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Fetal ECG Extraction by Extended State Kalman
Filtering Based on Single-Channel Recordings

M. Niknazar, B. Rivet, and C. Jutten, IEEE Fellow

Abstract—In this paper, we present an extended nonlinear
Bayesian filtering framework for extracting ECGs from a single-
channel as encountered in the fetal ECG extraction from abdom-
inal sensor. The recorded signals are modeled as the summation
of several ECGs. Each of them is described by a nonlinear
dynamic model, previously presented for the generation of a
highly realistic synthetic ECG. Consequently, each ECG has a
corresponding term in this model and can thus be efficiently
discriminated even if the waves overlap in time. The parameter
sensitivity analysis for different values of noise level, amplitude
and heart rate ratios between fetal and maternal ECGs shows
its effectiveness for a large set of values of these parameters.
This framework is also validated on the extractions of fetal
ECG from actual abdominal recordings, as well as of actual
twin magnetocardiograms.

Index Terms—fetal ECG extraction, twin MCGs extraction,
extended Kalman filtering, nonlinear Bayesian filtering, model-
based filtering.

I. INTRODUCTION

Since the first demonstration of the fetal electrocardiogram
(fECG) carried out in 1906 by Cremer [1], various methods
for fECG monitoring have been proposed to obtain informa-
tion about the heart status. The fECG can be measured by
placing electrodes on the mother’s abdomen. However, it has
very low power and is mixed with several sources of noise
and interference. Nevertheless, the main contamination is the
maternal electrocardiogram (mECG) [2]. As a result, the basic
problem is to extract the fECG signal from the mixture of
mECG and fECG signals, where the interfering mECG is a
much stronger signal. According to the review [3], existing
fECG extraction approaches in literature can be categorized
by their methodologies, which include linear or nonlinear
decomposition and adaptive filtering.

Linear or nonlinear decomposition methods are common
approaches in which, single or multi-channel recordings are
decomposed into different components using suitable basis
functions. Linear decomposition methods use either fixed basis
functions (e.g., wavelets [4]), or data-driven basis functions
(e.g., singular vectors [5]). This limits performance of decom-
position in nonlinear or degenerate mixtures of signal and
noise [3]. Blind or semi-blind source separation, which are
categorized as linear decomposition approach, have also been
used for fECG extraction [6], [7]. These methods are based on
the assumption of independent components (or more generally
independent subspaces [8] or partitions [9]) for the maternal
and fetal signals, or of the existence of some temporal structure
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for the desired signals [10], [11], [12]. In [13], [14], wavelet
decomposition was also combined with blind source separation
for extracting and denoising fECG signals. In another recent
work, a new technique was proposed to fasten traditional
Independent Component Analysis (ICA) method [15]. In blind
source separation methods it is usually assumed that signals
and noises are mixed in a stationary and linear manner.
However, fECG and other interferences and noises are not
always stationary mixed and linearly separable [16].

Nonlinear transforms have been also used for mECG can-
cellation and fECG extraction. In these methods, constructed
phase space of noisy signal and of its delayed versions is
smoothed using conventional or Principal Component Analysis
(PCA) smoothers [17]. The samples are then transferred back
to the time-domain representation. Although these methods are
interesting since they are applicable to as few as one single
maternal abdominal channel, the selection of the required time-
lags for constructing phase space representation is empirical
and the important inter-beat variations of the cardiac signals
can be wiped-out during the state-space smoothing. Moreover,
they demand higher computational complexity in comparison
to linear methods, and the correct embedding dimension can
change as the noise statistics change [3].

