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Abstract

This paper addresses the problem of blind source separation for underdetermined mixtures

of event-related sources that include quasi-periodic sources (e.g. electrocardiogram (ECG)),

sources with synchronized trials (e.g. event-related potentials (ERP)), and amplitude-variant

sources. The proposed method is based on two steps: (i) tensor decomposition and (ii) signals

extraction by Kalman filtering. A tensor is constructed for each source by synchronizing on

the “event” period of the corresponding signal and stacking different periods along the second

dimension of the tensor. To cope with the interference from other sources that impede on the

extraction of weak signals, two robust tensor decomposition methods are proposed. Then, the

state parameters used within a nonlinear dynamic model for the extraction of N event-related

sources mixed in M noisy mixtures are estimated from the loading matrices provided by the

first step.

The influence of different parameters on the robustness of the proposed method is ex-

amined by means of simulations. Applied to actual electroencephalogram (EEG), ECG and

magnetocardiogram (MCG), the proposed method exhibits a significantly higher performance

than classical source separation methods.

Keywords: quasi-periodic source, event-related source, underdetermined mixtures, robust

tensor decomposition, extended Kalman filtering, fetal ECG extraction.
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1. Introduction

In this study, blind separation of underdetermined mixtures of event-related sources is

addressed. An event-related source is characterized by typical patterns which are elicited

after some events: such patterns may vary in amplitudes and/or in inter-event intervals

(IEI). In this context, an event-related source is referred to as: (i) quasi-periodic source

(e.g. electrocardiogram (ECG)) in which IEI and amplitudes can only slightly change from a

period to another; (ii) source with synchronized stimuli (e.g. event-related potentials (ERP))

in which a pattern is repeated with no assumption on IEI but with quasi-constant amplitudes;

(iii) amplitude-variant source whose amplitude (even sign) can largely change from a period

to another but with quasi-constant IEI (e.g., telecommunication); (iv) general source without

any assumptions on amplitudes and IEI, which can thus largely vary from on event to another

one (e.g. digital communications).

In the recent years, a lot of attention has been paid to blind source separation (BSS)

due to its wide-ranging applications in many areas [1] such as audio and speech processing,

telecommunications, biomedical engineering, hyperspectral imaging, etc. Assuming an M -

dimensional observation vector, y(k), this problem is mathematically expressed as:

y(k) = Ax(k) + n(k) (1)

where x(k) denotes the P -dimensional source vector, n(k) denotes the M -dimensional additive

noise vector, and A is the M ×P mixing matrix. The BSS framework aims at identifying the

mixing matrix A, or estimating the sources x(k), or both, from the observation y(k). Unlike

the determined or overdetermined cases, when the number of sources is equal to or exceeds

the number of mixtures (P > M), i.e. in the underdetermined case, the estimation of the

mixing matrix A does not permit to directly recover the original sources. In fact, the mixing

matrix does not admit a left inverse in that case, which makes it more difficult to recover the

sources even if it is known and full rank [1, 2]. It is then necessary to rely on a prior on the

sources.

Sparsity of the sources in a transformed domain is a possible prior to address underdeter-

mined BSS [3]. Indeed, most of the proposed methods in the literature of underdetermined

BSS are based on the sparsity of sources in a domain, (e.g., the frequency domain [4] or the
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time-frequency domain [5]). In this case, even if several sources are active at the same time

so that the mixture is locally overdetermined, the mixing matrix can usually be estimated

by clustering methods. However, this kind of search usually requires massive computations

that limit the applicability of these methods to a smaller number of observation channels and

sources [6].

Separation of underdetermined sources consists of two steps: estimation of the mixing

matrix and extraction of the sources. Many algebraic and geometric (clustering) methods

have been developed for the first step. They employ various decompositions of different data

structures such as cumulant, correlation and cross-correlation matrices or tensors [1, 6]. Then,

a second step is required for recovering the original sources.

Higher-order tensors have gained increasing importance as they can be used to represent

higher order cumulants that are exploited in independent component analysis [7] and have

been used successfully in BSS. In addition, they are natural representations of multidimen-

sional (higher than 2) data than matrices in many practical applications (e.g., in chemistry,

biomedical engineering, and wireless communications). A fundamental challenge in these

applications is to find informative and sparse representations of tensors, i.e., tensor decom-

positions. Tensor decompositions take into account information about different variables of

the data, such as, for example, spatial, temporal and spectral information, and may provide

links among the various extracted factors or latent variables with physical or physiological

meaning and interpretation [8].

