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Abstract The usual event-related potential (ERP) estima-
tion is the average across epochs time-locked on stimuli of
interest. These stimuli are repeated several times to improve
the signal-to-noise ratio (SNR) and only one evoked poten-
tial is estimated inside the temporal window of interest.
Consequently, the average estimation does not take into
account other neural responses within the same epoch that
are due to short inter stimuli intervals. These adjacent neu-
ral responses may overlap and distort the evoked potential
of interest. This overlapping process is a significant issue
for the eye fixation-related potential (EFRP) technique in
which the epochs are time-locked on the ocular fixations.
The inter fixation intervals are not experimentally controlled
and can be shorter than the neural response’s latency. To
begin, the Tikhonov regularization, applied to the classi-
cal average estimation, was introduced to improve the SNR
for a given number of trials. The generalized cross valida-
tion was chosen to obtain the optimal value of the ridge
parameter. Then, to deal with the issue of overlapping, the
general linear model (GLM), was used to extract all neural
responses inside an epoch. Finally, the regularization was
also applied to it. The models (the classical average and the
GLM with and without regularization) were compared on
both simulated data and real datasets from a visual scene
exploration in co-registration with an eye-tracker, and from
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a P300 Speller experiment. The regularization was found to
improve the estimation by average for a given number of tri-
als. The GLM was more robust and efficient, its efficiency
actually reinforced by the regularization.
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model · Overlap · Regularization · Eye fixation-related
potential · P300 Speller

Introduction

The event-related potential (ERP) technique is a classi-
cal technique (e.g., Luck, 2014) used to study the neural
responses to specific events such as the presentation of
visual stimuli or auditory stimuli. Using this technique,
many cognitive processes have been explained (e.g., Key,
Dove, & Maguire, 2005). One popular way to record brain
activity is to use electroencephalography (EEG) at the sur-
face of the scalp (see Niedermeyer & Silva, 2005). However,
the resulting signal-to-noise ratio (SNR) is very low due to
ongoing brain activities. To overcome this drawback, the
stimuli are presented repeatedly (typically a few tens of time
at least), so that the neural response evoked by these stim-
uli is obtained by averaging the epochs that are time-locked
on each stimulus onset. However, the ERP estimation is
only unbiased if two main conditions are verified. (1) The
(zero mean) noise due to ongoing brain activities needs to
be decorrelated across the epochs. (2) Only a single poten-
tial should be elicited at each epoch and it should be elicited
within each epoch. In this article, these essential condi-
tions are discussed in practical situations and a methodology
based on the general linear model (GLM) is proposed to
tackle experiments where the two required conditions are
not satisfied. Moreover, a regularization method to estimate
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the ERP is proposed, especially if the number of epochs is
low.

Firstly, if the condition on the zero mean noise decor-
relation across the trials is achieved, the SNR increases
linearly with the number of epochs. Thus, the more the
stimuli are repeated, the better the SNR. However, with
a large amount of stimuli, the experiment becomes more
time-consuming and very repetitive for the participants.
In addition, and more importantly, in practice the linear
increasing is not always verified because ongoing activ-
ity may be correlated from one trial to another one and
the resulting SNR after averaging is lower than expected
for a given number of trials. In this article, the Tikhonov
regularization (Tikhonov, 1963) is used in the ERP esti-
mation to increase the SNR for a given number of trials.
The strength of the regularization is given by the value
of the regularization parameter. The choice of this ridge
parameter is a very common but nonetheless a difficult
problem requiring the bias and the variance of the esti-
mator to be balanced as well as possible. In the same
context as this EEG study, Lalor and colleagues proposed
an approach with a second-order Tikhonov regularization to
estimate the event-related potential (ERP). However, they
empirically chose the ridge parameter (Lalor, Pearlmutter,
Reilly, McDarby, & Foxe, 2006); (Lalor, Power, Reilly, &
Foxe, 2009) to give a good compromise between the off-
sample errors and the weakness of the potential peaks.
To estimate this parameter automatically, the two classical
methods are the generalized cross-validation (GCV) pro-
cedure (Golub, Heath, & Wahba, 1979) and the “L-curve”
method (Engl & Grever, 1994). Also for EEG analysis,
Subramaniyam and colleagues (Subramaniyam, Väisänen,
Wendel, & Malmivuo, 2010) compared these two meth-
ods to estimate the visually evoked cortical potentials. In
their study, the Tikhonov regularization was used to solve
the inverse problem of the source localization to find the
spatial cortical distribution at the presentation of emotional
faces. When applied separately on the EEG signals for each
subject and each condition, they found that the regularized
solutions were more robust with the ridge parameter com-
puted by the GCV procedure rather than by the “L-curve”
method. Indeed, the ridge parameter obtained by the
“L-curve” method was too large compared to the parame-
ter obtained by the GCV procedure when the SNR was low:
as a consequence, the solution was over-smoothed and spa-
tially blurred. Here, in this study, two estimation methods of
the regularization parameter are compared but in a context
of temporal estimation of the evoked potentials. Moreover,
an inter-subject analysis is carried out as is usual for ERP
experimental designs instead of an intra-subject study as in
(Subramaniyam et al., 2010). The regularization process is
thus implemented at the overall level for the whole dataset,
but also compared with a regularization for each subject.

Secondly, the last condition for an unbiased estimation
by averaging can only be achieved if just a single identi-
cal potential is elicited in each epoch time-locked on the
event’s onset. This condition does not consider possible dis-
tortion of the target neural response due to experimental
design and/or latent cognitive processes. For example, Luck
in (Luck, 2014) described an ERP experiment in which
the inter stimuli intervals (ISI) values were between 300
and 500 ms and the studied components were P2, N2, and
P3 with latencies between 200 and 400 ms. Luck warned
against distortions due to the short ISI values: i.e., latencies
of the elicited potentials are shorter than the ISI duration
that leads to the overlapping responses evoked by two tem-
porally consecutive stimuli. In this situation, more than one
potential is elicited in an epoch so that the estimation by
averaging is the summation of the delayed versions of the
expected neural components. Consequently, this estimate is
not the expected evoked potential itself, but the convolution
of this potential with the distribution of ISI values inside one
epoch. To reduce overlaps, the experimental design must
control the ISI values as far as possible in agreement with
the latencies of the expected potentials.