Adaptive filtering is another common approach for mECG
cancellation and fECG extraction [18]. The conventional adap-
tive filtering is based on training an adaptive filter for either
removing the mECG using one or several maternal reference
channels [18], [19], or directly training the filter for extracting
the fetal QRS waves [20], [21]. However, existing adaptive
filtering methods for mECG artifact removal, either require
a reference mECG channel that is morphologically similar
to the contaminating waveform or require several linearly
independent channels to roughly reconstruct any morphologic
shape from the references [18]. Both of these approaches
are practically inconvenient and with limiting performance,
because the morphology of the mECG contaminants highly
depends on the electrode locations and it is not always possible
to reconstruct the complete mECG morphology from a linear
combination of the reference electrodes [3]. Practically, it has
been shown that for fECG extraction, blind source separation
methods outperform adaptive filters [22]. An important ad-
vantage of spatial filtering over conventional adaptive filters
is their ability to separate mECG and fECG with temporal
overlap but it often requires more than two sensors.

The Kalman filtering framework, which can be considered
as a member of the general class of adaptive filters, is a
promising approach for both mECG cancellation and fECG
enhancement. In [16], [23] a set of state-space equations was
used to model the temporal dynamics of ECG signals, for
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designing a Bayesian filter for ECG denoising. This Bayesian
filter framework was used in [16, p. 50] to extract fECG from
single channel mixture of mECG and fECG. However, as it
is mentioned in [16], the filter fails to discriminate between
the maternal and fetal components when the mECG and fECG
waves fully overlap in time. The reason is that when mECG
is being estimated, fECG and other components are supposed
to be Gaussian noise. However, this assumption is not true,
especially when mECG and fECG waves fully overlap in time
it is difficult for the filter to follow desired ECG.

Clinical monitoring of fetal cardiac activity is usually based
on a small number of electrodes located on mother’s abdomen,
and on a sound sensitive sensor. In such a context, in the
present work, we wonder what performance can be obtained
with only one electrode, by using a refined model of the signal
recorded on the unique electrode: the model will explicitly
take into account that the signal is the superposition of a
few ECG signals. The rest of this paper is organized as
follows. In section II equations and theory supporting our
proposed method including the Bayesian filtering theory and
dynamic ECG model are described. In section III results of
the proposed method applied on different data and discussion
about the results are presented. Finally, our conclusion is stated
in section IV.

II. METHODOLOGY

A. EKF Framework for ECG Extraction

The goal of Kalman Filter (KF) is to estimate the state of a
discrete-time controlled process. Consider a state vector xk+1

governed by a nonlinear stochastic difference equation with
measurement vector yk+1 at time instant k + 1:{

xk+1 = f(xk,wk, k + 1)

yk+1 = h(xk+1,vk+1, k + 1)
(1)

where the random variables wk and vk represent the process
and measurement noises, with associated covariance matrices
Qk = E

{
wkw

T
k

}
and Rk = E

{
vkv

T
k

}
. The Extended

Kalman Filter (EKF) is an extension of the standard KF to
nonlinear systems f(·) and h(·), which linearizes about the
current mean and covariance [24]. In order to improve the
estimations, EKF can be followed by a backward recursive
smoothing stage leading to the Extended Kalman Smoother
(EKS). However, since EKS is a non causal method, it can
not be applied online but it is useful if a small lag in the
processing is allowed.

In this work, a synthetic dynamic ECG model [25] is used
to extract fECG from mixture of an mECG, one (or more)
fECG(s) and other signals considered as noises. In polar
coordinates [23], one ECG signal can be expressed as the sum
of five Gaussian functions defined by their peak amplitude,
width and center, denoted αi, bi and ψi, respectively: z(θ) =∑

i∈W αi exp(−(θ−ψi)
2/(2b2i )). Each Gaussian function thus

models one of the five waves W = {P,Q,R, S, T} of a heart
beat. The state vector in equation (1) is defined by the phase
θ and the amplitude z of the ECG: xk = [θk, zk]T . Assuming
a small sampling period δ, the state noise ηk, and defining wk

Figure 1. Illustration of the phase assignment approach on one ECG.

as [0, ηk]T , the state process f(·) is

θk+1 = (θk + ωδ) mod(2π), (2)

zk+1 = −
∑
i∈W

αi∆θi,kωδ

b2i
exp

(
−

∆θ2i,k
2b2i

)
+ zk + ηk, (3)

where ω is the phase increment, ∆θi,k = (θk − ψi)mod(2π).
From the ECG, one can define the observed phase φk by a
linear time wrapping of the R-R time intervals into [0, 2π)
(Figure 1). The measurement process h(·) is finally defined as
yk+1 = xk+1 + vk+1, where yk+1 = [φk+1, sk+1]T .