There are many applications, in which the sources are known to be event-related. These

properties are observed in digital communication, speech and some physiological signals such

as electrocardiograms. The behavior of second- and fourth-order BSS algorithms in a cyclosta-

tionary context has been studied in [9]. In a recent study [6], an underdetermined separation

method has been developed, which is suitable for separation of signals that are piecewise sta-

tionary, having time-varying variances. These algorithms, which exploit the cyclostationarity

property resort to statistical tools. In [10], a parallel deflation procedure based on a deter-

ministic tensor has been proposed to address the problem of underdetermined BSS in the

cyclostationary context. The basic approach consists in constructing a tensor by synchroniz-

ing on the symbol rate of a certain source, and decomposing the tensor using the Canonical

Polyadic (CP) decomposition [11] to extract the characteristics of the source.
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In this paper, the method described in [10] has been adapted for the estimation of the

mixing matrix, temporal patterns, and amplitudes for event-related sources. The method

described in [10] fails to extract a source which has very little power compared to the other

sources because the latter act as interferers with high amplitudes that can be considered

as outliers and impede on the accurate tensor decomposition. To overcome this problem, we

propose to apply a robust tensor decomposition. In the literature, one can find several methods

that have been developed to this end. In general, these techniques are based on a modification

of the classical quadratic cost function that is optimized during the tensor decomposition. For

example, the authors of [12] suggested to minimize the mean absolute error, which reduces the

impact of outliers in the data, but does not prevent them from influencing the results since

high outliers still lead to high errors. It is also possible to introduce weights that account for

different uncertainties of the tensor elements (see, e.g., [13]). In this paper, we present two

robust CP decomposition methods. The first one, which we subsequently refer to as Gaussian

CP (GCP) decomposition, goes a step further compared to the approach taken in [12] and

optimizes a cost function that limits the maximal error to 1. The second method exploits the

particular structure of the data to compute weights that discriminate outliers and employs a

weighted CP (WCP) decomposition.

As the second step of the separation of underdetermined sources, a nonlinear state-space

model has been developed for extracting N quasi periodic sources (or components) from M

observations. This model is used within a Kalman filtering framework, whose mixing matrix

and state parameters are obtained from the loading matrices of the tensor decomposition.

The robustness of the proposed tensor decomposition methods to different parameters

such as the initialization, the amount of outliers, the variability of the amplitudes, and syn-

chronization errors is analyzed by means of simulations. Furthermore, the proposed method

is applied to biomedical data including electroencephalogram (EEG), ECG and magnetocar-

diogram (MCG) to extract desired sources. In the past, tensor-based techniques have already

been applied to space-time-realization EEG data (see [14, 15, 16]). However, the newly pro-

posed method makes the decomposition more robust to noise. Furthermore, contrary to the

previous tensor-based approaches, it permits to extract the original time courses of the signals,

which are not identical for all realizations, using Kalman filtering. Among several methods in

the literature for multichannel fECG extraction, one can name blind source separation [17],
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semi-blind source separation [18], adaptive filtering [19, 20], and periodic component analysis

(πCA) [21]. All these methods exploit the redundancy of the multichannel ECG recordings

to reduce mECG and other interference sources. Nevertheless, even if this reduction has been

successful, the exogenous noise cannot be totally canceled in this way [22]. Moreover, these

methods demand several channels to recover weak traces of fetal signal. Conversely, the pro-

posed method, which simultaneously extracts and denoises fECG signal, is applicable to as

few as two channels.

The rest of the paper is organized as follows. Equations and theories supporting our pro-

posed method are described in section 2. Results of the proposed method applied on various

data and discussion about the results are presented in section 3. Finally, our conclusions are

stated in section 4.

2. Methodology

The proposed method is based on two steps: (i) a robust tensor decomposition to estimate

the mixing matrix and the state parameters of the Kalman filter (subsection 2.1) and (ii) a

refined Kalman filtering (subsection 2.2) for the extraction of the signals.

2.1. Rough estimation of the mixing matrix and source parameters

2.1.1. Tensor construction and CP model

In the style of [10], we exploit the event-related nature of the signals of interest to construct

a data tensor with dimensions space, n event-synchronized window, and time from the 2-

dimensional measurements for each of N event-related sources. To this end, for the n-th

source, we identify Ln n event-synchronized windows of length Tn of the corresponding time

signal. This can, for instance, be achieved based on a characteristic pattern within each n

event-synchronized window that can be recognized in the measurements. This pattern also

serves as a reference point to synchronize the signals of different patterns of the event-related

source, such as the maximum in the case of impulsive signals. For each of the Ln n event-

synchronized windows, one can thus extract a M × Tn data matrix from the measurements.

These matrices are then stacked along the second dimension of the tensor Y (n) ∈ RM×Ln×Tn

(see Figure 1).
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Figure 1: Illustration of a tensor with event-synchronized windows.

Assuming that the n-th source can be described by Rn ∈ N components that are identical

for all n event-synchronized windows except for changes of amplitude, the elements of the

tensor can be written as

Y
(n)
ijk =

Rn∑
r=1

a
(n)
ir s

(n)
jr h

(n)
kr + bijk. (2)

The first term in the right-hand side of (2) corresponds to the CP decomposition of a tensor

where a
(n)
ir , s

(n)
jr , and h

(n)
kr are the elements of three loading matrices A(n) ∈ RM×Rn , S(n) ∈

RLn×Rn , and H(n) ∈ RTn×Rn , respectively [11]. The loading matrices correspond to the

mixing matrix (A(n)), the matrix of pattern amplitudes (S(n)), and the matrix containing the

temporal patterns of the event’s components (H(n)) that characterize the mixture of the n-th

source. The second term contains noise and interference from the desynchronized signals of

other sources.