This issue had been addressed in the context of audi-
tory evoked potentials, but it is also a central concern for
the estimation of the visual potential elicited by ocular fix-
ations, the eye fixation-related potential (EFRP) (Dimigen,
Sommer, Hohlfeld, Jacobs, & Kliegl, 2011; Nikolaev,
Meghanathan, & Leeuwen, 2016). Tanaka and colleagues
(Tanaka, Komatsuzaki, & Hentona, 1996) had shown that
recording auditory brainstem responses at high stimulus rate
provided valuable information to detect auditory patholo-
gies. Some methods were proposed to face the overlapping
problem due to high stimulus rates. In 1982, Eysholdt and
colleagues (Eysholdt & Schreiner, 1982) had proposed the
maximum length sequence technique, based on a pseudo-
random arrangement of stimuli in a maximum sequence
length. The evoked potential pattern was obtained by a
deconvolution of the averaged responses. Then, another res-
olution method was developed, in the frequency domain,
by adaptive inverse filtering (Hansen, 1983). Three other
methods, using cyclic stimuli sequences, were elaborated.
(1) The continuous loop averaging deconvolution method
(Delgado & Ozdamar, 2004) consisted of acquiring data
from non-isochronic stimuli sequences with a high pre-
sentation rate. Then, the deconvolution was performed by
matrix computations in the time domain. (2) Jewett and col-
leagues (Jewett et al., 2004) had applied a similar method
in the frequency domain and (3) a Wiener filter was used
in (Wang, Özdamar, Bohórquez, Shen, & Cheour, 2006)
to deconvolve evoked potential from the noisy observation
given cyclic stimuli sequences in the frequency domain.
All five of these methods have a common major limita-
tion: they only consider one kind of stimulus, and hence a
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single elicited potential. Besides, we considered the ADJAR
(adjacent response) algorithm developed by Woldorff in
1993 (Woldorff, 1993). This algorithm iteratively estimates
the average of previous and subsequent responses that are
then subtracted from the target response, for the new iter-
ation, and so on. It is a very popular algorithm and has
been successfully used in several ERP studies to correct
distortions due to overlap (Bekker, Kenemans, Hoeksma,
Talsma, & Verbaten, 2005; Brannon, Roussel, Meck, &
Woldorff, 2004; Brannon, Libertus, Meck, & Woldorff,
2008; Fiebelkorn, Foxe, McCourt, Dumas, & Molholm,
2013; Hopfinger & Mangun, 1998; Kenemans et al., 2005;
Talsma, Doty, & Woldorff, 2007; Schmajuk, Liotti, Busse,
& Woldorff, 2006) by an iterative deconvolution. However,
in a previous article (Kristensen, Guerin-Dugué, & Rivet,
2015), we had shown that this algorithm presented some
limitations as to the temporal distribution of the ISI values,
especially for EFRP studies. With this recent technique, the
EEG signal can be time-locked on the onset of the ocular
fixations of the participants to extract EFRP (or eye saccade-
related potentials if the EEG signal is time-locked on the
onset of the saccades). Using ocular events, the ISI becomes
the inter fixations interval (IFI), i.e., the duration between
two consecutive fixations: this interval is thus defined as
the duration of one fixation plus that of one saccade.
These IFIs cannot be controlled experimentally, because
they depend on the participant’s oculomotor pattern. On
average, during experiments in reading or visual explo-
ration, the IFIs are about 250–300 ms and thus, precautions
are taken to face with overlaps between adjacent EFRPs to
allow studies concerning late potentials such as P3 or N400
(latency of between 300 and 600 ms) (Devillez, Guyader, &
Guérin-Dugué, 2015; Frey et al., 2013; Kaunitz et al.,
2014). More recently, least-square based methods have been
proposed to deconvolve multiple overlapping responses
(e.g., Lalor et al., 2006; Rivet & Souloumiac, 2007;
Burns, Bigdely-Shamlo, Smith, Kreutz-Delgado, &Makeig,
2013; Bardy, Dillon, & Van Dun, 2014; Crosse, Butler, &
Lalor, 2015; Congedo, Korczowski, Delorme, et al., 2016;
Dandekar, Privitera, Carney,&Klein, 2012). In (Bardy,Dillon,
& Van Dun, 2014), a least-square method was proposed
for the deconvolution of overlapping multiple responses,
and this was applied to auditory potentials (Bardy, Dillon,
& Van Dun, 2014; Bardy, Van Dun, Dillon, & McMahon,
2014). This method corresponds exactly to the first step of
the xDAWN algorithm (Rivet, Souloumiac, Attina, & Gibert,
2009), which was designed to find optimal spatial filters
for best classifying neural responses in the front of brain–
computer interfaces. It was used for the first time for the
deconvolution of saccadic potentials during free exploration
(Dandekar et al., 2012), and for the deconvolution of EFRP
during a visual search task on natural scenes in (Devillez,
Kristensen, Guyader, Rivet, & Guérin-Dugué, 2015).

In (Lalor et al., 2006; Rivet & Souloumiac, 2007; Rivet
et al., 2009; Crosse et al., 2015), the least-square method
deconvolved overlapping responses assuming that only a
unique class of response was present: it only tackled the
issue of intra-class overlapping response (i.e., overlapping
of responses to the same class of stimulus). If several classes
of stimuli are simultaneously present and overlap each other
(i.e., inter-class overlapping responses), they must be con-
sidered separately by ignoring all the other ones. The least-
square method proposed by Rivet and colleagues in the first
stage of the xDAWN algorithm (Rivet, Souloumiac, Gibert,
& Attina, 2008; Rivet et al., 2009; Rivet & Souloumiac,
2013), or in (Bardy, Dillon, & Van Dun, 2014; Burns
et al., 2013; Congedo et al., 2016) extended the previously
mentioned methods to the case of intra- and/or inter-class
overlapping issues. It belongs to the general linear model
(GLM) (Kiebel & Holmes, 2003) that provides a very large
and flexible framework, routinely used for fMRI studies.
In fMRI literature, the GLM is used for the deconvolution
of hemodynamic responses (Dale, 1999). In the context of
EEG studies, the linear analysis of multidimensional EEG
signals has been also proposed (Parra, Spence, Gerson, &
Sajda, 2005) as a general framework to extract the under-
lying neural sources or subtract interfering sources like eye
movements. Linear discriminant analysis, principal com-
ponent analysis and independent component analysis were
revisited in this context. The linear model between the
latent neural sources and the scalp potentials was addressed
and solved using only the statistics of observed data with
the stimuli and behavioral responses. The deconvolution of
temporally overlapping components was mentioned as an
application of the proposed methodology but the develop-
ments and examples given in (Parra et al., 2005) mainly
concerned the estimation of spatial filters for underlying
neural source extractions.

As in the work applied to the auditory evoked poten-
tials (Bardy, Dillon, & Van Dun, 2014); (Bardy, Van Dun,
et al., 2014), we plan to use the GLM for the deconvolu-
tion of the time-locked evoked potentials and thus manage
the intra- and/or inter-class overlapping issues. With this
GLM, different situations are addressed where the overlap-
ping components may or may not be of the same nature.
Besides in our work, which aims to improve the SNR for a
given number of trials, the Tikhonov regularization is added
to solve the GLM.

In “Theoretical developments”, the matrix framework for
the usual ERP estimation is presented in more detail followed
by the introduction of the regularization parameter and the
GLM with the Tikhonov regularization. In “Methodology”,
the methodology to assess the proposed algorithms is
explained, based on artificial data simulations but also on
real EEG signals from two experiments (1) free visual
exploration to estimate EFRP, and (2) a “P300 Speller” brain
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computer interface. The results based on simulated and real
data are presented and discussed in “Results on simulated
signals”, “Results on EFRP estimation during a free visual
exploration”, and “Results on P300 Speller data”, respec-
tively. Finally, “Conclusions” summarizes the main results
achieved and concludes this article.

Theoretical developments

In this section, we first explain the usual ERP estimation: the
“Average” method. Then we introduce a matrix framework
to present the regularization procedure and finally, the GLM
is described in the context of the temporal deconvolution of
overlapped evoked potentials.

Usual event-related potential estimation

To extract the evoked potentials, the temporal window of
epochs must be sufficiently long to include the latency and
the whole temporal evolution of the potentials of interest.
The underlying assumption is as follows: at each presenta-
tion of a same stimulus, the same neural potential is evoked.
Thus for the ith presentation, the observed neural response
xi(t) time-locked on the ith stimulus onset can be written as:

xi(t) = a(t) + ni(t) (1)

where a(t) is the evoked potential, and ni(t) a noise corre-
sponding to the on-going brain activity.

As the signal-to-noise ratio is very low, the stimuli have
to be repeated several times. In the simplest configuration,
one epoch is extracted at each trial. In this way, a(t) is
estimated by averaging across these epochs:

â(t) = 1

E

E∑

i=1

xi(t) (2)

where E is the number of epochs.
This estimation is non-biased if the following conditions

are fulfilled:

– only one deterministic potential, a(t), is elicited during
the epoch synchronized with the stimulus;

– this potential has the same amplitude across the epochs;
– the noise is a zero-mean random variable and decorre-

lated from one trial to another one. As a consequence,
the SNR increases linearly with E.

In “Regularization to reduce the number of trials” and “Gen-
eral linear model used to manage the overlapping issue”, we
will explain why these conditions are not always verified in
practice, but in this section, we first consider that the two
first conditions have been fulfilled. To facilitate and justify

the proposed theoretical developments, let us reformulate
Eq. 2 in a matrix form.