The ECGs composing the observed mixture can be esti-
mated by recursively applying the described EKF: at each
step, one ECG is extracted according to a deflation procedure.
In case of a mixture of mECG and one fECG, the first step
extracts, from the raw recording, the dominant ECG (often
the mECG) considering the concurrent ECG (resp. fECG) and
other noises as a unique Gaussian noise. After subtracting the
dominant ECG from the original signal, the second step is the
extraction of fECG from the residual signal. This procedure is
referred to as sequential EKF or EKS (seq-EKF or seq-EKS).
In this recursive extraction, during the first step, the concurrent
ECG (i.e. fECG) and additional noise are modeled by Gaussian
noises vk and wk, which is not a very relevant assumption.
In fact, although this assumption may be acceptable when
there are not strong artifacts interfering with the ECG, it is
no longer accurate when other ECG artifacts are considerable
(i.e. at the first step) since the noise is no longer normally
distributed. In addition, concurrent ECGs can be confused with
dominant ECG when their waves (especially QRS complexes)
fully overlap in time. Meanwhile, resultant inaccuracies, which
are generated by the previous steps of the ECG extraction, will
propagate to the next steps while the residuals are computed.

B. Extension to multiple ECGs: extended state EKF

In this paper the dynamic equations (2) and (3) are ex-
tended for simultaneously modeling N ECGs mixed in a
single observation. The related extended state vector xk =
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[θ
(1)
k , z

(1)
k , . . . , θ

(N)
k , z

(N)
k ]T is thus defined by

θ
(1)
k+1 = (θ

(1)
k + ω(1)δ) mod(2π)

z
(1)
k+1 = −

∑
i∈W1

α
(1)
i ω(1)δ

b
(1)2

i

∆θ
(1)
i,k exp

(
−

∆θ
(1)2

i,k

2b
(1)2

i

)
+z

(1)
k + η

(1)
k

...
θ
(N)
k+1 = (θ

(N)
k + ω(N)δ) mod(2π)

z
(N)
k+1 = −

∑
i∈WN

α
(N)
i ω(N)δ

b
(N)2

i

∆θ
(N)
i,k exp

(
−

∆θ
(N)2

i,k

2b
(N)2

i

)
+z

(N)
k + η

(N)
k

where each [θ
(i)
k , z

(i)
k ]T is related to one of the ECGs. Finally,

the measurement process leads to express the measurement
vector yk+1 = [φ

(1)
k+1, · · · , φ

(N)
k+1, sk+1]T as{

φ
(n)
k+1 = θ

(n)
k+1 + v

(n)
k+1, ∀n ∈ {1, · · · , N}

sk+1 =
∑N

n=1 z
(n)
k+1 + v

(N+1)
k+1 .

(4)

This extended state Kalman filtering procedure is referred to
as parallel EKF or EKS (par-EKF, or par-EKS, respectively).
As shown in the results section (Section III), this par-EKF
or par-EKS is more accurate to extract fECG from abdominal
sensors than the seq-EKF or seq-EKF. Indeed, in the proposed
method all ECGs are jointly modeled by dynamic states so that
only the state and measurement noise vectors are assumed to
be normally distributed. Moreover, the extended state par-EKF
fully models overlapping waves of several ECGs. Finally, the
state and observation noises, ηnk and vnk , respectively, allow to
fit some variabilities of the ECG shapes. Even if the model do
not fit too large variations (for example due to arrythmia), but
an inspection of the residue will reveal these abnormal beats.