Since we assume that each event-related source may consist of more than one component,

the number of sources P in the model (1) corresponds to the total number of components,

i.e., P =
∑N
n=1Rn ≥ N , while the full mixing matrix A in the model (1) can be obtained as

A = [A(1), . . . ,A(N)].

In practice, one can obtain estimates for the mixing matrix, the pattern amplitudes, and

the signal patterns by decomposing the tensor using the following criterion that optimizes the
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classical CP cost function:

{
Â(n), Ŝ(n), Ĥ(n)

}
= arg min
{A(n),S(n),H(n)}

∑
i,j,k

∥∥∥∥∥y(n)ijk −
Rn∑
r=1

a
(n)
ir s

(n)
jr h

(n)
kr

∥∥∥∥∥
2

F

. (3)

An important advantage of the CP decomposition in comparison to matrix decomposi-

tions, such as principal component analysis (PCA), is that it is essentially unique [23, 24]

up to scale and permutation indeterminacies under mild conditions on the tensor rank, with-

out imposing additional constraints such as orthogonality or independence. In [23, 24], the

following sufficient condition for essential uniqueness has been derived:

kA(n) + kH(n) + kS(n) ≥ Rn + 2. (4)

Here, kA(n) , kH(n) , and kS(n) denote the Kruskal ranks of the matrices A(n), H(n), and S(n),

respectively. In particular, as has been shown in [10], if A(n), S(n), and H(n) have full rank

and Tn ≥ Rn, Ln ≥ Rn (i.e., if the number of events and the number of time samples per

event are larger than the number of components Rn to be extracted), then M = 2 sensors are

enough to blindly separate Rn components.

However, errors in the decomposition are to be expected due to noise and interfering

sources nijk, in particular if the source to be extracted is weak in comparison to the interfering

sources. In this case, the other source signals can be considered as outliers and strongly

influence the optimization of criterion (3) because they prevent the decomposition algorithm

to concentrate on the signal of interest. To overcome this practical problem, we propose to

apply a tensor decomposition that is robust to outliers. In the following, we present two

different robust decomposition schemes, which are based on modifications of the CP cost

function. The different cost functions are displayed in Figure 2.

2.1.2. Robust tensor decomposition

Gaussian CP (GCP) decomposition. The idea of the first method consists in resorting to a cost

function that does not attribute tremendous errors to outliers as does the classical quadratic

cost function used in (3). In [12], the use of an L1-norm cost function was proposed. We

go a step further and employ a cost function JG which is based on Gaussian-like functions

and limits the maximal error to 1 (see Figure 2) . This leads to the following optimization
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Figure 2: Cost functions applied to the error ei,j,k of each tensor element for the classical CP decomposition

and the robust WCP and GCP methods.

criterion:

min
{A(n),S(n),H(n)}

∑
i,j,k

ψ

(
y
(n)
ijk −

Rn∑
r=1

a
(n)
ir s

(n)
jr h

(n)
kr

)
(5)

with ψ(u) = 1−exp{− u2

2σ2 }. In this case, an error value of about 3σ between a tensor element

and the reconstructed tensor element is treated as an outlier since its effective error value

ψ(u) is n very close to the maximum value. The parameter σ that adjusts the width of

the Gaussian function thus permits to define a threshold between “normal” errors and large

outliers and has a high influence on the results of the decomposition. For small σ, most of the

errors will be treated as outliers, which makes the identification of the model difficult, while

for large σ, outliers might not be recognized and can lead to biased estimates of the loading

matrices. The optimal value for σ lies in between and should be chosen according to the data.

If available, estimates of the variances of the n-th source to extract, of the noise, and of the

other sources can be used to determine an appropriate value for the width of the Gaussian

function.

The optimization of the cost function JG can be accomplished using a gradient descent

algorithm. Starting with initial estimates of the loading matrices A(0), S(0), and H(0) (here

the superscript denotes the iteration; for a better readability the superscripts referring to the

sources are left out in the following), the loading matrices at iteration l are updated according
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to

A(l+1) = A(l) − µA gA (6)

S(l+1) = S(l) − µS gS (7)

H(l+1) = H(l) − µH gH (8)

until convergence. Here, n µA = µS = µH = µ is a stepsize parameter and gA = ∂JG
∂A ,

gH = ∂JG
∂H , and gS = ∂JG

∂S denote the gradients of the cost function JG with respect to

the three loading matrices, respectively. The r-th column of the matrix gA = ∂JG

∂A can be

computed as

gar
= −[(hr ⊗ sr)⊗ IM ]T

[
e1

σ
� exp

{
e1 � e1

2σ2

}]
(9)

with e1 = vec
{

[Y ](1)
}
− [(H� S)⊗ IM ]vec{A}. Here,

A⊗B =


a11B · · · a1RB

...
. . .

...

aM1B · · · aMRB


denotes the Kronecker product of matrices A ∈ RM×R and B, � denotes the Khatri-Rao

column-wise Kronecker product, � is the Hadamard element-wise product, vec{A} is the

vector obtained by concatenating the columns of the matrix A, and IM is the identity matrix

of size M ×M . Furthermore, [Y ](1) ∈ RM×(LnTn) denotes the first unfolding matrix of the

tensor Y , which is composed of all mode-1 vectors of the tensor (a mode-1 vector is obtained

by fixing the second and third index of the tensor elements and varying the first index from 1

to M) with an ordering such that the second index is varied faster than the third one n (for

more details and illustrations of operations on tensors see e.g. [25]). The other two gradient

matrices are determined in an analogous way.

