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Co-Factorization for Convolutive Source Separation
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Abstract—In this paper, the problem of convolutive source sep-
aration via multimodal soft Nonnegative Matrix Co-Factorization
(NMCF) is addressed. Different aspects of a phenomenon may
be recorded by sensors of different types (e.g., audio and video
of human speech), and each of these recorded signals is called a
modality. Since the underlying phenomenon of the modalities is
the same, they have some similarities. Especially, they usually have
similar time changes. It means that changes in one of them usually
correspond to changes in the other one. So their active or inactive
periods are usually similar. Assuming this similarity, it is expected
that the activation coefficient matrices of their Nonnegative
Matrix Factorization (NMF) have a similar form. In this paper,
the similarity of the activation coefficient matrices between the
modalities is considered for co-factorization. This similarity is
used for separation procedure in a soft manner by using penalty
terms. This results in more flexibility in the separation proce-
dure. Simulation results and comparison with state-of-the-art
algorithms show the effectiveness of the proposed algorithm.

Index Terms—Multimodality, blind source separation, nonneg-
ative matrix co-factorization, convolutive mixture, audio-visual
speech separation.

I. INTRODUCTION

B LIND Source Separation (BSS) is a challenging problem in
signal processing which aims to separate original sources

from their mixtures where no information is available about the
mixing matrix or the sources except the statistical independence
of the original sources and the structure of the mixtures (linear,
time instantaneous, convolutive, ...) [1]. An M ×M convolutive
mixture, where M is the number of sources and sensors, is
modeled as [1]

xi(t) =
M∑

j=1

ãij (t) ∗ sj (t), i = 1, 2, ...,M (1)
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where xi(t) is the i-th mixture, sj (t) is the j-th source, ãij (t)
is the impulse response filter from the j-th source to the i-
th mixture and ‘∗’ denotes the convolution operator. A usual
approach for solving the convolutive source separation problem
is to resort to the frequency domain using Short Time Fourier
Transform (STFT) [2]–[4]. STFT is usually arranged in a matrix
such that the n-th column of this STFT matrix is the Fourier
transform of the n-th frame of the signal. The n-th frame of
xi(t), denoted by xi,n (t), is defined as

xi,n (t) = xi(t + (n− 1)τ ′)W (t), t ∈ [0 : τ ] (2)

where W (t) is a finite length window of length τ , and τ ′ is the
amount of the window shift.

Since STFT is a linear transform and by assuming that the
filter (ãij (t)) time duration is much less than the STFT window
length (τ ), (1) can be written in the STFT domain as [5]

∀(f, n) xi(f, n) =
M∑

j=1

ãij (f)sj (f, n), (3)

where xi(f, n) is the (f, n)-th element of the STFT matrix of
xi(t), sj (f, n) is the (f, n)-th element of the STFT matrix of
sj (t), and ãij (f) is the Fourier transform of ãij (t). Different ap-
proaches have been proposed for convolutive source separation
in the STFT domain, e.g., [1]–[7].

Multimodal nature of natural phenomena can also be ex-
ploited for convolutive source separation. Different aspects of
a multimodal phenomenon are measured by using different in-
struments. Each of these measurements is called a modality.
For example, human talk is a multimodal phenomenon, with
basically two main modalities: audio signal received by ears
or microphones, and video signal received by eyes or cam-
eras. Indeed, modalities provide different (but related) signals
coming from a single phenomenon [8]. A review on separating
the acoustic part of the speech using the corresponding video
modality can be found in [7], [9].

Since the modalities are the different recordings of the same
phenomenon, they usually have some similarities. Therefore, the
joint analysis of the modalities is a powerful tool—in fact a par-
ticular approach related to data fusion [8]—for exploiting their
similarities in solving different problems. Due to the mentioned
similarity among the modalities with the same physical origin,
the Nonnegative Matrix Factorization (NMF) of the modalities
can have similar parameters, called shared factors [10]. NMF
is a decomposition approach in which a matrix V ∈ RF ×N

+
with nonnegative elements is factorized as the product of two
matrices with nonnegative elements [11] as

V �WH, (4)
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where W ∈ RF ×K
+ and H ∈ RK×N

+ . K is usually chosen less
than F and N [11]. NMF can be achieved for example by solving
[11]

min
W≥0,H≥0

D(V‖WH), (5)

where D measures the divergence between V and WH.
Simultaneous nonnegative factorization of recordings of mul-

timodal or multichannel1 datasets with shared factors is a
common approach in data fusion and is called Nonnegative Ma-
trix Co-Factorization (NMCF). For multimodal or multichannel
datasets with two recordings, NMCF can be achieved by solving
[5], [12], [13]

min
W 1≥0,W 2≥0,H≥0

λ1D(V1‖W1H) + λ2D(V2‖W2H), (6)

where λi is the weight of the i-th term, V1 ∈ RF ×N
+ and V2 ∈

RF ×N
+ are the recordings of the dataset, H ∈ RK×N

+ is the
shared factor that is identical in both V1 and V2 and W1 ∈
RF ×K

+ and W2 ∈ RF ×K
+ are the unshared factors.

