Vous êtes ici : GIPSA-lab > Formation > Thèses soutenues
Chargement
MEILLIER Cline

”Détection de sources quasi-ponctuelles dans des champs de données massifs”

 

Directeur de thèse :     Olivier MICHEL

Co-encadrant :     Florent CHATELAIN

École doctorale : Electronique, electrotechnique, automatique, traitement du signal (eeats)

Spécialité : Signal, image, parole, télécoms

Structure de rattachement : Grenoble-INP

Établissement d'origine :

Financement(s) : Contrat doctoral

 

Date d'entrée en thèse : 01/10/2012

Date de soutenance : 15/10/2015

 

Composition du jury :
Olivier MICHEL - Directeur de thèse, Grenoble INP
Florent CHATELAIN - Co-encadrant de thèse, Grenoble INP
Roland BACON - Examinateur, Université Lyon 1
David MARY - Rapporteur, Université Nice Sophia Antipolis
Thomas RODET - Rapporteur, ENS Cachan
Hervé CARFANTAN - Examinateur, Université Paul Sabatier
Xavier DESCOMBES - Examinateur, INRIA Sophia Antipolis
Hacheme AYASSO - Invité (encadrant), Université Joseph Fourier

 

Résumé : Dans cette thèse, nous nous sommes intéressés à la détection de galaxies lointaines dans les données hyperspectrales MUSE. Ces galaxies, en particulier, sont difficiles à observer, elles sont spatialement peu étendues du fait de leur distance, leur spectre est composé d’une seule raie d’émission dont la position est inconnue et dépend de la distance de la galaxie, et elles présentent un rapport signal-à-bruit très faible. Ces galaxies lointaines peuvent être considérées comme des sources quasi-ponctuelles dans les trois dimensions du cube. Il existe peu de méthodes dans la littérature qui permettent de détecter des sources dans des données en trois dimensions. L’approche proposée dans cette thèse repose sur la modélisation de la configuration de galaxies par un processus ponctuel marqué. Ceci consiste à représenter la position des galaxies comme une configuration de points auxquels nous ajoutons des caractéristiques géométriques, spectrales, etc, qui transforment un point en objet. Cette approche présente l’avantage d’avoir une représentation mathématique proche du phénomène physique et permet de s’affranchir des approches pixelliques qui sont pénalisées par les dimensions conséquentes des données (300 x 300 x 3600 pixels). La détection des galaxies et l’estimation de leurs caractéristiques spatiales, spectrales ou d’intensité sont réalisées dans un cadre entièrement bayésien, ce qui conduit à un algorithme générique et robuste, où tous les paramètres sont estimés sur la base des seules données observées, la détection des objets d’intérêt étant effectuée conjointement. La dimension des données et la difficulté du problème de détection nous ont conduit à envisager une phase de prétraitement des données visant à définir des zones de recherche dans le cube. Des approches de type tests multiples permettent de construire des cartes de proposition des objets. La détection bayésienne est guidée par ces cartes de pré-détection (définition de la fonction d’intensité du processus ponctuel marqué), la proposition des objets est réalisée sur les pixels sélectionnés sur ces cartes. La qualité de la détection peut être caractérisée par un critère de contrôle des erreurs. L’ensemble des traitements développés au cours de cette thèse a été validé sur des données synthétiques, et appliqué ensuite à un jeu de données réelles acquises par MUSE suite à sa mise en service en 2014. L’analyse de la détection obtenue est présentée dans le manuscrit.


GIPSA-lab, 11 rue des Mathématiques, Grenoble Campus BP46, F-38402 SAINT MARTIN D'HERES CEDEX - 33 (0)4 76 82 71 31