Since it does not require any information about the data except for an estimate for the

threshold between noise and outliers, this robust decomposition method is rather general. It

is therefore applicable to a large range of applications. However, to obtain accurate results, a

good initialization is required (see Section 3.1.1). This is especially mandatory if the difference

between the values of outliers and the values of the signal of interest is in the same range as

the amplitude of the signal of interest.
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Weighted CP (WCP) decomposition. The second proposed robust tensor decomposition method

is based on the weighted cost function (see n the red curve in Figure 2):

min
{A(n),S(n),H(n)}

∑
i,j,k

∥∥∥∥∥w(n)
ijk

(
y
(n)
ijk −

Rn∑
r=1

a
(n)
ir s

(n)
jr h

(n)
kr

)∥∥∥∥∥
2

F

, (10)

and exploits the particular structure of the data at hand to determine suitable weights w
(n)
ijk .

In fact, for applications with a small variability of the amplitudes, one can exploit the desyn-

chronization of noise and interference which manifests itself by a high variance σ2
ij over differ-

ent n event-synchronized windows compared to the signal of interest to identify the outliers.

The influence of the outliers can then be attenuated by the attribution of low weights while

weights close to 1 are assigned to the tensor elements that exhibit a small variance over n

event-synchronized windows . The weights are thus computed depending on the variance σ2
ij

as

w
(n)
ijk = exp

− (y
(n)
ijk − µij)2

σ2
ij

 , n = 1, . . . , N, (11)

where µij is the mean of the tensor elements over all n event-synchronized windows , and

can be stored into a nonnegative weight tensor, which is of the same dimensions as Y (n). In

order to obtain robust estimates for the variances σ2
ij , we use the median absolute deviation

(MAD) estimator [26] for their determination.

The optimization of (10) can, for example, be performed using a weighted Alternating

Least Squares algorithm (see [13]).

As for ECG, MCG and EEG signals, the amplitudes for different n event-synchronized

windows are approximately the same, the WCP decomposition is especially adapted to these

applications. Contrary to the GCP decomposition, which requires the manual selection of

the parameter σ, all the parameters are determined automatically from the data and the

technique is robust to intialization. Please note, though, that in the general case, the pattern

amplitudes may change considerably from one n event-synchronized window to another, which

prevents the accurate estimation of the weights using the method described above.

The robust tensor decomposition methods subsequently described can be used to estimate

the mixing matrix and to extract the temporal patterns and the amplitudes of the event-

related sources. This is already an advantage over a matrix decomposition using the singular
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value decomposition (SVD), where one only obtains an estimate of the subspace spanned

by the mixing matrix and no information about individual pattern amplitudes, because the

temporal structure of the event-related sources is not exploited. However, as the tensor

decomposition model assumes identical temporal patterns for each event, the dynamics of

the sources, i.e., slight variations from one period to another, are lost. To recover these

dynamics, we propose to use the estimated mixing matrix, temporal patterns and amplitudes

in a Kalman filtering framework to obtain refined estimates of the sources.

2.2. EKF Framework for Extraction of Event-Related Sources

The goal of Kalman Filter (KF) is to estimate the state of a discrete-time controlled

process. Consider a state vector xk+1 governed by a nonlinear stochastic difference equation

with measurement vector yk+1 at time instant k + 1:xk+1 = f(xk,wk, k + 1)

yk+1 = h(xk+1,vk+1, k + 1)

(12)

where the random variables wk and vk represent the process and measurement noises, re-

spectively, with associated covariance matrices Qk = E
{
wkw

T
k

}
and Rk = E

{
vkv

T
k

}
. The

Extended Kalman Filter (EKF) is an extension of the standard KF to nonlinear systems f(·)

and h(·), which linearizes about the current mean and covariance [27]. In order to improve

the estimations, EKF can be followed by a backward recursive smoothing stage leading to the

Extended Kalman Smoother (EKS). However, since EKS is a non causal method, it cannot

be applied online, but can be used if a small lag in the processing is allowed.

In this framework, the state vector associated with each event-related source is defined by

its phase θk and amplitude zk. The phase θk is, in fact, a means of modeling the event-related

behavior of the source. Then, each period of the source is modeled using θk to obtain zk.

Thereby, the state model of the event-related source, in its discrete form with a small sampling

period δ, is: θk+1 = (θk + ωδ)mod(2π)

zk+1 = g(θk, k) + zk + ηk

(13)

where θ and z are the state variables in polar coordinates and k denotes the discrete time

index. ω is the phase increment, ηk is a random additive noise, and g(.) models the temporal
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pattern and amplitude of the source. In addition to the noisy recording of the source, sk, an

observed phase φk is obtained by a linear time wrapping of each event interval into [0, 2π),

leading to the following system: φk

sk

 =

1 0

0 1

 θk

zk

+

 uk

vk

 , (14)

where uk and vk are the corresponding observation noises with zero-mean random variable

entries.