C. Model parameters estimation

The proposed par-EKF and par-EKS lie on several state
parameters {α(n)

i , b
(n)
i , ψ

(n)
i }i∈Wn

, ∀n ∈ {1, . . . , N}. The
procedure described below is an extension of the single ECG
parameter estimation [23].

The parameters estimation procedure first needs the R-peaks
detection for all ECGs to perform the time-wrapping of the
R-R intervals into [0, 2π) to define φ

(n)
k . The R-peaks are

found from a peak search in windows of length T , where T
corresponds to the R-peak period calculated from approximate
ECG beat-rate. R-peaks with periods smaller than T

2 or larger
than T are not detected. Although maternal R-peaks are easily
detectable from the mixture, fetal R-peaks detection is more
complex due to its lower amplitude than mECG. Therefore,
a rough estimation of fECG is obtained by using the seq-
EKF algorithm, which now allows to detect easily the fetal
R-peaks1. Now, for each ECG, each beat (defined by the
signals between two consecutive R-peaks) is time wrapped
into [0, 2π). The average of the ECG waveform is obtained

1In practice, one could also use a sound sensor to have a reliable R-peak
detector. In this case, even if there exists a delay, it does not impact the
method, since it can be synchronized.

by the mean of all time-wrapped beats, for all phases between
0 and 2π. Finally, by using a nonlinear least-squares approach
[26], the best estimate of the parameters in the minimum mean
square error (MMSE) sense is found.

III. RESULTS AND DISCUSSIONS

Both synthetic and actual data have been used to study
performance of the proposed method. In the first subsection,
quantitative results coming from simulations and influence of
the main parameters of mixed ECGs on performance of the
method has been studied. They will present the conditions
in which, the proposed method is efficient. In the second
subsection the effectiveness of the method on actual data has
been examined.

A. Experimental Performance Analysis on Synthetic Data

Since there is neither ground truth nor golden standard on
single channel recording, it is important to provide quantitative
performance with simulations to validate the behavior of the
proposed method. In order to do so, realistic synthetic mixtures
of mECG and fECG with white Gaussian noise have been
generated for different situations and the proposed method has
been applied on them to extract mECG and fECG.

Synthetic mECG and fECG used in this study are based
on a three-dimensional canonical model of the single dipole
vector of the heart, proposed in [27] and inspired by the single-
channel ECG dynamic model presented in [25]. Sampling
frequency is set to 500 Hz and signals include 20,000 samples.
The main parameters that can affect the mixtures are input
noise power, ratio between amplitudes of fECG and mECG,
and ratio between fetal and maternal heart rates. In order to
investigate the performance of the proposed method hundred
trials were carried out under each value of these parameters.
In the output, estimated mECG and fECG signals, ŝm and ŝf ,
are assumed to be the sum of mECG, fECG and noise, such
that:

ŝm = α1sm + α2sf + α3n,
ŝf = β1sm + β2sf + β3n,

(5)

where coefficients α1, α2, α3, β1, β2, and β3, have to be
estimated and sm, sf , and n denote mECG, fECG and noise,
respectively. In order to estimate the coefficients, sm, sf ,
and n are assumed to be orthogonal, i.e., decorrelated. The
orthogonality principle states that an estimator ŝ achieves
MMSE if and only if E

{
(ŝ− s)T ŝ

}
= 0. Satisfaction of this

criteria leads to:

α̂1 =
E(ŝTmsm)

E(sTmsm)
, α̂2 =

E(ŝTmsf )

E(sTmsf )
, α̂3 =

E(ŝTmn)

E(sTmn)
,

β̂1 =
E(ŝTf sm)

E(sTf sm)
, β̂2 =

E(ŝTf sf )

E(sTf sf )
, β̂3 =

E(ŝTf n)

E(sTf n)
.