In [5], NMCF of multichannel audio dataset is used for convo-
lutive source separation. Mixtures that are recorded by different
microphones are simultaneously factorized into matrices which
are then used for convolutive source separation. In that paper,
the shared factors of the recordings of the observed multichan-
nel dataset are assumed to be equal. It leads to a method based
on a cost function like (6), in which there is a single matrix
H in both of the two terms2 (this is called hard coupling). In
[10], [14], the equality constraint of the shared factors is re-
placed by the similarity constraint of the shared factors: it leads
to methods based on a cost function with an additional penalty
term measuring the similarity between the shared factors (this is
called soft coupling). In [15], this method, called soft NMCF, is
also used for convolutive source separation. But the algorithm
of [15], to prevent the convergence of the shared factors to zero,
requires a normalization of W1 and W2 and additional matrix
factors.

The algorithms proposed in [5], [15] for convolutive source
separation are only based on audio recordings, i.e., only the
similarities of the recordings of a multichannel audio dataset
are considered for convolutive source separation.

Conversely, in this paper, a multimodal soft NMCF approach
is proposed for convolutive source separation by exploiting both
audio and video signals. It is assumed that the audio sources are
mixed together convolutively at each microphone and the videos
of the speakers are also recorded such that the video information
of each speaker is available separately (i.e., non-mixed). The
information provided by each video modality is then exploited
in the separation of the audio mixtures. Actually, in this paper,
the only information that we exploit from the video modality
is the surface of the lip opening of the corresponding speaker,

1Multichannel dataset consists of recordings of a phenomenon with several
sensors of the same type while multimodal dataset consists of recordings of
a phenomenon with sensors of different types. Several audio recordings of a
human speech with different microphones is an example of a multichannel
dataset, while audio and video recordings of a human speech is an examples of
a multimodal dataset.

2Details on NMCF for convolutive source separation will be reviewed in
Section II.

extracted from the actual video signal [16]. Since the lip opening
of a speaker can have non-zero values during the silence periods
(because the lips of the speaker can be open during the silence
periods), the derivative of the lip opening signal is used as the
second modality. So, we have two modalities: the audio and the
derivative of the lip opening signal which for simplicity we call
“lip surface” signal throughout this paper.

These two modalities of a single speaker usually have similar
time changes. It means that changes in one of these modalities
usually correspond to changes in the other modality. Especially,
these modalities have nearly the same active or inactive periods.
Therefore, it is expected that their activation coefficient matrices
have zero elements in nearly the same indices. In this paper, we
use this similarity for convolutive source separation. The lip
surface modalities are factorized first and then the resulting
parameters are used for separating the audio signals. As we
show later, in this approach, the problem of the convergence of
the shared factors to zero (which exists in the algorithm of [15])
no longer occurs.

The remainder of this article is organized as follows. In Sec-
tion II, NMCF for convolutive source separation is reviewed.
Soft NMCF will be reviewed in Section III. In Section IV,
the proposed multimodal soft NMCF algorithm for convolutive
source separation is presented and finally, Section V is devoted
to experimental results.

II. A REVIEW ON NMCF FOR CONVOLUTIVE

SOURCE SEPARATION

Separating convolutive mixtures using NMCF of multichan-
nel audio recordings has been introduced in [5]. The STFT
matrix of the j-th source, denoted by Sj , is a matrix of size
F ×N where F is the number of frequency bins and N is the
number of time frames. The power spectrogram matrix of the
j-th source is defined as Vs

j ∈ RF ×N
+ whose elements are

vs
j (f, n) = |sj (f, n)|2 , (7)

where sj (f, n) and vs
j (f, n) are the (f, n)-th elements of Sj and

Vs
j , respectively. In [5], it is assumed that the power spectrogram

matrix of each individual source can be factorized as

Vs
j ≈WjHj , (8)

where Wj ∈ RF ×K
+ is the basis dictionary matrix and Hj ∈

RK×N
+ is the activation coefficient matrix of the NMF of the

power spectrogram matrix of the j-th source (Vs
j ). It is also

assumed that the (f, n)-th element of Sj (i.e., sj (f, n)) has a
complex Gaussian distribution as

sj (f, n) ∼ Nc

(
0,

K∑

k=1

wj (f, k)hj (k, n)

)
, (9)

where wj (f, k) and hj (k, n) are the elements of Wj and Hj ,
respectively. It is shown in [17] that under the above assump-
tion, and by assuming the mutual independence of the elements
across the frequency bins and the time frames, the Maximum
Likelihood (ML) estimation of Wj and Hj from Sj is achieved
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by minimizing

− log P (Sj |WjHj )

= −
N∑

n=1

F∑

f =1

log P

(
sj (f, n)|0,

K∑

k=1

wj (f, k)hj (k, n)

)

= NF log(π) +
N∑

n=1

F∑

f =1

log

(
K∑

k=1

wj (f, k)hj (k, n)

)

+
|sj (f, n)|2

∑K
k=1 wj (f, k)hj (k, n)