With several event-related sources in multichannel recordings, redundancy of each event-

related source can be exploited to estimate the information of the desired source mixed with

the other sources and background noise. In order to do so, a linear transform is assumed to

decompose M mixed event-related signals into N components. In other words, we assume

that all event-related sources have N components in total, which are observed by M signals.

For N mixed components, the dynamic equations may be written as:

θ
(1)
k+1 = (θ

(1)
k + ω(1)δ)mod(2π)

z
(1)
k+1 = g(1)(θ

(1)
k , k) + z

(1)
k + η

(1)
k

...

θ
(N)
k+1 = (θ

(N)
k + ω(N)δ)mod(2π)

z
(N)
k+1 = g(N)(θ

(N)
k , k) + z

(N)
k + η

(N)
k

(15)

The phase observations of the N components, Φ = [φ(1),...,φ(N)]T , and the M noisy mixtures

of the N components, s = [s(1),...,s(M)]T , are related to the state vectors Θ = [θ(1),...,θ(N)]T

and z = [z(1),...,z(N)]T at time k as follows:

 Φk

sk

 =

I 0

0 A

 Θk

zk

+

 uk

vk

 , (16)

where uk and vk are the corresponding observation noises.

The key step prior to the implementation of the filter is the estimation of g(n)(.) for the
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n-th component as well as the mixing matrix A:

A =


a11 . . . a1N
...

. . .
...

aM1 . . . aMN

 . (17)

In order to do so, the loading matrices provided by the previous step (Section 2.1) are used:

• the mixing matrix is directly defined as the concatenation of the loading matrices A(n)

related to all the event-related sources;

• the temporal pattern of g(n)(.) for the nth source is provided by the loading matrix

H(n);

• the amplitude of g(n)(.) for the nth source at each period is obtained by the loading

matrix S(n).

3. Results

Both synthetic and actual data have been used to study the performance of the proposed

method. In the first subsection, quantitative results coming from simulations have been stud-

ied. In this subsection, the robustness of the proposed tensor decomposition methods to

amplitude variations, quantity of outliers, initialization, and synchronization errors is exam-

ined based on simulations for both arbitrary tensors and tensors constructed from data of

event-related sources.

In the second subsection the results of the proposed method on three sets of actual data

including EEG, ECG, and MCG have been presented. The results on ECG and MCG data

have been compared with the results of πCA [21] and FastICA [28] methods. The GCP and

WCP labels denote results of the first and second proposed approaches for tensor decompo-

sition without Kalman filtering stage. GCP+EKS and WCP+EKS show the results based

on the first and second proposed approaches of tensor decomposition with a Kalman filtering

stage.
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3.1. Synthetic data

3.1.1. Robust decomposition of arbitrary trilinear tensors in the presence of outliers

First of all, we analyzed the performance of the proposed robust tensor decomposition

methods for arbitrary tensors containing outliers. To this end, we generated a set of arbitrary

loading matrices A ∈ R5×2, S ∈ R10×2, and H ∈ R10×2. The elements of A and H were

random variables chosen from a uniform distribution between −1 and 1. The elements of

S were chosen from a Gaussian distribution with mean 1 and variance σ2
S = 0.04. The

tensor was then constructed from the matrices A, S and H according to (2). To simulate

outliers, we falsified a certain percentage p of randomly selected tensor values by adding or

subtracting 2. Furthermore, we added white Gaussian noise according to a signal-to-noise

ratio (SNR) of 20dB. The resulting tensor was then decomposed using the CP, WCP and

GCP decompositions. For initialization, we took the original loading matrices and added

zero-mean Gaussian noise with variance σ2
i . We computed each decomposition three times

for different initializations and retained the estimated loading matrices that were obtained for

the minimal value of the cost function. The accuracy of the estimated loading matrices Â, Ŝ,

and Ĥ was evaluated using the following measure:

ELM =
1

3R
min
P
{||A′ − Â′DAP||F + ||S′ − Ŝ′DSP||F + ||H′ − Ĥ′DHP||F} (18)

where n R denotes the number of components, P is a permutation matrix and the matrices A′,

S′, H′, Â′, Ŝ′, and Ĥ′ correspond to the original and estimated loading matrices normalized

to unit column norm. Furthermore, DA, DS, and DH are diagonal matrices whose elements

correspond the signs of the elements on the diagonal of the correlation matrices (A′)TÂ′,

(S′)TŜ′, and (H′)TĤ′ and which are introduced to compensate for the sign ambiguity. Sub-

sequently, we analyzed the influence of different parameters on this error for 100 Monte Carlo

trials.

Influence of the percentage of outliers. Figure 3 shows the error of the loading matrices as

a function of the percentage of outliers p for σi = 0.5. It can be seen that the error of the

GCP decomposition is very small n (< 0.1) over a large range of values of p ranging from 1 to

50% before the high percentage of outliers leads to an increasing error. This means that this

method is very robust to even a large amount of randomly distributed outliers in the tensor.
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With an error that is n slightly smaller than that of the GCP decomposition and which has

a smaller variance, the WCP decomposition achieves a slightly better performance for small

percentages of outliers (p < 10%). Yet for p > 10%, the error increases significantly with p,

showing that the WCP is only robust to a limited number of outliers. This sensitivity of the

WCP decomposition method is due to the estimation of the weights, which is not robust to a

large number of outliers. However, for all examined percentages of outliers, both WCP and

GCP methods show a much better performance than the classical CP decomposition, which

is not robust to outliers and already exhibits a large error of 0.2 for only 1% of outliers.