For this purpose, Eq. 1 can be rewritten using matrix
notations as:

∀i ∈ {1, · · · , Ne}, xi = Dia + ni (3)

where xi = [xi(1), . . . , xi(Ne)]† ∈ R
Ne and ni =

[ni(1), . . . , ni(Ne)]† ∈ R
Ne with ·† the transpose opera-

tor. a ∈ R
Na is the vector of the response time-locked on

the stimuli onset. Ne is the length of the epoch and Na is
the length of the response a(t). Finally, Di ∈ R

Ne×Na is a
Toeplitz matrix1 defined by its first column with entries are
all equal to zero except the τ th

i entry equal to one, with τ th
i

the onset of the ith epoch. Consequently, the epochs can be
concatenated to obtain:

x = Da + n, (4)

with x = [x†
1, . . . , x

†
Ne

]† ∈ R
N and D = [D†

1, . . . ,D
†
Ne

]† ∈
R

N×Na where N = Ne × E. D is the concatenation of
the matrices Di with i = [1, . . . , Ne]. This equation can
be understood as the general linear model (GLM) with the
matrix D as predictors, as it will be developed in “General
linear model used to manage the overlapping issue”. Thus,
with these notations, the neural response â is the least square
solution minimizing the noise variance, such as:

â = argmin
a

‖ x − Da ‖2 (5)

where ‖ . ‖ indicates the Euclidean norm. This general
solution is then expressed as:

â = (D†D)−1D†x (6)

and can be here simplified such as:

â = 1

E
D†x (7)

since the matrix D†D is a diagonal one whose diagonal ele-
ments are all equal to E. Effectively, each matrix Di is
composed of only one diagonal with values of one because
only one potential is elicited at the onset of the stimulus and
then D†D = E.I, with I the identity matrix. Figure 1 illus-
trates this situation, considering the time interval between
two consecutive stimuli (ISI) to be greater than or equal to
Ne samples. This configuration of the GLM with a diagonal
matrix D†D is called here the “Average” method corre-
sponding with the usual estimation by averaging on the
time-locked onsets.

1By definition, a Toeplitz matrix is a descending diagonal-constant
matrix.
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Regularization to reduce the number of trials

By averaging over all epochs, the consistent ERP waveform
is extracted above the noise level. Considering a same vari-
ance for the noise decorrelated with the neural response for
each trial, the variance of the residual noise is inversely
proportional to the number E of epochs and thus the SNR
linearly increases with the number E of epochs. How-
ever, this number is often a compromise between the signal
quality and the duration of the experiment. So, an alterna-
tive is to introduce a regularization constraint to estimate
smooth solutions. Then for a given number of epochs, the
SNR can be improved by regularization. For this, a zero-
order Tikhonov regularization is implemented using a ridge
parameter λ in the ERP estimation, such as âreg(λ) is the
least-square solution minimizing this cost function:

CF(âreg(λ)) =‖ x − Da(λ) ‖2 +λN ‖ âreg(λ) ‖2 (8)

with N the total number of samples (N = Ne × E).
Consequently, âreg(λ) can be expressed by:

âreg(λ) = (D†D + λNI)−1D†x (9)

It should be noted that the classical estimation (6) is for λ =
0 (i.e., λ = 0, no regularization).

A correct regularization is a trade-off between the error
of the estimation (‖ x − Dâreg(λ) ‖) and its power ( 1

Na
‖

âreg(λ) ‖2). A low value of λ promotes an estimate with a
low error but this solution may be dominated by data errors.
Conversely, a high value of λ promotes a low power esti-
mate with a low variance relatively to the fluctuation of the
observed data but a high average gap with the observed data.
These two quantities must be controlled to find the best
trade-off. Usually possible values for λ are iteratively set
by plotting for increasing values of λ, the “L-curve” which
would be, here, ‖ x − Dâreg(λ) ‖ against ‖ âreg(λ) ‖2
in a log-log graph (Engl & Grever, 1994; Hansen, 1992).
Then, the optimal value, λopt , is chosen at the “corner of
the L” corresponding to the maximum of curvature of the
“L-curve” but this “corner” can be difficult to discern (Sub-
ramaniyam et al., 2010). To overcome this difficulty in
objectively finding the “corner of the L”, we opted for a
one-step method by using the generalized cross validation
(GCV) (Golub et al., 1979) instead of the L-curve method.
In short, the GCV considers the linear regression model and
is based on a weighted version of cross-validation. In this
case, the cross validation uses the “leave one out” strategy
by which each observed point is left out in turn and is esti-
mated by the rest of data. The aim of the GCV is to estimate

the λGCV , which minimizes the function V related to the
mean square error (MSE). The λGCV is given by:

V (λ) =
1
N

‖ x − Dâreg(λ) ‖2
(

1
N
tr

(
I − D(D†D + λNI)−1D†

))2 (10)

λGCV = argmin
λ

V (λ)

In the ERP technique, the study is generally an inter-
subject study and the final ERP is estimated after a “grand
average” (average across all the subjects). Consequently,
there needs to be an overall regularization which considers
each subject. A single λGCV is computed for the subjects.
So, using the matrix framework, it is possible to consider all
the subjects by the concatenation of xi signals:

xall = Dalla + nall (11)

with xall = [x†
1, . . . , x

†
S]† ∈ R

Ns , nall = [n†1, . . . , n†S]† ∈
R

Ns and Dall = [D†
1, . . . ,D

†
S]† ∈ R

Ns×Na where S is the
number of subjects and Ns = S × N is the total number
of temporal samples. In this way, the “grand average” can
be estimated by Eq. 9 with an unique value of λGCV for all
subjects, using Dall , xall and NS , instead of D, x and N .

General linear model used to manage the overlapping
issue

The classical ERP method estimates only one evoked poten-
tial by epoch. Two situations can occur regarding overlap-
ping. The first is when the experiment has been designed
so that a single potential is elicited at each epoch (Fig. 1).
In this case, the simplified model (6) where D†D is really
a diagonal matrix, is justified. The second situation is when
during an epoch, the evoked response is observed along
with a part of the previous and/or the subsequent response
(Fig. 2). If the ISI duration is significantly shorter than
the latency of the evoked potential and the duration of the
response, the amount of distortion due to overlapping can
no longer be neglected. Consequently, the right model to
take these overlaps into account needs to be built with a
non-diagonal matrix D†D. Its setup will now be explained.

By using the general linear model to take into account
overlapping, the Toeplitz matrix D has to be set considering
all stimuli inside each epoch. To do so, the neural responses
can be deconvolved (Rivet et al., 2009; Bardy et al., 2014;
Congedo et al., 2016). We first consider that the overlapping
neural responses are of the same type and, second, that they
are of different types.

Therefore, inside one epoch, there is more than one
elicited response, but let us consider that all of these neural
responses have the same waveform. Overlaps occur because
the ISI is shorter than both the latency of the expected neural
response a and the durationNe of the epochs. Consequently,
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Time [ms]

s�mulus 1 s�mulus 2 s�mulus 3

Epoch 1 Epoch 2 Epoch 3

x D a

=

ISI

Ne
Na

Na

Raw data

Fig. 1 Construction of the matrix D considering one unique neural
response per trial (4). Here, a same stimulus (red arrow) repeated three
times, elicits an unique ERP, a. The raw data are segmented into three
epochs (black boxes) time-locked on the stimulus onset. The vector
x is the concatenation of these epochs. The Toeplitz matrix D is null
except on the diagonals whose entries are synchronized on the onset of
each stimulus. The noise n is not illustrated

there is more than one diagonal in each submatrix Di , as is
illustrated in Fig. 2—the solid line diagonals correspond to
the neural responses elicited at the onset of the stimuli (i.e.,

Ne

x D a

=

Na

Na

Fig. 2 Construction of the matrix D assuming the same evoked poten-
tial a for all the neural responses in the each epoch but with shorter
ISIs. The subdiagonals (dotted lines) of the matrix D correspond to the
other neural responses than the neural response on which the epoch is
time-locked (solid lines). The noise n is not illustrated

synchronized with them) and the dotted line subdiagonals
correspond to another neural response elicited, by another
stimulus, in the same epochs. These subdiagonals may or
may not be complete depending on the choice of duration
of the epoch (Ne) in relation to the duration of the response
(Na) and the ISI values. We also need to remember that
even in this situation, the classical estimation of the neu-
ral response only takes into account the diagonals of matrix
D at the onset of the stimuli. Also, the contributions of the
previous and subsequent responses are mixed with the time-
locked observed response x and the potential â estimated
using Eq. 7 (D†D is a diagonal matrix), is biased by these
overlaps. To take overlapping into account, the linear model
of the observed data, described by Eq. 6, is used with the
Toeplitz matrix D as described in Fig. 2. Thus, the least-
square minimization to estimate the neural response â as the
best linear non-biased estimator with the smaller variance is
defined by Eq. 5, and the solution â, is computed by Eq. 6.