=
N∑

n=1

F∑

f =1

dIS

(
|sj (f, n)|2‖

K∑

k=1

wj (f, k)hj (k, n)

)
+ cst

=
N∑

n=1

F∑

f =1

dIS

(
vs

j (f, n)‖
K∑

k=1

wj (f, k)hj (k, n)

)
+ cst

= DIS(Vs
j ‖WjHj ) + cst, (10)

where P denotes the Probability Density Function (PDF), “cst”
denotes the terms which are independent of Wj or Hj and DIS

denotes the Itakura-Saito Divergence between two matrices,
defined as

DIS(Y‖Ŷ) =
∑

i,j

dIS(y(i, j)‖ŷ(i, j))

=
∑

i,j

y(i, j)
ŷ(i, j)

− log
y(i, j)
ŷ(i, j)

− 1, (11)

where y(i, j) and ŷ(i, j) are the (i, j)-th elements of Y and Ŷ,
respectively, and dIS(y(i, j)‖ŷ(i, j)) denotes the element-wise
Itakura-Saito divergence. Based on (10) and by considering (5),
it is clear that the ML estimation of Wj and Hj for the j-th
source (Sj ) is the NMF of its power spectrogram matrix using
the Itakura-Saito divergence.

Similar to the above discussion and by assuming that the time
durations of the impulse responses of the filters (ãij (t)) are
much smaller than the STFT window size, the ML estimation
of the parameters from the STFT matrix of the i-th mixture,
denoted by Xi of size F ×N , is achieved by minimizing (as
detailed in [5])

− log P (Xi‖
M∑

j=1

AijWjHj )

=
N∑

n=1

F∑

f =1

dIS

⎛

⎝|xi(f, n)|2‖
M∑

j=1

|ãij (f)|2
K∑

k=1

wj (f, k)hj (k, n)

⎞

⎠

+ cst = DIS

⎛

⎝Vx
i ‖

M∑

j=1

AijWjHj

⎞

⎠+ cst, (12)

where M is the number of sources (and also the number of
mixtures), xi(f, n) is the (f, n)-th element of Xi , the matrix
Vx

i ∈ RF ×N
+ is the power spectrogram matrix of the i-th mix-

ture whose (f, n)-th element is equal to |xi(f, n)|2 , ãij (f) is

the Fourier transform of ãij (t) and Aij ∈ RF ×F
+ is a diagonal

matrix whose (f, f)-th element is aij (f, f) = |ãij (f)|2 .
It worth emphasizing that Wj and Hj (the factorization pa-

rameters of the j-th source) are the same for all of the mix-
tures, but Aij ’s have different values for each mixture. In [5],
convolutive source separation is then achieved by minimizing∑M

i=1 − log P (Xi‖
∑M

j=1 AijWjHj ) which is equivalent to
minimizing the following cost function

C =
M∑

i=1

DIS

⎛

⎝Vx
i ‖

M∑

j=1

AijWjHj

⎞

⎠ . (13)

The above equation is an NMCF problem of a multichannel
dataset for convolutive source separation in which Wj ’s and
Hj ’s are the shared factors and Aij ’s are the unshared factors.
The parameters wj (f, k), hj (k, n) and aij (f, f) are estimated
by minimizing the cost function (13) with respect to wj (f, k),
hj (k, n) and aij (f, f). Finally, the j-th source in the i-th mixture
is reconstructed using Wiener filtering as [5]

ŝij (f, n) =
aij (f, f)

(∑K
k=1 wj (f, k)hj (k, n)

)
xi(f, n)

v̂i(f, n)
,

(14)
where ŝij (f, n) is the (f, n)-th element of the reconstructed j-th
source in the i-th mixture and v̂i(f, n) is the (f, n)-th element
of V̂i =

∑M
j=1 AijWjHj (note that V̂i ∈ RF ×N

+ ).

III. A REVIEW ON SOFT NMCF FOR CONVOLUTIVE

SOURCE SEPARATION

In [15], the hard coupling approach of the previous section
has been modified to a soft coupling, and so a soft NMCF
has been proposed for separating multichannel (in fact, stereo)
audio datasets. In that paper, the first and the second mixtures
(the signals received in the left and the right microphones) are
modeled as

xl(t) = s1(t) + s2(t),

xr (t) = ã1(t) ∗ s1(t) + ã2(t) ∗ s2(t), (15)

where ã1(t) and ã2(t) are the time domain filters for the first
and the second sources. So the elements of the STFT matrices
of the mixtures are

xl(f, n) = s1(f, n) + s2(f, n),

xr (f, n) = ã1(f)s1(f, n) + ã2(f)s2(f, n), (16)

where xl(f, n) and xr (f, n) are the (f, n)-th elements of
the STFT matrices of the mixtures received in the left
and the right microphones, respectively, and ã1(f) and ã2(f)
are the Fourier transforms of ã1(t) and ã2(t), respectively. Con-
volutive source separation using soft NMCF is then achieved
by minimizing the following cost function with respect to
θ � (Wl ,Hl ,Wr ,Hr ,A1 ,A2) [15]

C(θ) = DIS(Vx
l ‖W1lH1l + W2lH2l)