(6)

In a successful estimation, contribution of desired ECG in
output should be much more than contribution of undesired
ECG and noise. In other words, in extraction of fECG the
power of β2sf should be much larger than power of β1sm +
β3n, which means the contribution of mECG and noise is very
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Figure 2. Mean SNR improvement results of the EKF and EKS against
input noise power (bold lines) . Upper and lower borders (thin lines) present
maximum and minimum, respectively.

low in the fECG estimate. In the same manner, the power
of α1sm should be much larger than power of α2sf + α3n
in mECG extraction. In order to quantize contribution of the
desired ECG in the output, output Signal to Noise Ratio (SNR)
for maternal and fetal ECG are defined as:

SNRmout =
α̂2
1Psm

α̂2
2Psf + α̂2

3Pn
,

SNRfout
=

β̂2
2Psf

β̂2
1Psm + β̂2

3Pn

.

(7)

where Psm , Psf , and Pn denote power of mECG, fECG, and
noise, respectively. Output SNR is now compared to input
SNR to investigate performance of desired ECG extraction.
Input SNRs are defined as:

SNRmin
=

Psm

Psf + Pn
and SNRfin =

Psf

Psm + Pn
(8)

Input Signal to Interference Ratio (SIR) and output SIR are
also defined as:

SIRmin
=
Psm

Psf

, SIRfin =
Psf

Psm

,

SIRmout
=
α̂2
1Psm

α̂2
2Psf

, SIRfout
=
β̂2
2Psf

β̂2
1Psm

.

(9)

1) SNR Analysis: Figure 2 shows SNR improvement results
of EKF and EKS over a wide range of input noise power.
The SNR improvement in dB is defined as the output SNR of
the filter minus the input SNR. In all trials, power of mECG
signals is normalized to 1 (0 dB) and the ratio of amplitudes of
fECG and mECG is 0.3. Maternal and fetal heart rates are set
to 1.1 Hz and 2 Hz, respectively. Moreover, in order to have
more realistic signals, mECG and fECG are allowed to have
slight random fluctuations (5%) in amplitude and duration at
each beat. Moreover, initial phases of ECGs are random. As
it can be seen in Figure 2, both EKF and EKS successfully
improved the SNR for all ranges of the input SNRs. When the
mixture is rather noise free (noise power -30 dB) the minimum
SNR improvement of fECG is 40 dB, which means efficient
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Figure 3. Mean SIR improvement results of the EKF and EKS against
amplitude ratio (bold lines). Upper and lower borders (thin lines) present
maximum and minimum, respectively.

cancellation of mECG. Nevertheless, even for very noisy
mixtures (noise power 20 dB), the SNR improvement of fECG
remains over 20 dB. According to this figure, EKF is more
effective when a rather clean signal is available. However,
as power of noise increases, EKS significantly outperforms
EKF. As it has been explained in the previous section, the
EKS algorithm consists of a forward EKF stage followed by
a backward recursive smoothing stage. Therefore, if a rather
clean signal is available, the recursive smoothing stage will
deteriorate EKF output, because the output is smooth enough
and recursive smoothing leads to over-filtering. Conversely, if
the signal is very noisy, EKF output is not denoised enough
yet. Therefore, recursive smoothing stage can be successfully
used to cancel more noise from the signal.

2) Amplitude Ratio Analysis: The basic problem of fECG
monitoring is to extract the fECG signal from the mixture
of mECG and fECG signals, where the interfering mECG
is a stronger signal. Therefore, it is necessary to evaluate
the performance of the method for different ratios of fECG
and mECG amplitudes. For this purpose, SIR improvement of
output signals have been calculated in the range of 0.1 to 1
of amplitude ratio of fECG and mECG. Figure 3 shows SIR
improvement results of the EKF and EKS for different values
of amplitude ratios. Power of mECG signals are normalized to
1 (0 dB) with 5% random fluctuation, input SNR with respect
to (w.r.t.) mECG is 10 dB, and average maternal and fetal
heart rates are 1.1 Hz and 2 Hz, respectively. As it is seen in
Figure 3, although the fetal SIR improvements of both EKF
and EKS remain over 30 dB for all ranges of the amplitude
ratios, results of EKS are slightly better.