Now, let us consider that several types of response are
evoked during one same epoch. In this situation, the linear
model of the observed data is extended to take each evoked
potential in the observed data into account. Let us note C

the number of different expected types of response. In the
following,C will also be called the number of classes. Thus,
the model of the observed data can be rewritten as:

x =
C∑

c=1

D(c)a(c) + n

x = Da + n (12)

where D is now the concatenation of the matrices D(c) (D =
[D(1), . . . ,D(C)]), and a is also the concatenation of the
evoked potentials (a = [a(1)† , . . . , a(C)†]†). In this way, all
neural potentials inside each epoch are considered instead
of a single potential on which the epoch is time-locked.

Some precautions must be taken to avoid an ill-
conditioned and noninvertible matrix D†D: if the variability
of the ISI values (referred to as jitter) is too low, it is not pos-
sible to accurately separate the contribution of the different
stimuli in the observation of the neural response x: there-
fore, the matrix D†D is ill-conditioned. The amount of jitter
must be sufficient to enable the deconvolution between the
different types of evoked responses (see Bardy, Dillon, &
Van Dun, 2014 for a detailed discussion about the amount
of jitter as a balance in the case of the deconvolution of
cortical auditory potentials). A minimum amount of jitter is
necessary, but if it is too large, the variability of the neu-
ral response may increase, because the auditory response
is affected by the ISI value from the previous stimulus
(Näätänen et al., 1988). Consequently, the neural response
is no longer time-invariant, and Eq. 6 becomes incorrect.
Besides, the length of the responses to be estimated must be
smaller than the number of observed samples (Na < N).
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To assess the estimation of one potential relative to the
others, we used the SNR, the signal-to-interference ratio
(SIR) and the signal-to-artefact ratio (SAR) as they are com-
monly used in the “Blind Sources Separation” community
(Vincent, Gribonval, & Févotte, 2006). Let Eq. 12 be recast
in the case of two potentials, a1 and a2 as:

x = D(1)a1 + D(2)a2 + n (13)

where D(1) can be split into two parts: D(1) = D(1)
erp +

D(1)
ov , with the matrix D(1)

erp constructed by the synchronized

onsets and the matrix D(1)
ov constructed by the other neural

responses inside the epoch. In the case of estimating a1, one
can write the estimate as:

â1 = a1 + Ovl(a1) + Ovl(a2) + n′ (14)

where Ovl(a1), Ovl(a2) and n′ are the remaining overlaps
due to a1 and a2 and the remaining noise, respectively. This
expression depends on the algorithm used as detailed below
(see Appendix 1 for the theoretical developments of these
indicators for the simple “Average” method, and for the gen-
eral linear model. From Eq. 14, one can define the SNR of
the estimate â1 as:

SNRâ1
= 10log10

(‖ a1 ‖2
‖ n′ ‖2

)
(15)

This index quantifies the remaining noise in a1. The higher
this is, the better.

The signal-to-artifact ratio (SAR), which quantifies the
remaining overlap of a1 in â1, is defined as:

SARâ1
= 10log10

( ‖ a1 ‖2
‖ Ovl(a1) ‖2

)
(16)

Again, the higher, the better. Finally, the signal-to-
interference ratio (SIR) that quantifies the remaining over-
lap of a2 in â1, is defined as:

SIRa1/a2 = 10log10

( ‖ a1 ‖2
‖ Ovl(a2) ‖2

)
(17)

And yet again, the higher, the better.

Regularization applied to the general linear model

Finally, this formalism serves to set the regularization to
reduce the estimation variance overall the classes:

âreg(λ) = (D†D + λNI)−1D†x (18)

This Eq. 18 corresponds to Eq. 9, with the concatenation
of the Toeplitz matrices as illustrated in Fig. 3, except that
here, the full matrix D†D is no longer a diagonal matrix.

Finally, as previously, λGCV is computed according to
Eq. 10. In the framework of an inter-subject study, combin-
ing GLM and regularization is implemented in the same way
as in “Regularization to reduce the number of trials” where
a single value of λGCV is computed for all the subjects.

Methodology

To evaluate the efficiency of the proposed approach combin-
ing GLM and regularization, a benchmark with four models
was set. We shall denote the four models as follows: on
the one hand Av(0) the classical “Average” method, and
Glm(0) the GLM, without regularization (λ = 0), and on
the other hand Av(λ) the regularized classical “Average”

Na1
Ne

Na2

Na1 Na2

Na

x D a

=

A
B

Fig. 3 Construction of the matrix D assuming two (C = 2) different evoked potentials inside the epochs. The potential a1 (resp. a2) is elicited
by the stimulus A (red arrow) (resp. stimulus B (purple arrow)). Here, the epochs are time-locked on the stimulus A’s onset. The diagonals and
subdiagonals of the matrix D1 (resp. D2) are defined according to the onsets of the stimulus A (resp. B) for each epoch. The noise n is not
illustrated
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method and Glm(λ) the regularized GLM. To conduct this
benchmark, a two-step methodology was followed. Firstly,
realistic EEG signals were generated in order to obtain a
ground truth by using controlled parameters. Secondly, real
EEG signals from two experiments (visual scene explo-
ration, and a classical P300 Speller paradigm) were used
to assess the efficiency of the proposed procedures in real
situations. Using these two databases, two different configu-
rations for GLMwere illustrated. In the first experiment, the
GLM was used to estimate EFRP elicited on adjacent fix-
ations, according to a simple assumption where the evoked
potentials were identical at each fixation. In other words, the
GLM was configured with only one class to estimate over-
lapping potentials. In the second experiment, the GLM was
configured with two classes to highlight the specifics of a
given class. These two experiments used an EEG acquisition
device. The simulated and real signals are now presented.

Simulated signals

The EEG signals were generated as described in Eq. 1.
The potential a(t) was generated with an early waveform
aearly(t) preceding a late one alate(t). This potential was the
ground truth. aearly(t) was generated as a white noise fil-
tered by a bandpass filter with a bandwidth between 5 and
10 Hz and multiplied by a Gaussian window whose mean
μ was 300 ms and the standard deviation σ , 125 ms. In the
same way, alate(t) was a white noise filtered by a low-pass
filter with a cutoff of 3 Hz multiplied by a Gaussian window
with μ equal to 600 ms and σ to 100 ms. To simulate the on-
going brain activity, some noise, n(t)was added to a(t). n(t)

was a white noise filtered by a low-pass filter with a cut-off
of 50 Hz. For our simulations, the SNR varied between −20
and 0 dB. The sampling frequency was 1000 Hz, and the
length of the temporal observation window was 1000 ms.

Three configurations were studied. In the first, without
overlapping, each stimulus was presented with the same ISI
value equal to 1000 ms and elicited the unique potential
a(t). In a second condition—with overlapping—the stim-
uli were presented with a random ISI value shorter than
the latency of the potential. This ISI value was a uniform
random variable between 200 and 400 ms. In the third
configuration—with overlapping and multiple responses—
two different stimuli were presented, eliciting respectively
two potentials, a1(t) and a2(t). The ISI values were gen-
erated in a similar way, by a uniform random variable
between 200 and 400 ms. For the three situations, data were
segmented into epochs of 1000 ms time-locked on each
stimulus onset. For the two last configurations with over-
laps, there were on average, four stimuli, and the averaged
ISI value during the epoch was 300 ms. The number E of
epochs varied between 10 and 100. These simulations were
used to assess the different methods in both situations with

a single evoked potential a(t), and then with two evoked
potentials, a1(t) and a2(t).