+ DIS(Vx
r ‖A1W1rH1r + A2W2rH2r ) + λsp(Hl ,Hr ),

(17)

where Vx
l ∈ RF ×N

+ and Vx
r ∈ RF ×N

+ are the power spectro-
gram matrices of the mixtures received in the left and the right
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microphones, Wl =[W1l ,W2l ]∈ RF ×2K
+ , Hl =[HT

1l ,H
T
2l ]

T

∈ R2K×N
+ , Wr = [W1r ,W2r ] ∈ RF ×2K

+ and Hr = [HT
1r ,

HT
2r ]

T ∈ R2K×N
+ where W1l , W2l , W1r , W2r are of size

F ×K and H1l , H2l , H1r , H2r are K ×N matrices and A1
and A2 are diagonal F × F matrices whose diagonal elements
are a1(f, f) = |ã1(f)|2 and a2(f, f) = |ã2(f)|2 , respectively
[15]. Wil and Hil (i = 1, 2) are the NMF parameters of the i-th
source received in the left microphone, Wir and Hir (i = 1, 2)
are the NMF parameters of the i-th source received in the right
microphone and (.)T denotes the matrix transpose operator.
p(Hl ,Hr ) is the penalty term which controls the similarity of
Hl and Hr and λs is the weight of the penalty term. The value
of λs highly affects the performance of the soft coupling al-
gorithm. So in [15] the soft coupling algorithm is executed for
different values for λs and finally the best result is selected.

As it is clear from (17), the equality constraint (i.e., hard
coupling) of Hl and Hr of the two mixtures, which was assumed
in [5], is replaced by the similarity constraint (i.e., soft coupling)
of Hl and Hr (it should be noted that in [15], as in [5], it is
assumed that Wl = Wr ). In other words, it is no more required
that Hl and Hr are equal, they only have to be similar. The
similarity of the parameters is controlled by the penalty term,
p(Hl ,Hr ), which is added to the cost function.

The penalty terms that are used in [15] are ‖Hl −Hr‖1
and ‖Hl −Hr‖2F , where ‖.‖1 denotes the sum of the ab-
solute values of a matrix (�1 penalty term) and ‖.‖F is
the Frobenius norm of a matrix (�2 penalty term). For any
0 < α < 1, the cost function (17) satisfies the following
property: C( 1

α Wl , αHl ,
1
α Wr , αHr ) < C(Wl ,Hl ,Wr ,Hr )

[15]. So without any additional constraint, Hl and Hr will con-
verge to zero, i.e., to a trivial solution. To avoid this problem, in
[15], each column of Wl and Wr is normalized to have a unit �1
norm and then to compensate for the effect of the normalization,
the k-th rows of Hl and Hr are multiplied by additional param-
eters blk =

∑
f wl(f, k) and brk =

∑
f wr (f, k), respectively.

In addition, due to possibly different scalings of the activation
coefficient matrices, especially when the activation coefficient
matrices are extracted from modalities of different types (e.g.,
audio and video modalities of a speech), a diagonal matrix is
multiplied to one of the matrices in the penalty term. So the �2
penalty term in [15] is

p(Hl ,Hr ) = ‖BlHl − SBrHr‖2F , (18)

where Bl and Br are diagonal matrices of size K ×K, whose
(k, k)-th elements are blk and brk , respectively, and S ∈ RK×K

+
is a diagonal matrix to compensate for the potentially scale
difference between Hl and Hr . More details about Bl , Br and
S can be found in [15].

Finally, after the estimation of the parameters by minimizing
the cost function of (17), the sources are reconstructed using
Wiener filtering.

IV. THE PROPOSED MULTIMODAL SOFT NMCF ALGORITHM

FOR CONVOLUTIVE SOURCE SEPARATION

As mentioned before, audio and lip surface modalities com-
ing from a single speech have some similarities. In particular,
changes in one of them usually correspond to changes in the
other one. This similarity is shown in Fig. 1. Due to this similar-

Fig. 1. Time variations of human speech viewed by the two modalities: (top)
the audio modality, (down) the lip surface modality of the speaker.

ity, it is expected that the activation coefficient matrices resulted
from the NMF of the modalities are similar, especially for the
entries close to zero (silence periods). This similarity is used in
papers such as [14] for speaker diarization.

In this paper, we use this similarity along with soft NMCF
presented in [15] for convolutive source separation. In the first
step of the proposed algorithm, the activation coefficient matri-
ces of the lip surface modalities are extracted by the NMF of
the power spectrogram matrices of the lip surface modalities as
(it should be noted again that the lip surface modality of each
speaker is available separately)

min
W v

j ≥0,Hv
j ≥0

DIS(Vv
j ‖Wv

j H
v
j ), (19)

where Vv
j ∈ RF ×N

+ is the power spectrogram matrix of the
lip surface modality of the j-th speaker and Wv

j ∈ RF ×K
+ and

Hv
j ∈ RK×N

+ are the factorization parameters.
The penalty term in (17), which controls the similarity of the

activation coefficient matrices, is broken into the two following
terms

p(Hl ,Hr )→ pl(Hl ,Hv ) + pr (Hr ,Hv ),

where for a 2× 2 mixture, Hv = [Hv
1

T ,Hv
2

T ]T . Each of the
rows of Hv is normalized to have unit �1 norm. The above
penalty terms can also be written as

pl(H1l ,Hv
1 ) + pl(H2l ,Hv

2 ) + pr (H1r ,Hv
1 ) + pr (H2r ,Hv

2 ).
(20)