Influence of initialization. To analyze the influence of the initialization on the decomposition

results, we varied the variance σ2
i of the Gaussian noise that is added to the original loading

matrices to obtain a set of initial loading matrices. The percentage of outliers was fixed

to 10%. Figure 4 shows that the results of the WCP decomposition and the classical CP

decomposition hardly changes for different initializations, n with an average error increasing

only slightly from 0.04 to 0.1 for the WCP decomposition and from 0.37 to 0.4 for the CP

decomposition. n With 80% of the errors lying between 0.23 and 0.6, the variance of the

error is high for the CP decomposition and is independent of the initialization. On the other

hand, the variance of the error of the WCP decomposition increases with σi, attaining very

small values for σi < 0.5 and moderate values for bad initializations. On the whole, the

WCP and CP decompositions can be said to be robust to initialization. On the contrary,

the GCP decomposition features a strong increase of the error for rising σi, in particular

between σi = 1 and σi = 3. In this interval, the mean error increases from 0.1 to 0.7. For

small σi < 1, i.e., if the initial loading matrices are close to the exact loading matrices, the

GCP decomposition yields good results n with a very small variance, outperforming the WCP

decompositon when σi becomes very small, while for σi > 2, its results are even worse than

those of the classical CP decomposition. As the Gaussian cost function assumes values close

to 1 for all errors exceeding a certain threshold (see Section 2.1.2), the optimization criterion

of the GCP decomposition can be expected to exhibit an increased number of local minima.

If the initialization is not close to the true solution, the GCP decomposition algorithm is

prone to find a local minimum. This explains the strong dependence of the results of the

GCP decomposition on the initialization.
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Figure 3: Error of the loading matrices as a function of the percentage of outliers. The bold curves show the

results averaged over 200 trials while the 10% and 90% quantiles are represented by the thin curves.

3.1.2. Robust decomposition of tensors of event-related data

In the present paper, we focus on event-related sources. Therefore, we consider in the

following tensors constructed from data containing a mixture of two event-related sources with

one component per source. The elements of the mixing matrices A(n) ∈ R5×1, n = 1, 2, were

chosen from a uniform distribution between −1 and 1 and the amplitudes S(n) were chosen

from a Gaussian distribution with mean 1 and variance σ2
S . The temporal patterns of the first

and second source were given by n exp{− (x1−0.5T1)
2

2α2
1

} with α1 = 0.1 and exp{− (x2−0.5T2)
2

2α2
2

}

with α2 = 0.15 where x1 and x2 are the indices of the time samples and T1 = 101 and T2 = 59

correspond to the lengths of the patterns of the first and second source, respectively. On the

whole, we considered 2020 time samples of data, containing 20 periods of the first source and

34 periods of the second source, in the presence of white Gaussian noise for a SNR of 20dB.

The tensors were then constructed as described in Section 2.1.1 for 100 different trials. For

the decomposition, the loading matrices were initialized as described in the previous section

with σi = 0.2.
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Figure 4: Error of the loading matrices as a function of the variance of the Gaussian noise added to the true

loading matrices to obtain the initial loading matrices. The bold curves show the results averaged over 100

trials while the 10% and 90% quantiles are represented by the thin curves.

Influence of the amplitude variability. The objective of the first simulation consisted in evalu-

ating the influence of the variance of the amplitudes S(n). To this end, σS was varied between

0.1 and 4 n for both sources such that the variances of their amplitudes were equal. Figure

5 shows the error of the loading matrices of the two tensors as a function of the standard

deviation σS of the amplitudes. For the classical CP and GCP decompositions, the errors

of the loading matrices decrease with increasing σS . This can be explained by the fact that

for small σS , the tensors are close to the degenerate case, while a higher amplitude variabil-

ity facilitates the tensor decomposition and the separation of different components. For the

WCP decomposition, the best performance is achieved for small σS . In this case, the am-

plitude variation is small enough so that the peaks of the second source in the tensor of the

first source and vice versa are outlying values and do not influence the computation of the

weights. However, for increasing σS , the amplitudes become high enough for the peaks of the

interfering sources to lie within the n range of amplitudes that are attained by the source to

be extracted. In this case, the interfering sources do not enter as outliers in the computation

of the weights, which will corrupt the estimation of the weights. This leads to an increase of
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the errors of the loading matrices with rising σS .