Real signals from a visual scene exploration

During a visual scene exploration, a joint EEG and eye
movement database was recorded. For the purpose of this
study, only one condition of the whole experiment (Devillez,
Guyader, & Guérin-Dugué, 2015), called “the free explo-
ration”, which consisted of freely exploring 60 color scenes,
was considered. Each trial started with a white central
fixation cross displayed for 800–1200 ms. When the par-
ticipant had stabilized his/her gaze on this central fixation
point, a color scene was displayed for 4 s. Each trial ended
with a grey screen for 1 s. Thirty-nine healthy volunteers
between 20 and 36 years old participated in the experiment.
Eye movements were recorded using Eyelink 1000 (SR
Research) and sampled at 1000 Hz, for both eyes. The EEG
activity was recorded using 32 active electrodes. The right
earlobe and FCz electrodes were used respectively as refer-
ence and ground. Data were amplified using a g.USBamp
gtec system, and sampled at 1200 Hz. An analog bandpass
filter (0.01− 100 Hz) and a 50-Hz notch filter were applied
online. Eye movement and EEG signals were synchronized
offline, thanks to the triggers sent simultaneously to both
the EEG system and the eye-tracker. EEG data were then
re-sampled at 1000 Hz (eye-tracker sampling rate). After
visual inspection to reject segments contaminated by mus-
cular activity or non-physiological artefacts, ocular artefacts
were then corrected by independent component analysis
(infomax ICA) (Bell & Sejnowski, 1995).

Since the task was a free exploration, each ocular fixation
was assumed to elicit a similar potential, such as the lambda
wave at latency of 100 ms (Yagi, 1981) and the P2 potential
at latencies 200 − 300 ms, whatever the fixation rank dur-
ing the exploration. This EFRP was estimated from −200
ms (including the pre-saccadic potential) up to 800 ms,
which was a sufficiently long duration to include these early
potentials. For the present study, for each trial, three2 ranks
of fixation (r1, r2, r3)

3 were randomly selected for a given
subject. An epoch was defined as the temporal window time-
locked on the onset of an ocular fixation, the rank of this
fixation was r1, r2 or r3. So for a given subject, there were
180 epochs (three per scene) at most. For a given subject,
the temporal window was defined as [−200 − τ ; 800 + τ ]
ms with τ = μ(IFI) + σ(IFI) considering the mean and
the standard deviation of the distribution of inter fixation

2The number of random draws was fixed at three as a balance between
a great number of epochs, and the memory needed for the computation.
3The first two fixations were not considered because their potential
was influenced by the potential elicited by the onset of the scene as
well as the last fixation, which could be interrupted by the offset of the
scene at the end of the exploration.
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Fig. 4 The six possible configurations of epochs. The red arrows (resp. black arrows) represent target (resp. non-target) stimuli

interval values. In this way, the fixation on which the epoch
was time-locked was preceded and followed by at least a
fixation. By averaging across the participants, the temporal
window was equal to [−572; 1171] ms and the mean of the
inter-fixation interval was equal to 271 ms (std = 91 ms).

In our study, this database was of interest to illustrate
the overlapping issue that was one of the main concerns
for the eye fixation related potential estimation (Dimigen
et al., 2011). Besides, a study was done on real datasets to
assess the regularization procedure in two cases. Firstly, the
regularization procedure was independently carried out on
each subject’s dataset, and secondly, the regularization was
simultaneously applied on the whole dataset. Moreover, the
estimated regularized component vs. the grand average of
the regularized components for each subject was compared.

Real signals from a P300 Speller experiment

An EEG database was recorded during a P300 Speller
experiment. The P300 Speller is a brain–computer interface
based on the oddball paradigm (Farwell & Donchin, 1988)
which spells characters. A 6 × 6 matrix was displayed on
a screen computer. The participant focused her/his attention
on the target symbol that she/he wanted to spell and had
to count how many times this symbol was flashed. Each
column and row was randomly intensified several times.
According to the oddball paradigm, when the target sym-
bol flashes, a P300 wave is elicited whereas the non-target
stimuli elicit only a sensory potential. In this experiment,
there were 500 intensifications (or stimuli) of target charac-
ters and 3000 intensifications of non-target characters. The
ISI value was equal to 133 ms.

Ten healthy volunteers, between 22 and 34 years old, par-
ticipated in this experiment. The EEG signal was recorded
via 16 active electrodes with the g.USBamp device from the
g.tec company. The reference electrode was on the ear lobe
and the ground electrode was on the forehead. The sam-
pling frequency was 1200 Hz. The signal was filtered by

a four-order Butterworth band-pass filter with a bandwidth
between 1 and 12 Hz.4

An epoch was defined as the temporal window time-
locked on a target stimulus. This window was from −0.5 s
to 1 s and thus, within an epoch, each target stimulus was
followed by at least five stimuli. There were six possible
configurations of epoch as shown in Fig. 4, and there were
500 epochs.

This database was interesting for our study firstly
because there were two types of stimuli and thus two
types of neural responses and, secondly because the ISI
value was shorter than the latency of the expected tar-
get evoked potential P300 (300-500 ms). So some over-
laps occurred. For the purposes of our study, the methods
were assessed for different numbers of trials with T =
[60, 120, 180, 240, 300, 360, 420]. For each value of T , the
epochs were pseudo-randomly chosen in such a way that
each configuration gave the same number of epochs (i.e., for
T = 60, ten epochs from each configuration).

Results on simulated signals

Effect of the regularization parameter

In this section, the effect of the ridge parameter λ is studied
when estimating the evoked potential in the simplest case,
without overlapping. Since the ground truth is known, the
mean square error (MSE) between a(t) and âreg(λ)(t):

MSE(λ) = 1

Na

‖ âreg(λ)(t) − a(t) ‖2 (19)

can be evaluated as a function of λ (Fig. 5), with a SNR
equal to −20 dB and a number of trials equal to 50 and to
100.

412 Hz is a very low cut-off frequency chosen for these data, which
were initially recorded for a classification study.



2264 Behav Res (2017) 49:2255–2274

Fig. 5 Evolution of averaged MSE with respect to λ, for SNR = −20
dB, 50 and 100 trials

From these two curves, three areas were clearly noticeable:

– 0 ≤ λ ≤ 10−4: The regularization was null or very low.
The two MSE curves reached a high MSE for λ = 0
(without regularization) but led a non-biased estima-
tion. This value for λ = 0 was larger with 50 trials than
with 100 because when averaging, the SNR was higher
with more trials.

– 10−4 < λ ≤ 10−2: the MSE decreased to a minimal
value corresponding to the optimal λ value (λMSE). As
expected, λMSE with 50 trials (λMSE = 2.10−3) was
greater than with 100 trials (λMSE = 1.10−3). Indeed,
with less trials, the estimated component was less noisy
and required more regularization to obtain a smooth
estimation.

– λ > 10−2: The MSE criterion increased and converged
towards the same value, independently of the number
of trials. According to Eq. 18, âreg(λ)(t) converged
towards zero when λ increased. Consequently, the MSE

converged towards the power of a(t)
( ‖a(t)‖2

Na

)
.

These three areas are each illustrated by an estimated
waveform at Fig. 6 for 50 trials and SNR = −20 dB. On
these three graphs, the theoretical expectation E[â] and the
variability (±2 standard deviations) are plotted in relation to
the ground truth a(t) (see Appendix 2 for the mathematical
expressions of the theoretical expectation and variance cor-
responding to the estimation by Eq. 18). For λ = 0 (Fig. 6a),
the estimation was unbiased (the ground truth a(t) and E[â]
are identical) but the variance due to the residual noise was
large. When the ridge parameter was at the optimal value
λ = λMSE = 2.10−3 (Fig. 6b), the bias was greater but
the variance was lower than for the estimation without reg-
ularization. In this way, the estimated signal was less noisy,
which made this the best compromise between bias and vari-
ance. Finally, for a high λ, greater than the optimal value
(hereλ = 1), the estimated signal became unusable (Fig. 6c),
âreg(t) = 0. In other words, with a value which is greater
than the optimum, the regularization is too strong.

Generalized cross-validation procedure

The aim of this section is to validate the generalized cross
validation procedure to estimate the ridge parameter λ when
computing the evoked potential a(t) in the simplest case,

Fig. 6 Illustration of the estimated potential âreg(λ)(t) with (a) λ = 0 (no regularization), (b) λ = λMSE = 2.10−3 (optimal regularization), and
(c) λ = 1 (over-regularized). These three estimations were computed for the same configuration: SNR = −20 dB and 50 trials
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Fig. 7 “L-curve” for 50 trials and SNR = −20dB, ‖ x −Dâreg(λ) ‖2
against ‖ âreg(λ) ‖2

i.e., a unique potential without overlapping. To begin with,
Fig. 7 confirms as in (Subramaniyam et al., 2010) that it is
difficult to use the “L-curve” method to choose the optimal
λ value. In this figure, the value of λ, λMSE , which mini-
mizes the MSE, is indicated but does not correspond to a
discernible “corner of the L-curve”.