By the above discussion, in the second step of the proposed al-
gorithm, the following cost function is proposed for convolutive
source separation via multimodal soft NMCF

CNEW(θ) = DIS(Vx
l ‖W1lH1l + W2lH2l)

+ DIS(Vx
r ‖A1W1rH1r + A2W2rH2r )

+ λlpl(Hl ,Hv ) + λrpr (Hr ,Hv ), (21)

where θ � (Wl ,Wr ,Hl ,Hr ,A1 ,A2). It is assumed that
W1l = W1r and W2l = W2r (as in [5] and [15]), so in the
rest of the paper W1 is used instead of W1l and W1r , and W2
is used instead of W2l and W2r . λl and λr are the weighs of the
penalty terms. The dimensions of the matrices are the same as in
Section III. In this paper, it is assumed that pl(.) = pr (.) = p(.).
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The extension of the above cost function to more than two
sources and sensors is straightforward.

Suppose that for the NMF of each of the lip surface modali-
ties, K is set to a positive integer such as κ, so for 2× 2 mixtures,
Hv = [Hv

1
T ,Hv

2
T ]T ∈ R2κ×N

+ . Since Hv
1 and Hv

2 correspond
to the lip surface modalities of the first and the second speakers,
respectively, and by considering (20), it is expected that after
the update procedure H1l and H1r correspond to the activation
coefficient matrix of the first source and H2l and H2r corre-
spond to the activation coefficient matrix of the second source.
Consequently, after the update procedure, W1 corresponds to
the first source and W2 corresponds to the second source. Fi-
nally, the sources are reconstructed using Wiener filtering (14).
It should be noted that in this paper we consider the same κ for
both audio and lip surface modalities.

The details of the proposed penalty term and the update rules
are discussed in the following subsections.

A. The Proposed Penalty Term

In this paper, the following penalty term is proposed for con-
trolling the similarity of the activation coefficient matrices of
the corresponding audio and lip surface modalities:

p(H,Hv ) = DMM(Hv‖H) =
∑

k,n

dIS(hv (k, n)‖h(k, n))
hv (k, n)

=

∑

k,n

1
h(k, n)

− log hv (k, n)
hv (k, n)

+
log h(k, n)
hv (k, n)

− 1
hv (k, n)

, (22)

where DMM(Hv‖H) is the proposed multimodal penalty term
(where MM stands for MultiModal), dIS is the element-wise
Itakura-Saito divergence defined in (11), H denotes Hl or Hr

and h(k, n) and hv (k, n) are the (k, n)-th elements of H and
Hv , respectively. The zero valued elements of Hv are replaced
by a very small positive constant ε to prevent division by zero.

As mentioned before, the zero valued (very small valued) in-
dices of the activation coefficient matrices of the audio and the
lips surface modalities are nearly the same. Thus, the penalty
term must take into account this similarity, especially during the
silence periods, i.e., for the small valued indices of the activa-
tion coefficient matrix of the lip surface modality (Hv ). This is
done in (22) by weighting each term dIS(hv (k, n)‖h(k, n)) by

1
hv (k,n) . This ensures that H and Hv are very similar for the
small values, but can be far from similarity for the larger values
of hv (k, n).

Similarity of Hl and Hr to Hv guarantees the similarity of
Hl and Hr . So the proposed cost function for separating 2× 2
convolutive mixtures, i.e., (21), can be written as

CNEW(θ) = DIS(Vx
l ‖W1H1l + W2H2l)

+ DIS(Vx
r ‖A1W1H1r + A2W2H2r )

+ λlDMM(Hv‖Hl) + λrDMM(Hv‖Hr ). (23)

In addition, since Hv has been computed in advance and
is kept fixed during the update procedure, the problem of the
convergence of Hl and Hr to zero, which was noted in [15],
no longer occurs. Consequently, the matrices Bl and Br , used
in [15] to compensate for the effect of the normalization of the
basis vectors, is not needed in the proposed penalty term.

B. The Update Rules

Similar to [11], [18], in this paper the update rules are de-
rived using a majorization-minimization approach and exploit-
ing auxiliary functions [11]. G(H,Ht) is an auxiliary function
for F (H) if the following conditions hold [11]

G(H,Ht) ≥ F (H) G(Ht ,Ht) = F (Ht),

where Ht is the point at which the values of G(Ht ,Ht) and
F (Ht) are the same. Thus F (H) is non-increasing under the
update

Ht+1 = argmin
H

G(H,Ht).

This is because [11]:

F (Ht+1) ≤ G(Ht+1 ,Ht) ≤ G(Ht ,Ht) = F (Ht).