3) Heart Rate Ratio Analysis: Since fetal heart rate may
vary in a wide range [28], the performance of the method
was studied on a wide range of 0.3 Hz to 3.6 Hz of fetal
heart rate. Figure 4 shows SIR improvement results of EKF
and EKS. Power of mECG signals are normalized to 1 (0 dB)
with 5% random fluctuation and the ratio of amplitudes of
fECG and mECG is 0.3. Input SNR w.r.t. mECG is 10 dB,
and maternal heart rate is set to 1.1 Hz. In this section, heart
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Figure 5. Comparison of fECG extraction by par-EKS, seq-EKS and πCA
on the first channel of DaISy data.

rate fluctuations are slighter (1%) to study harmonic issues
more accurately. As expected, SIR improvement diagram has
three deep local minima at ratios 1, 2 and 3. The reason is that
when main frequencies of mECG and fECG are proportional,
the signals overlap more closely in the frequency domain.
Therefore, discrimination of mECG and fECG is more difficult
for these ratios. Nevertheless, these situations are unlikely
happening because the heart rates ratio is usually more than
1 and less than 2. Even in these cases, fetal SIR improvement
remains over 20 dB. Here again, EKS slightly outperforms
EKF.
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Figure 6. Results of fECG extraction using par-EKS applied on channels 2
to 5 of the DaISy dataset (up to down). Note differences of scales, according
to the channels and the fetal estimates.

B. Fetal ECG Extraction on Actual Data

In the previous subsection, efficiency of the proposed
method in fECG extraction for a wide range of possible
configurations has been examined using synthetic data. In this
subsection, the results of application of the proposed method
on actual data are presented.

1) DaISy Database: The DaISy fetal ECG database [29]
consists of a single dataset of cutaneous potential recording
of a pregnant woman. A total of 8 channels (5 abdominal and
3 thoracic) are available, sampled at 250 Hz and lasting 10
seconds.

Figure 5 presents the results of par-EKS and seq-EKS
using the first channel of the dataset. Moreover, the periodic
component analysis (πCA) [8] using the height channels,
which is a multi-channel method, is also included as the golden
standard. Results of πCA method are then post-processed via
EKS on the best ECG estimate [23]. As already mentioned,
unlike seq-EKS, par-EKS does not fail when mECG and fECG
fully overlap in time. This is particularly noticed between t
= 6s and t = 7s in Figure 5 in which, some parts of fECG
signal have been deteriorated during mECG extraction by
the seq-EKS method. On the contrary, the proposed par-EKS
jointly models the fECG and mECG, resulting in a better
estimate of fECG than seq-EKS. Since par-EKS estimates a
single component while πCA can estimate several components
(typically one or two), the cosine between subspaces is used,
and is equal to 0.92 in this experiment. With a value closed to
1, these estimates are quite similar. Finally, Figure 6 shows the
results of fECG extraction using par-EKS applied on the other
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Figure 7. Comparison of fECG extraction by par-EKS, seq-EKS and πCA
on ecgca771 of the PhysioNet database.

abdominal channels of the DaISy dataset. It experimentally
proves that par-EKS is able to extract fECG even in ill-
conditionned mixtures, such as channels 4 or 5.

2) Non-Invasive Fetal Electrocardiogram Database: This
database consists of a series of 55 multichannel abdominal
fECG recordings, taken from a single subject between 21 to 40
weeks of pregnancy. The recordings include 2 thoracic signals
and 3 or 4 abdominal signals. The signals were recorded at
1kHz, 16-bit resolution with a bandpass filter (0.01Hz-100Hz)
and a main notch filter (50Hz) [30]. Figure 7 shows results
of seq-EKS and par-EKS using channel 3, and πCA using all
channels of the first 20s of namely the ecgca771 dataset. To
show the effectiveness of the proposed method in extraction of
the fECG at different periods of pregnancy, and from different
channel locations, the first 20s of the mixtures and fetal par-
EKS outputs of the datasets ecgca274 channel 5, ecgca748
channel 4, and ecgca997 channel 3 are plotted in Figure 8.