The value of λ given by the minimum of the GCV func-
tion, λGCV , was compared to the value which minimized
the MSE, λMSE . The GCV function, V (10), is plotted for
50 trials and SNR = −20 dB in Fig. 8. Both of the val-
ues of λMSE and the values of λGCV , are indicated on this
graph and are close to each other: λMSE = 2.10−3 and
λGCV = 1.10−3.

In Fig. 9, both the averaged optimal values (λ̄MSE ,
λ̄GCV ) computed across ten realizations, are plotted for two
SNR values (−20 dB and −10 dB) against the number of
trials.

In most cases, these two estimates of the ridge param-
eter were equivalent. With less noise (SNR = −10 dB),
these two estimates were similar even for few trials (≥ 10).
However, with more noise (here SNR = −20 dB), the esti-
mation of λ by GCV was over-evaluated if there are few
trials. In fact, in the GCV process for the regularization
of a signal with a very low SNR, the regularization of the
noise outweighs the regularization of the target signal. As
a result, this signal is too smoothed in these conditions.
Figure 9 also shows that λ decreases with the SNR and with

Fig. 8 The GCV function, V (λ), for 50 trials and SNR = −20 dB

Fig. 9 Averaged optimal ridge parameter given by minimization of
the MSE criterion λ̄MSE and by minimization of V , λ̄GCV , function of
the number of trials

an increasing number of trials. The less noisy the signal, the
less regularization is necessary.

For the following sections, and for all results with reg-
ularization, only the GCV method is used to compute the
ridge parameter.

Application to overlapped potentials

In this section, the efficiency of the two methods (“Average”
and GLM) with regularization (Av(λGCV ), Glm(λGCV )) or
without regularization (Av(0), Glm(0)) is assessed in the
case of overlapping potentials, providing four estimation
algorithms to benchmark.

First, the situation with only one overlapping potential
a, was studied. The four estimated waveforms are illus-
trated in Fig. 10a (Av(0)), 10b (Glm(0)), 10c (Av(λGCV ))
and 10d (Glm(λGCV )). As expected, the GLM estimation
without regularization (Glm(0)) was an unbiased estimation
(Fig. 10b), because the overlap was taken into account in the
model (6). The classical estimation by averaging (Av(0))
was biased (Fig. 10a): the matrixD†D in the model was only
a diagonal matrix (6). Furthermore, the contributions, due
to overlap, were not taken into account. Without regulariza-
tion, the classical estimation by averaging (Av(0)) gave a
larger variance than the GLM estimation (Glm(0)) as shown
in Fig. 10a and c. Regularization was found to decrease the
variance while increasing the bias. This is what we observed
for the two estimates given by Av(λGCV ) method and by
Glm(λGCV )), but the bias on the estimate potential by aver-
aging (Av(λGCV )) (Fig. 10c) remained larger than the bias
on the estimate by GLM (Glm(λGCV )) (Fig. 10d).

Secondly, the simulations when two overlapping poten-
tials a1(t) and a2(t) can be elicited in one epoch were
found to produce the same results and interpretations. To
avoid repetitions, the corresponding wave forms were not
shown. The evolution of λGCV and of the estimated SNR
(see Eq. 15 and Appendix 1), function of the number of tri-
als, were studied. The evolution of λGCV , for SNR = −20
dB is plotted in Fig. 11. For more trials, the values for
the two models were equivalent and decreased with the
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Fig. 10 Illustration of the mathematical expectation E[â] in the case of overlapping between epochs. The four models are illustrated: average
method and GLM without regularization (Av(0), Glm(0)) and with optimal regularization (Av(λGCV ), Glm(λGCV )). These four estimations are
with the same configuration: SNR = −20 dB and 50 trials

number of trials. This was in line with the evolution of
the estimated SNR, plotted against the number of trials in
Fig. 12, for the two methods without regularization (Av(0),
Glm(0)). Both of these SNRs increased with the number of
trials, and, consequently, this explains the decreasing of the
λGCV , for the two methods with regularization (Av(λGCV ),
Glm(λGCV )) in Fig. 11. The higher the SNR, the less reg-
ularization is necessary. Consequently, with regularization,
the SNRwas improved for the twomethods for a given num-
ber of trials and it was almost constant across the number

Fig. 11 λGCV for the “Average” method and GLM, function of the
number of trials, SNR = −20 dB

of trials. Additionally, the SNR for less trials (i.e., 20), with
regularization is better than the SNR for more trials (i.e.,
100) without regularization. This is explained by decreased
variance using regularization.

Even if the SNR was the same between Av(0) and
Glm(0) and, between Av(λGCV ) and Glm(λGCV ), the effi-
ciencies of the Av(0) and Av(λGCV ) models were impacted
by distortions due to overlapping. These distortions were
evaluated by the signal-to-artifact ratio (SAR) (16) and
signal-to-interference ratio (SIR) (17), for the Av(0) and
Glm(0) methods (see Appendix 1 for the theoretical devel-
opments of these ratios). When only one unique potential is
elicited, the SAR assesses the distortions due to the overlaps
of the potentials a1(t) in the estimation of the a1(t) itself. In

Fig. 12 Estimated SNR function of the number of trials, for the four
models
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the case of these simulated data, the SAR for Av(0) was 8
dB. The SAR computation for the estimate given byGlm(0)
was not relevant as the overlaps were explicitly taken into
account. When two overlapping potentials are elicited (a1(t)
and a2(t)), for the Av(0) model, the SAR assesses the dis-
tortion due to the overlap of a single potential, and the SIR
assesses the distortions due to overlap with the other poten-
tial. Applied to the estimation of the potential a1(t), the
SAR for Av(0) was 20 dB and the SIR was 17 dB. For the
Glm(0) model, the SAR and SIR were infinite since over-
laps between the two potentials were taken into account.
Finally, to synthesize results, the MSE illustrated the effi-
ciency of the four models (Fig. 13a), for SNR= −20 dB, for
one single evoked potential a(t), and for 30, 50, and 100 tri-
als. The MSE decreased with the number of trials and with
regularization. Moreover, the estimation by Glm(0) (resp.
Glm(λGCV )) was more efficient than the classical method
Av(0) (resp. Av(λGCV )). This is explained by the smaller
bias and variance, as shown in Fig. 10, as well as the reduc-
tion of the distortion due to overlaps. The same observations

were made for the situation with two different overlapping
potentials, a1(t) and a2(t). In this case, the MSE criterion
was assessed for the estimation of the potential a1(t). This
MSE (Fig. 13b) had the same behavior function of the num-
ber of trials and also function of the four methods, as the
MSE evaluated for the estimation of one elicited potential
a(t) (Fig. 13a). Even if the SNRs were equivalent, the effi-
ciencies of Av(0) and Av(λGCV ) models were impacted by
the distortions due to overlapping. This is the reason why
the Glm(0) (resp. Glm(λGCV )) was more efficient than the
Av(0) (resp. Av(λGCV )) model.

Results on EFRP estimation during a free visual
exploration

In this section, the proposed methods are assessed on the
dataset from the free visual exploration. The aim of this
study was to extract the neural response to an ocular fix-
ation, a(t), taking into account the contributions of the

Fig. 13 MSE for SNR = −20 dB and for 30, 50, 100 trials in two situations. a A single potential. b Two potentials. In the second case, MSE
assesses the estimation of a1(t)
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potential evoked by the immediately precedent and subse-
quent fixations. The potential was estimated on the temporal
window [−200; 800] ms with Na = 1000 samples. The
regularization procedures using each subject independently,
or using the whole dataset globally, were compared, firstly
at the level of the ridge parameter values obtained by the
GCV procedure, and secondly at the level of the estimated
waveforms by the “Average” method. To avoid repetition,
this part was not illustrated here with GLM, because the
same conclusions were obtained. In a last subsection, the
“Average” method and the GLM are compared with the
same regularization procedure (on the whole dataset) to pro-
vide results on the quality of the estimations when overlaps
occurred.