It means that minimizing the auxiliary function results in mini-
mizing F (H). So finding a proper convex auxiliary function is
an important step for deriving the update rules.

Suppose that V̂l = W1H1l + W2H2l ∈ RF ×N
+ and V̂r =

A1W1H1r + A2W2H2r ∈ RF ×N
+ , whose (f, n)-th elements

are v̂l(f, n) and v̂r (f, n), respectively and vx
l (f, n) and vx

r (f, n)
are the (f, n)-th elements of Vx

l and Vx
r , respectively. By us-

ing a majorization-minimization approach and finding proper
auxiliary functions, the update rules are derived as (details are
deferred to Appendix A)

wq (f, k)← wq (f, k)×
√√√√√
∑

n hql(k, n) vx
l (f ,n)

v̂ 2
l (f ,n) +

∑
n aq (f, f)hqr (k, n) vx

r (f ,n)
v̂ 2

r (f ,n)
∑

n
hq l (k,n)
v̂ l (f ,n) +

∑
n

aq (f ,f )hq r (k,n)
v̂ r (f ,n)

,

(24)

hql(k, n)←

√√√√√
h2

q l(k, n)
∑

f wq (f, k) vx
l (f ,n)

v̂ 2
l (f ,n) + λl

∑
f

wq (f ,k)
v̂ l (f ,n) + λl

hv
q (k,n)hq l (k,n)

, (25)

hqr (k, n)←

√√√√√
h2

qr (k, n)
∑

f aq (f, f)wq (f, k) vx
r (f ,n)

v̂ 2
r (f ,n) + λr

∑
f

aq (f ,f )wq (f ,k)
v̂ r (f ,n) + λr

hv
q (k,n)hq r (k,n)

,

(26)

a1(f, f)← a1(f, f)

√√√√
∑

n h′(f, n) vx
r (f ,n)

v̂ 2
r (f ,n)

∑
n

h ′(f ,n)
v̂ r (f ,n)

, (27)

a2(f, f)← a2(f, f)

√√√√
∑

n h′′(f, n) vx
r (f ,n)

v̂ 2
r (f ,n)

∑
n

h ′′(f ,n)
v̂ r (f ,n)

, (28)

where H′ � W1H1r ∈ RF ×N
+ and H′′ � W2H2r ∈ RF ×N

+
with elements h′(f, n) and h′′(f, n), respectively and wq (f, k),
hql(k, n), hqr (k, n), aq (f, f), hv

q (k, n) are the elements of Wq ,
Hq l , Hqr , Aq , Hv

q (q = 1, 2), respectively. The parameters are
updated sequentially in each iteration until convergence.

The proposed multimodal soft NMCF algorithm for convo-
lutive source separation (for 2 × 2 mixtures) is summarized in
Algorithm 1.
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Algorithm 1: Proposed Multimodal Soft NMCF Algorithm.
1: Compute the power spectrogram of each of the lip

surface modalities (Vv
j (j = 1, 2)).

2: Compute Hv
j (j = 1, 2) for a predetermined κ. (κ is the

number of the rows of Hv
j )

3: for k = 1 : κ do
4: hv

j (k, n) =
hv

j (k,n)∑
n hv

j (k,n)

5: end for
6: Hv = [Hv

1
T ,Hv

2
T ]T

7: if hv (k, n) = 0 then
8: hv (k, n)← ε
9: end if

10: Update the parameters sequentially in each iteration
using (24)–(28) until convergence.

11: Reconstruct the original sources using (14).

V. EXPERIMENTAL RESULTS

In this section, the validity of the proposed algorithm is inves-
tigated via experimental results. Pairs of audio and lip surface
modalities extracted from human speeches are used for the sim-
ulations. The details about extracting the lip surface modalities
and recording the audio signals can be found in [16]. Since
the sampling frequency of the audio modalities is 16 kHz and
the sampling frequency of the lip surface signals is 50 Hz, the
lip surface signals are up-sampled by rate of 320 using the
“interp.m” function of Matlab. The audio mixtures are arti-
ficially created as

xl(t) = s1(t) + s2(t)

xr (t) = s1(t− 0.0019) + s2(t− 0.0031).

The duration of the audio signals is 32 sec (512000 samples).
It should be noted again that the lip surface signals are not
mixed, so each lip surface modality corresponds to a speaker
and consequently to an audio signal.

In the first step, the similarity of the activation coefficient
matrices of the two modalities coming from a single speech,
which is the basic assumption of this paper, is studied. Acti-
vation coefficient matrices of audio and lip surface modalities
corresponding to a single speech are computed separately. For
the simplicity of the comparison, in this experiment κ (i.e., the
number of the rows of Hv

i , i = 1, 2) is set equal to 1. So each
of the estimated matrices has only one row. In Fig. 2, the esti-
mated activation coefficient matrices of the audio (top) and the
lip surface (down) modalities of a speech are shown. As it is
seen, the estimated activation coefficient matrices of the audio
and the lip surface modalities are similar especially in their zero
indices. The simulations regarding the proposed algorithm are
presented in the following subsections.