Influence of synchronization errors. To analyze the influence of synchronization errors (after

the tensor construction, which was accomplished with perfect synchronization), we introduced

artificial delays for each event period to model synchronization errors. The delays were uni-

formly distributed between −τmax and τmax, with τmax chosen between 0 and Tnαn samples,

where αn determines the width of the Gaussian function that characterizes the temporal pat-

tern of the n-th source, n = 1, 2. The standard deviation of the amplitudes was fixed to

σS = 0.2. Figure 6 shows that the error of the loading matrices increases rapidly with rising

maximal delay. This means that the good synchronization of the signals in each tensor is

crucial for the n accuracy of the proposed method.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

σ
H

e
rr

o
r 

o
f 

lo
a

d
in

g
 m

a
tr

ic
e

s

 

 

CP tensor 1

WCP tensor 1

GCP tensor 1

CP tensor 2

WCP tensor 2

GCP tensor 2

Figure 5: Error of the loading matrices as a function of the amplitude standard deviation σS for the tensor of

the first source (tensor 1) and the tensor of the second source (tensor 2).

3.2. Actual Data

3.2.1. ERP Extraction

Event-related potentials (ERPs) are the responses to brain stimulation measured by the

scalp EEG. The measured responses are induced by multiple brain generators active in as-
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Figure 6: Error of the loading matrices as a function of the maximal relative synchronization error (right) for

the tensor of the first source (tensor 1) and the tensor of the second source (tensor 2).

sociation with the eliciting event. However, they are mixed with background activity of the

brain that is not related to the stimulus and also other interferences from non-neural sources,

such as eye blinks [29] and muscle artefacts. Due to the much lower power of ERPs compared

with background EEG, it is difficult to estimate them even though they are dominant in lower

frequencies. The most common way to extract ERPs involves averaging time-locked sections

of the EEG signal over many trials. This method assumes a simple model for ERPs that

consists of the sum of an invariant signal and a random process that will be attenuated by

averaging over trials [30]. However, there is evidence that ERP waves may vary considerably

over time [31]. Furthermore, in [32], it has been shown in the context of neonatal seizure

activity that tensor-based methods that exploit the repetitive nature of EEG signals exhibit

an improved performance to time-locked averaging.

The ERP database consists of EEG signals recorded during a P300 speller brain-computer

interface (BCI) experiment [33]. In such a BCI, the paradigm, which consists of visual stim-

uli divided between target and non-target stimuli, suggests that a positive deviation about

300ms is elicited after a target stimulus, while non-target stimuli do not elicit specific brain
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response. The EEG signals have been sampled at 1200Hz using 16 scalps electrodes. First,

a three-way tensor is built by stacking the data of sixteen channels windowed from 1 second

before the stimuli and 2 seconds after the stimuli. In this experiment, The ERP data was

considered to be composed of 2 components. Decomposition of this tensor yields estimates

of the temporal patterns of ERPs along with their amplitudes and the mixing matrix (i.e.

the spatial projection on scalp). Then, the ERP estimates are improved by the proposed

KF to preserve dynamics of ERPs over time. The extracted temporal patterns of ERPs via

WCP, and single-trial estimates of WCP and WCP+EKS from the namely S6 dataset are

shown in Figure 7. As it is seen, WCP+EKS outperforms WCP because it better preserves

the dynamics of ERPs which can change from a trial to another. GCP and GCP+EKS also

provide rather equivalent results to those of WCP and WCP+EKS.

3.2.2. Fetal ECG Extraction

The ECG data used in this subsection is the DaISy fetal ECG database [34], which consists

of a single dataset of cutaneous potential recordings of a pregnant woman. A total of 8 channels

(5 abdominal and 3 thoracic) are available, sampled at 250 Hz and lasting 10 seconds. The

extracted maternal ECG and fetal ECG using the first and second channels of this database is

shown in Figure 8. The mECG data was considered to be composed of 2 components, while we

used only one component for the fECG data. The mixture of the first channel and extracted

mECG and fECG signals using πCA, FastICA and the proposed GCP and GCP+EKS are

plotted, respectively. The results of WCP and WCP+EKS are also similar to those of GCP

and GCP+EKS. As it is seen, πCA and FastICA methods fail to extract fECG when only

two electrodes are available, since the mixtures are underdetermined. There is neither ground

truth nor golden standard on actual fetal ECG recordings to be used as a reference for

comparing the performance of the different methods. Nevertheless, in order to quantize

the performance of each method on actual data, the mean values of the contaminating and

desired ECGs have been measured at their R-peak positions in the estimated ECG. This can

provide an estimate for the residual of the contaminating mECG in the estimated fECG. If the

contaminating mECG has been successfully canceled, the values of this measure should be low,

meanwhile, the values of the estimated fECG at its R-peak positions should be close to values

of the corresponding points in the original mixture. Table 1 reports values of this measure on
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Figure 7: ERP extraction by WCP and WCP+EKS from the namely S6 dataset. (a): all the 500 measurements

on channel 1 and the average in one plot; (b): the first temporal pattern extracted via WCP; (c): the second

temporal pattern extracted via WCP; (d), (e), and (f): three examples of single-trial ERP extraction. Dotted

lines represent the measurements, solid thin lines the estimates via WCP, and thick lines the estimates via

WCP+EKS.
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Table 1: Maternal and fetal R-peak values on fECG estimate of DaISY dataset (mean ± standard deviation

(SD)).