3) Twin MCGs Extraction: The proposed method has been
principally designed for ECG signals. Nevertheless, due to
the morphological similarity of the ECG and the magneto-
cardiogram (MCG), it is also directly applicable to MCG
recordings. In this section, twin fetal cardiac magnetic signals
recorded by a SQUID Biomagnetometer system are extracted.
The dataset has been recorded in the Biomagnetic Center of
the Department of Neurology (Friedrich Schiller University,
Jena, Germany) and it consists of 208 channels sampled at
1025Hz over 30 minutes.

Figure 9 presents the results of the proposed par-EKS to
extract the two fetal MCG signals from a single sensor. A
typical channel (indexed 92) of namely the q00002252 dataset
has been selected. Even though the multichannel πCA method
provides better results in this case than single channel methods
(par-EKS or seq-EKS), the proposed par-EKS succeeds to
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channel 4, and ecgca997 channel 3 and their fetal par-EKS outputs.
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extract the two fetal MCG (fMCG) while seq-EKS fails to
discriminate correctly the two fMCGs when they overlap (see
highlighted signal parts, Fig. 9). In order to show the good
behavior of par-EKS in several configurations, par-EKS is
applied on other sensors (Fig. 10). One can note that the
proposed par-EKS succeeds to extract the two fetal MCGs.

Finally, it is worth noting that the crucial part of the
proposed par-EKS is the R-peaks detection. Although this
detection is quite direct when a single fetus is present (Sec-
tion II-C), some words should be added on twin data. Indeed,
on such data the detection of the mother’s R-peaks is still
direct since it is the dominant signal. On the contrary the
discrimination between the two fetal R-peaks is much more
difficult. Even though in this study, the oracle is obtained using
several sensors and applying an ICA algorithm (here, we used
Fast-ICA), it can be replaced in practice by a sound sensor
located on the mother’s abdomen.

IV. CONCLUSION

In this paper, a synthetic dynamic ECG model within a KF
framework has been extended to jointly model several ECGs to
extract desired ECGs from a unique mixture (i.e. one channel
recording) of maternal and fetal ECGs and noise. Although
the proposed method only uses a single channel to separate
different ECGs, since each ECG has a corresponding term
in the model, the proposed model can efficiently discriminate
ECGs even if desired and undesired ECG waves overlap in
time. As proved on synthetic data and illustrated on actual
data (single and multiple fetal pregnancy), the main merit of
the proposed algorithm relies on its performance in a large
class of situations. Performance of the proposed method on

extraction of fECG from one mixture of mECG and fECG was
examined according to noise level, amplitude ratio and heart
rate ratio parameters: results show that the proposed method
can be successfully employed in many scenarios. According
to the obtained results, as long as R-peaks are correctly
detected, the proposed model achieves good results. Although
a reliable R-peaks detection is a straight forward procedure
in a single fetal pregnancy (which most likely happens) even
with a single sensor, it is much more difficult in multiple fetal
pregnancy (twin or more). Nonetheless, in these situations, the
R-peaks detection can be provided by other modalities such
as echocardiography.

Finally, the proposed method compares favorably with effi-
cient multi-sensor methods such as πCA (which also requires
reliable R-peaks detection), while it requires only one sensor.
The latter criterion is of high interest, since using a single
channel does not only mean less electronic components (such
as analog to digital converters or amplifiers) and thus a cheaper
device, but also a more convenient and portable device for a
long term monitoring system or at home since only a single
electrode has to be placed on the mother’s abdomen.

Perspectives include extension of the proposed method to
apply on multichannel (but with a small number of channels,
e.g., up to 3 or 4) mixtures of mECG and fECG. Moreover,
synchronous echocardiography data can also be used in future
works, especially for a reliable R-peaks detection.
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