A. Convergence of the Proposed Algorithm

In this subsection, the convergence of the proposed cost
function is experimentally investigated. In this experiment, the
proposed algorithm is used for separating sources from 2× 2
mixtures. The number of the iterations of the proposed algo-
rithm is set equal to 200, κ (the number of the rows of Hv

i ) is

Fig. 2. The estimated activation coefficient matrices of the audio modality
(top) and the lip surface modality (down) of a human speech with κ = 1 (note
that there is no mixture for the audio signal and by κ = 1 the activation coeffi-
cient matrices reduce to a simple row).

Fig. 3. The proposed cost function for 10 executions of the proposed algo-
rithm.

set equal to 10 and λl and λr (the weights of the penalty terms)
are set equal to 1. The window length of STFT is 1000 samples
which is equal to 0.0625 sec. For numerical comparison, the
following Signal to Noise Ratio (SNR) is used

SNR = 10 log10

( ∑
f ,n |s(f, n)|2

∑
f ,n (|s(f, n)| − |ŝ(f, n)|)2

)
, (29)

where s(f, n) is the (f, n)-th element of the STFT matrix of
the original signal and ŝ(f, n) is the (f, n)-th element of the
STFT matrix of the estimated signal. We also define the average
SNR for the first and the second separated sources from 2× 2
mixtures as

SNRavg =
SNR1 + SNR2

2
, (30)

where SNRi (i = 1, 2) is the average of the separating SNRs of
the i-th separated source from each mixture. The value of the
cost function and SNRavg for 10 executions of the proposed algo-
rithm for the separation of the sources from 2× 2 mixtures are
shown in Figs. 3 and 4. It should be noted that the mixtures are
the same in each execution but the parameters of the algorithm
are initialized randomly. It is clear that, for these executions
of the proposed algorithm, the cost function (Fig. 3) and the
SNRavg curves (Fig. 4) converge to different values depending
on the initializations of the parameters.
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Fig. 4. SNRavg (in dB) for 10 executions of the proposed algorithm.

B. Comparison of the Proposed Algorithm with Other
Separating Algorithms

To have a comparison between the proposed multimodal algo-
rithm and the algorithms proposed in [5] and [15], several 2× 2
convolutive mixtures are separated using the three mentioned
algorithms. In this paper, we refer to the algorithm proposed in
[5] as the hard coupling algorithm and the algorithm proposed in
[15] as the soft coupling algorithm. The window length of STFT
is 1000 samples which is equal to 0.0625 sec, the penalty coeffi-
cients λl and λr are set equal to 1 and κ is set equal to 10 (since
κ somehow determines the structure of the algorithm, for a fair
comparison, we choose the same κ for all of the algorithms).
As mentioned earlier, choosing a proper penalty coefficient (λs

in (17)) highly affects the performance of the soft coupling al-
gorithm. So, for each mixture, the soft coupling algorithm is
executed for λs = [0.5, 1, 1.5, 2, 2.5] and finally the best result
is selected. All of the algorithms are initialized randomly with
nonnegative elements. The resulting SNR1’s and SNR2’s are
given in Table I, for our proposed algorithm (multimodal soft),
the algorithm of [15] (soft coupling) and the algorithm of [5]
(hard coupling). Clearly, the proposed multimodal soft NMCF
algorithm outperforms the other audio-only algorithms.

For visually demonstrating the quality of the proposed algo-
rithm in source separation, a 2× 2 mixture is separated using
the proposed algorithm. λl and λr are set equal to 1 and κ is set
equal to 10. The original and the separated signals are shown
in Figs. 5 and 6, respectively. The quality of the proposed
algorithm in source separation is clear from the results.

The efficiency of the proposed algorithm when the lip surface
information is only available for one of the sources (say s1)
is investigated in Table II. For this propose, the coefficients
of the penalty terms corresponding to the second source (the
second and the fourth terms of (20)) are set equal to zero and
H2l = H2r . Clearly, the SNR performance, although smaller
than when the lip surface modality is available for all speakers,
is more than the performances of the hard and the soft coupling
algorithms, for most mixtures. It should be noted that since the
mixtures in Tables I and II are the same and the best results are
selected for the soft coupling algorithm, the results for the soft
coupling algorithm in both tables are the same.

The efficiency of the proposed algorithm for separating 3× 3
mixtures is compared with the hard coupling algorithm. The
results are presented in Table III. It is clear from the results
that the performance of the proposed algorithm for separating
3× 3 mixtures is less than the performance of the proposed

TABLE I
SEPARATION SNR (dB) FOR THE PROPOSED MULTIMODAL SOFT NMCF, THE

SOFT AND THE HARD COUPLING ALGORITHMS FOR SEPARATING 20 MIXTURES

algorithm for separating 2× 2 mixtures. But the performance
of the proposed algorithm, in most cases, is better than the
performance of the hard coupling algorithm.

C. Investigating the Effect of λl and λr

The effect of λl and λr on the quality of the proposed algo-
rithm is studied in Table IV. The results are the averaged SNRavg

for 5 different mixtures. It is clear from these results that, gener-
ally, the performance of the proposed algorithm is first improved
by increasing λl and λr , but further increase of these penalty
coefficients results in a reduction of the performance of the
proposed algorithm.

