Vous êtes ici : GIPSA-lab > Formation > Thèses soutenues

'Event-based control of networks modeled by a class of infinite-dimensional systems'


Directeur de thèse :     Nicolas MARCHAND

Co-encadrant :     Christophe PRIEUR

École doctorale : Electronique, electrotechnique, automatique, traitement du signal (EEATS)

Spécialité :

Structure de rattachement : UJF

Établissement d'origine : UGA - Université Grenoble Alpes

Financement(s) :


Date d'entrée en thèse : 01/10/2014

Date de soutenance : 22/09/2017


Composition du jury :
Thomas MEURER, Rapporteur Professeur, Christian-Albrechts University Kiel
Mario SIGALOTTI, Rapporteur Chargé de recherche, INRIA Saclay - Ile-de-France
Nicolás CARREÑO, Examinateur Maître de conférences, Universidad Técnica Federico Santa María
Wilfrid PERRUQUETTI, Examinateur Professeur, Ecole Centrale de Lille
Alexandre SEURET, Examinateur Chargé de recherche, LAAS-CNRS
Antoine GIRARD, Directeur de thèse Directeur de recherche, L2S - CentraleSupélec CNRS
Nicolas MARCHAND, Directeur de thèse Directeur de recherche, Gipsa-lab CNRS
Christophe PRIEUR, Directeur de thèse Directeur de recherche, Gipsa-lab CNRS


Résumé : This thesis provides contributions on event-based control of networks model by a class of infinite dimensional systems. We first focus on the modeling and boundary control of networks described by hyperbolic systems of conservation laws. Highly inspired by macroscopic models in communication networks, we deal with a coupled PDE-ODE, where the nodes (servers) are modeled by nonlinear ODEs whereas transmission lines are described by hyperbolic equations when communication delays may be taken into account. For the resulting linearized system around an optimal equilibrium point, Input-to state stability (ISS) analysis as well as asymptotic gain control synthesis are carried out by means of Lyapunov techniques and LMI formulation.
We then address some theoretical aspects of event-based boundary control of hyperbolic systems. One one hand, with this computer control strategy, we intend to reduce energy consumption when dealing with communication and computational constraints. On the other hand, we use this strategy as a rigorous way of sampling in time when implementation of continuous time controllers on a digital platform is required. A mathematical study regarding well-posedness of the solutions as well as stability issues is conducted.

GIPSA-lab, 11 rue des Mathématiques, Grenoble Campus BP46, F-38402 SAINT MARTIN D'HERES CEDEX - 33 (0)4 76 82 71 31