Maternal Fetal

R-peak value R-peak value

Original mixture 43.66±2.38 17.68±2.37

FastICA 31.30±2.29 13.09±1.91

πCA 41.39±2.68 19.21±2.17

GCP -0.90±0.91 16.04±2.72

WCP -0.88±0.83 16.65±1.26

GCP+EKS 0.17±1.46 16.19±1.11

WCP+EKS 0.29±1.40 17.54±0.99

the fECG estimated by the different methods. The results show that the proposed GCP, WCP,

GCP+EKS, and WCP+EKS significantly outperform πCA and FastICA. Although GCP (or

WCP) and GCP+EKS (or WCP+EKS) provided close quantitative results, it should be noted

that valuable inter-beat dynamics of mECG and fECG are lost in the GCP (or WCP) estimate,

because as it was explained in the previous section all beats of the reconstructed ECGs have

exactly the same temporal pattern up to their amplitudes. Nonetheless, these valuable inter-

beat dynamics of ECG signals are recovered using GCP+EKS (or WCP+EKS).

3.2.3. Twin MCG Extraction

In this subsection, twin fetal cardiac magnetic signals are extracted. The dataset used

in this subsection consists of three sets of twin magnetocardiogram signals and other signals,

in arrays of 208 channels recorded over 30 minutes, with a sampling rate of 1025 Hz1. Two

electrodes were used in this test. The presented results have been achieved for a typical couple

of channels (indexed 92 and 126) of one of the available datasets, namely the q00002252

dataset.

1This dataset has been provided by Dr. Dirk Hoyer, from the Biomagnetic Center of the Department of

Neurology, in Friedrich Schiller University, Jena, Germany.
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Figure 8: mECG and fECG extraction by FastICA, πCA, GCP and GCP+EKS on the first and second

channels of DaISy data.
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To extract sources by the proposed tensor decomposition, they must have different pattern

rates. As long as two sources are not exactly synchronous, they can be separated even if their

pattern rates are approximately the same. This enables the method to separate twin cardiac

signals even if heart rates are approximately equal. However, in this case, the interference

of the second source in the tensor of the first source might be concentrated within a certain

interval of the temporal pattern. This happens especially if the tensor is built from a small

number of events. In this case, the correct decomposition of the tensor is particularly difficult

and cannot be achieved by the classical CP decomposition. The introduction of the weights in

the WCP method permits us to overcome this problem and to focus on the signal of interest.

This discrimination is also provided by the Gaussian function in the first approach (GCP).

There are three sources to be extracted, one maternal MCG and two fetal MCGs, while

two channels are to be utilized. The maternal and fetal MCG ranks considered in the proposed

method are 2 and 1, respectively. Fig.9 presents the results of πCA and the proposed WCP

and WCP+EKS methods in extraction of the maternal and two fetal MCG signals from two

channels. GCP and GCP+EKS also provide close results to those of WCP and WCP+EKS.

As it is seen, πCA method fails to track periodic patterns related to the fetal components

due to their low power and insufficient number of the utilized electrodes. Nevertheless, the

proposed WCP and WCP+EKS methods could recover weak traces of fetal MCG features.

However, as expected in comparison with WCP+EKS, WCP method does not completely

cancel the exogenous noise. Moreover, inter-beat dynamics of MCG signals are lost in this

way. The maternal and fetal R-peak values on the first fetal MCG estimate, are presented in

Table 2. In this experiment, a perfect estimate should give very low value at maternal R-peak

and second fetal R-peak positions.

4. Conclusions

In this paper, we presented a novel two-step method based on robust tensor decomposition

and extended Kalman filtering for extraction of event-related sources that can be quasi-

periodic sources, sources with synchronized trials, and amplitude-variant sources. The robust

criteria used in this work aim at capturing the desired event-related sources even if their

powers are much lower compared with other sources (e.g. large impulse concurrent sources).
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Figure 9: Maternal and fetal MCG extraction by πCA, WCP and WCP+EKS on the 92th and 126th channels

of twin MCG data.
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Table 2: Maternal and fetal R-peak values on the first fetal MCG estimate of twin MCG dataset (mean +

SD).

Maternal First fetal Second fetal

R-peak value R-peak value R-peak value

Original

mixture 210.08±31.42 66.04±40.74 74.97±29.27

πCA 159.72±25.79 63.15±36.77 21.28±24.39

GCP -3.74±7.00 46.79±29.92 -3.08±9.55

WCP -3.44±10.86 55.85±13.98 -2.57±8.37

GCP+EKS 1.94±8.10 65.48±33.29 1.06±8.85

WCP+EKS 1.39±6.77 71.22±28.12 0.20±6.75

In a second step, the estimations are improved by an extended state Kalman filtering to avoid

losing dynamics of the sources.

This method is also applicable to underdetermined mixtures and this is its main interest. It

allows us to utilize the minimal number of electrodes (down to two electrodes), if needed. The

latter is a crucial feature for a monitoring system because it can affect the system’s price,

convenience and portability. Although good synchronization of events of the desired source in

its tensor format is crucial for the functioning of the proposed method, application on actual

data shows its significantly superior performance in comparison to the classical multichannel

methods.

Perspectives include the development of more robust tensor decomposition methods that can,

for example, handle synchronization errors, and application to other datasets.
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[14] J. Möcks, Decomposing event-related potentials: A new topographic components model,

Biological Psychology 26 (1988) 199–215.
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