Comparison between the regularization values on each
subject versus on the whole dataset

In this section, the values of the optimal ridge parame-
ter λ

subject
GCV given by the GCV procedure for each subject

dataset are compared to the optimal value λGCV estimated
for the whole dataset. The boxplot in Fig. 14 shows the
statistical summary of the distribution of the 39 values of
λ

subject
GCV compared to the unique value of λGCV for both the

“Average” method and GLM, for the Pz electrode. The val-
ues of λ

subject
GCV are higher than the unique value of λGCV

for each of these two models. This was expected because
the number of trials was increased (roughly a multiplica-
tion by the number of subjects) providing a decreasing value
of λGCV for the whole dataset. Indeed, for the GLM, the
value of λGCV on the whole dataset was λGCV = 3.10−5,

and
λ

subject
GCV

39 = 9.4.10−4

39 = 2.4.10−5. Moreover, the reg-
ularization values were lower for the GLM than for the
“Average” method. This was in line with the number of

Fig. 14 Comparison between the values of λ
subject
GCV estimated by the

GCV procedure for each subject and the value of λGCV obtained by
the GCV on the overall dataset for the “Average” method and Glm, on
Pz electrode

synchronization timestamps, which was three times higher
for the GLM than for the “Average” method (the GLM took
into account three fixations in a given epoch: precedent, cur-
rent, and subsequent fixations). Lastly, more outlier values
were observed for the “Average” method than for the GLM.
For six subjects, the search for the optimal value of V (λ)

(10) did not converge inside the search interval (from 10−6

to 100 ),5 and for these subjects, the regularization param-
eter was set to the maximal value (100). When the SNR
was low, searching for the optimal value was more diffi-
cult than when the SNR was high, because the valley of the
V (λ) curve was larger, and less steep with more noise. As a
consequence, the regularization was too strong.

Estimation with regularization on each subject
vs. on the whole dataset with the “Average” method

Estimation with regularization on each subject

With a regularization per subject, the value of the ridge
parameter was adjusted depending on the intrinsic level of
noise in the acquired signals and on the number of trials
for a given subject. The grand average over all subjects
was then estimated by averaging all the regularized esti-
mates. Figure 15 illustrates this procedure for the “Average”
method on the Pz electrode. In Fig. 15a, the grand averages
given by Av(0) and Av(λ

subject
GCV ) models, for the complete

dataset (39 subjects), are plotted. When the grand aver-
age without regularization, obtained directly by the Av(0)
model (the unbiased estimator), was compared with the
grand average computed using each estimate obtained by
the Av(λ

subject
GCV ) models, we observed an increased bias

for the latter (see Fig. 15a for the differences between two
different estimates).

To explain this bias, Fig. 15b shows the grand averages
given by Av(λ

subject
GCV ) model for the whole dataset (39 sub-

jects) and for a reduced dataset (33 subjects) without the six
subjects’datasets for which the values of the ridge param-
eter λ

subject
GCV were too high (see the previous section). A

multiplication factor was noticeable between these two esti-
mates for 39 and 33 subjects. This gain factor on the whole
temporal window can be estimated by maximum likelihood:
G = 1.181. This value was equal to 39

33 . In fact, for the com-
plete dataset, the grand average was obtained, as the sum
of each estimate by subject divided by 39 (the total num-
ber of subjects). However, for six subjects, the predictors
in the matrix D were masked by the high value of λ

subject
GCV

5according to a logarithmic scale such as for 10−6, from 10−5 to 10−4

by step 10−5, from 10−4 to 10−3 by step 10−3, from 10−3 to 10−2 by
step 10−2, from 10−2 to 10−1 by step 10−1, from 10−1 to 1 by step
10−1, from 1 to 100 by step 1
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Fig. 15 a The estimate on Pz electrode, given by the Av(0) model and by the grand average with the Av(λ
subject
GCV ) models, for the complete

dataset with 39 subjects. b The two estimates on Pz electrode, given by the grand average with the Av(λ
subject
GCV ) models, for the complete dataset

with 39 subjects and for the reduced dataset with 33 subjects

(λsubject
GCV = 100), and consequently the matrix (D†D+λNI)

in Eq. 9 was close to the diagonal matrix λNI, and then the
resulting estimate was over-regularized near to zero. In addi-
tion, to explain completely the bias noticed in Fig. 15a, the
impact of the regularization for the 33 other subjects must be
considered. Even if the estimates for these subjects were not
over-regularized, with an optimal regularization controlled
by a suitable ridge parameter, a bias was automatically
introduced. This is the reason why the gain factor between
the two estimates, in the Fig. 15a, was higher than 39

33
(G = 1.58). To conclude, when the distribution of the ridge
parameter’s values, λ

subject
GCV , has a large variability with

high values close to and above 1, the bias of the estimated
grand average given by the Av(λ

subject
GCV ) model increased:

the average is computed by dividing with the total number
of subjects, but in the sum, some of these subjects’ datasets
provide over-regularized estimates near to zero. Neverthe-
less, for the Av(λ

subject
GCV ) model, the variance of the grand

average estimation decreases, the contribution of signals
with high noise being reduced by over-regularization.

Estimation with regularization on the whole dataset

With a unique regularization on the whole dataset, the
grand average of the potential of interest a(t) was obtained
directly by the Av(λGCV ) method. The value of the ridge

parameter λGCV was obtained by the GCV procedure
applied to the whole dataset. In this way, the same level of
regularization has been applied on all subjects. Figure 16
illustrates this regularization procedure for the “Average”
method on the Pz electrode, with the complete dataset
(39 subjects), compared with the procedure without reg-
ularization (Av(0)), and the previous result described in
“Estimation with regularization on each subject” with the
regularization applied to each subject (Av(λ

subject
GCV )). Due to

the increased number of trials, the value of the ridge param-
eter λGCV was smaller (λGCV = 5.10−5) than the average
of the values of λ

subject
GCV (cf. Fig. 14), and tended towards

zero. The two waveforms were very similar, and the bias of
the regularized estimate â(t) is lower. However, its variance

Fig. 16 Estimations of the potential a(t) on Pz electrode, given by
Av(0), and Av(λGCV ) models, and the grand average of Av(λ

subject
GCV )

for the complete dataset of 39 subjects
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was greater because all the trials supplied the same contri-
bution to the estimate â(t) of the final potential with the
Av(λGCV ) model, independently of the noise power on the
trials for the different subjects.

Comparison between the “Average” method
and the GLM with regularization on the whole dataset

In this section, the estimates â(t) obtained by theAv(λGCV )

and Glm(λGCV ) methods are compared for the whole
dataset (39 subjects). In other words, here the lower bias
and higher variance provided by regularization on the whole
dataset were preferred to the higher bias and lower variance
provided by the regularization on each subject. In Fig. 17,
the estimate given by the Av(λGCV ) method is plotted in
blue, the estimate given by Glm(λGCV ) is plotted in red
and histograms represent the onsets of precedent and sub-
sequent fixations. In this figure, for both estimates, the
lambda wave and the P2 potential were clearly noticeable.
The pre-stimulus baseline for the Av(λGCV ) method was
not stabilized due to overlapping of the neural responses to
adjacent fixations. Because the baseline is not stabilized, it
was difficult to compare the amplitude of different com-
ponents. Furthermore, the return to zero was faster with
Glm(λGCV ) than with the Av(λGCV ) method, which was
still influenced by the neural response to the subsequent
fixations. These results showed the influence of the prece-
dent and subsequent responses on the potentials estimated
by the Av(λGCV ) method and the efficiency of Glm(λGCV )

to deconvolve the neural responses to successive fixations.
Concerning the effect of the regularization, the lambda wave
and the P2 potential estimated by the Av(λGCV ) method
were attenuated when compared to the potentials estimated
byGlm(λGCV ). This is explained by a higher ridge parame-
ter with the Av(λGCV ) method (λGCV = 5.10−5) than with
Glm(λGCV ) (λGCV = 3.10−5).

