape for pressure-driven laminar channel flow without and with constriction. Stretched coordinates are introduced to obtain viscous flow solutions for channels with an arbitrary cross section. The proposed cross section shape parametrization is applied to solve physical equations for two-dimensional and three-dimensional shapes. A simplified quasi-three-dimensional flow model, which accounts for kinetic losses, viscosity and the cross section shape, is presented and applied to describe the flow through a stenosis. Finally, flow data are gathered experimentally and numerically in order to characterize the influence of the cross section shape in the case of a constricted channel. Modeled, experimental and numerical data are compared.


GIPSA-lab, 11 rue des Mathématiques, Grenoble Campus BP46, F-38402 SAINT MARTIN D'HERES CEDEX - 33 (0)4 76 82 71 31