Results on P300 Speller data

In this section, the four methods are compared on the dataset
from the P300 Speller experiment. For this illustration, the

Fig. 17 Estimates on Pz electrode, given by Av(λGCV ) and
Glm(λGCV ) for the complete dataset of 39 subjects. Histograms
represent the onsets of precedent and subsequent fixations

GLM configuration was done to highlight the distinction
between two kinds of potential. For instance, this situation is
well adapted for classification purposes. In the present case,
the aim was to extract the neural response to a target stimuli.
For this, two classes were defined (12): with the first class,
the potential a1(t) was estimated on the temporal window
[−500; 800] ms, Na1 = 1560 samples time-locked on the
target stimuli. With the second class the potential a2(t) was
estimated with the same duration, Na2 = 1560 samples,
time-locked on each stimulus. This potential a2(t)must take
into account what is common to all the stimuli, both target as
well as non-target. The regularization was estimated on the
overall dataset providing a single ridge parameter thanks to
the concatenation across the subjects as described by Eq. 11.
Thus, the regularization was identical for each participant.

Effect of the number of trials on the regularization
parameter

We studied the evolution of the optimal value of λGCV ,
given by the GCV procedure according to the number of tri-
als. In Fig. 18, the values of λGCV are plotted against the
number of trials for Av(λGCV ) and for (Glm(λGCV )) for
the Pz electrode. As for the simulated data, and as expected,
the ridge parameter λGCV decreased when the number of
trials increased, and as for EFRP data, the value of the ridge
parameter was lower for Glm(λGCV ) than for Av(λGCV ).
The estimation by Glm(λGCV ) took into account the over-
lapping from the other stimuli in contrast to the estimation
by Av(λGCV ). In other words, these neural responses were
considered as a signal for GLM, and as noise for the “Aver-
age” method. In this last case, it was the equivalent to an
increase of the noise level providing a higher regularization.

Application of the four models

In this section, the efficiencies of the four models are com-
pared. The potential of interest was the target a1(t). The

Fig. 18 λGCV against the number of trials for the Av(λGCV ) and
Glm(λGCV ) estimations on Pz electrode
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Fig. 19 Estimates on Pz electrode, for 60 and 420 trials. a The estimates by Av(0) and Av(λGCV ) model. b The estimates by Glm(0) and
Glm(λGCV )

target estimate â1(t) given by the four models, and for 60
trials (dashed line) or 420 trials (solid lines) are plotted in
Fig. 19. Firstly, for the four estimations, oscillations were
observed with a periodicity around 130 ms, which corre-
sponds to ISI value between stimuli. These oscillations were
due to the steady-state visual evoked potential (Midden-
dorf, McMillan, Calhoun, Jones, et al., 2000) elicited by
each stimulus. Concerning the four estimations of the target
potential, the P300 wave was observed on the estimated tar-
get potential, at a latency of around 300 ms, as expected with
this oddball paradigm. For the estimates given by Av(0)
and Av(λGCV ) (Fig. 19a), the regularization had no signifi-
cant effect for 420 trials: small value of the ridge parameter
(λGCV = 2.10−5), since there was a large number of trials.
However, for 60 trials, the P300 wave was more attenu-
ated by the regularization: the ridge parameter was greater
with 60 trials (λGCV = 1.10−4) than with 420 trials. The
estimates given by Glm(0) and Glm(λGCV ) are shown in
(Fig. 19b). The GLM included the potential a2(t)

6 to esti-
mate the potential of interest a1(t), this was not the case for
the average estimation. Consequently, the remaining oscil-
lations were attenuated compared to these ones providing by
averaging (in both Av(0), and Av(λGCV ) cases): this was
clearly noticeable during the pre-stimuli period. This behav-
ior was observed with both a few number of trials (60), and
a large number of trials (420).

6The discussion concerning the potential a2(t) is developed in
Appendix 3.

Conclusions

The present study develops, applies, and compares four
methods (the classical average and the general linear model
with and without regularization for both of them) to esti-
mate the evoked potentials in order to improve the SNR
and to limit the distortions due to overlapping between adja-
cent temporally neural responses. To this end, (i) the GLM
was proposed to manage the overlapping issue (Kiebel &
Holmes, 2003; Dale, 1999; Bardy, Dillon, & Van Dun,
2014) and (ii) the zero-order Tikhonov regularization pro-
cedure (Tikhonov, 1963) was used to increase the SNR
for a given number of trials. The regularization parameter
was estimated by the generalized cross validation procedure
(Golub et al., 1979). The interest of this study was to vali-
date and compare these methods on simulated but realistic
data, and also on real EEG signals registered during two
experiments: a co-registration of eye movements and EEG
experiment and a brain–computer interface experiment. To
our knowledge, with this article the regularization and the
GLM are applied, for the first time, in the context of the
EFRP technique. The results demonstrate the interest of the
regularization associated to the GLM to estimate evoked
potentials in practical contexts (noisy EEG signals, few tri-
als, overlapped potentials). The main assumption of GLM
is the linearity of the additive model to take account the
different neural responses elicited by a specific event. The
non-linearity of the neural responses is a sensitive question,
for the relationship between the ERP components through
their amplitude/latency and the variables tested by the
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experimental conditions (Tremblay & Newman, 2015), but
also for the interferences between adjacent responses where
the neural responses are no longer time-invariant (Näätänen
et al., 1988). Integrate suitable non-linearity remains a great
challenge for future work, however this linear model can
still be very useful in a wide variety of applications.
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Appendix 1: Theoretical developments to estimate
the signal-to-noise ratio (SNR), signal-to-artifact
ratio (SAR), signal-to-interference ratio (SIR)

The signal noise ratio, signal-to-artifact ratio, and signal-
to-interference ratio are defined by Eqs. 15, 16 and 17,
respectively.

The remaining overlaps, Ovl(a1) and Ovl(a2), and the
remaining noise, n′, due to a1 and a2, for “Average” method
and GLM are estimated as followed:

1. “Average” method
In the case of the “Average” method, â1 is expressed

as:

â1 = 1

E
D†
1erp

x

= a1 + 1

E
D†
1erp

D1ov a1 + 1

E
D†
1erp

D2a2 + 1

E
D†
1erp

n

(20)

Consequently

Ovl(a1) = 1

E
D†
1erp

D1ov a1

Ovl(a2) = 1

E
D†
1erp

D2a2

n′ = 1

E
D†
1erp

n

2. General linear model
In the case of the GLM method, â1 is expressed as

â1 = B1D†x (21)

where B1 ∈ R
Na1×Na are the first rows of the matrix

(D†D)−1, with D = [D1 D2]. Consequently, â1 =
a1 + n′ with n′ = B1D†n. This means that Ovl(a1) and
Ovl(a2) vanish, leading thus to infinite SIR and SAR.

Appendix 2: Theoretical mathematical expectation
and variance

The Eq. 18 can be developed:

âreg(λ) = (D†D + λNI)−1D†(Da + n)

âreg(λ) = �a + �n

(22)

with� = (D†D+λNI)−1D†D and� = (D†D+λNI)−1D†.
In the simulated situations, a and n are known. So, the

mathematical expectation E[â], plotted in Figs. 6 and 10, is
calculated as:

E[â] = �a + �E[n]
E[â] = �a (23)

n is not zero-centered so E[n] = 0.
In the same way, the variance Var[â] is equal to:

Var[â] = E[(â − E[â])(â − E[â])†]
Var[â] = �E[nn†]�† (24)

Appendix 3: Results concerning the P300Speller
dataset: Estimation of potential a2(t)

The potential a2(t) can be explained by the P300 Speller
paradigm. In this latter experiment, target and non-target
stimuli were presented at a regular rate (here equal
to 133 ms). Consequently, these regular intensifications
elicited steady-state visual evoked potentials (SSVEP) over
parietal and occipital areas. These SSVEP corresponded
in the GLM to the term D(2)a2(t). From a numerical
point of view, the estimation of the potential a2(t) is inac-
curate because of the regularity of the ISI. Indeed, the
matrix D(2)†D(2) is closed to be singular. The contribution
D(2)a2(t) in the GLM (12) is well estimated. See Fig. 20 for
this estimate on one epoch. This figure shows the SSVEP
signal for an epoch. As expected, oscillations were observed
with a periodicity of around 133 ms.

Fig. 20 SSVEP estimate on one epoch
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