D. Investigating the Effect of κ

In this section, the effect of κ (the number of the rows of
Hv

i ) on the performance of the proposed algorithm is investi-
gated. In Fig. 7, SNRavg averaged over 10 different mixtures is
plotted for different values of κ. It is seen that the separation
performance is increased with κ, up to κ = 10, but increasing
κ to larger amounts does not highly affect the quality of the
proposed algorithm.

E. Soft or Hard Coupling

For investigating the effect of the proposed multimodal soft
coupling of the audio and the lip surface modalities, in Ta-
ble V, the proposed method is compared with the situation when
Hl = Hv and Hr = Hv , i.e., with the hard coupling of the ac-
tivation coefficient matrices of the audio and the lip surface
modalities. In this approach, Hl and Hr are set equal to Hv and
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Fig. 5. The original sources of the experiment of Section V-B.

Fig. 6. The reconstructed sources of the experiment of Section V-B.

are kept fixed, that is, only Wl and Wr are updated during the
update procedure. SNR1 and SNR2 for the separated sources
using the mentioned approaches are presented in Table V. It is
clear from the results that the proposed multimodal soft cou-
pling results in a better separation performance compared with
the hard coupling of the activation coefficient matrices of the

TABLE II
SEPARATION SNR (dB) FOR THE PROPOSED MULTIMODAL SOFT NMCF WHEN

THE LIP SURFACE INFORMATION IS AVAILABLE ONLY FOR THE FIRST SOURCE,
THE SOFT AND THE HARD COUPLING ALGORITHMS FOR

SEPARATING 20 MIXTURES

TABLE III
SEPARATION SNR (dB) FOR THE PROPOSED MULTIMODAL SOFT NMCF

ALGORITHM AND THE HARD COUPLING ALGORITHM FOR

SEPARATING 3 × 3 MIXTURES

TABLE IV
SNRav g (dB) FOR THE PROPOSED MULTIMODAL SOFT NMCF ALGORITHM

VERSUS λl AND λr AVERAGED OVER 5 MIXTURES
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Fig. 7. The averaged SNRavg for separating 10 different mixtures versus κ
(the number of the rows of Hv

i ).

TABLE V
SEPARATION SNR (dB) FOR THE PROPOSED MULTIMODAL SOFT NMCF

ALGORITHM AND THE APPROACH BASED ON THE HARD COUPLING OF THE

ACTIVATION COEFFICIENT MATRICES OF THE AUDIO AND THE

LIP SURFACE MODALITIES

audio and the lip surface modalities. As mentioned before, the
activation coefficient matrices of the corresponding audio and
lip surface modalities are similar, but they are not necessar-
ily equal. So, the proposed soft coupling between Hl , Hr and
Hv , which is able to preserve their difference, results in a better
source separation performance compared with the hard coupling
situation in which Hl = Hv and Hr = Hv .

In the next simulation, the proposed method is compared
with the situation where Hl = Hr but they are coupled in a soft
manner to Hv . The results are presented in Table VI. It is seen
that, for most mixtures, the proposed multimodal soft NMCF
algorithm achieves a better source separation performance.

F. Investigating the Penalty Term

In this section, the effect of the proposed penalty term on
the performance of the proposed algorithm is investigated. For
this purpose, the proposed penalty term is compared with the �2
penalty term defined as (where ‖.‖F stands for Frobenius norm)

‖Hl −Hv‖2F + ‖Hr −Hv‖2F , (31)

and also compared with the �1 penalty term defined as

‖Hl −Hv‖1 + ‖Hr −Hv‖1 . (32)

TABLE VI
SEPARATION SNR (dB) FOR THE PROPOSED MULTIMODAL SOFT NMCF

ALGORITHM AND THE SITUATION WHEN Hl AND Hr ARE

ASSUMED TO BE EQUAL

TABLE VII
SEPARATION SNR (dB) FOR THE PROPOSED MULTIMODAL SOFT NMCF

ALGORITHM AND FOR THE COST FUNCTIONS WITH �2 AND �1 COUPLINGS

The proposed cost function (23) and the cost functions obtained
from (31) and (32) are compared with each other. The penalty
coefficients are set equal to 1. The results are presented in Ta-
ble VII. It is clear that the proposed penalty term results in a
better separation performance compared with the �2 and the �1
penalty terms.

G. Simultaneous Factorization of the Audio and the Lip
Surface Modalities

In this part, the proposed algorithm is compared with an ap-
proach in which the audio mixtures and the lip surface modalities
are factorized simultaneously. In this situation, the cost function
(21) changes to

Csim = DIS(Vx
l ‖W1lH1l + W2lH2l)

+ DIS(Vx
r ‖A1W1rH1r + A2W2rH2r )

+ DIS(Vv
1‖Wv

1H
v
1 ) + DIS(Vv

2‖Wv
2H

v
2 )

+ λlp(Hl ,Hv ) + λrp(Hr ,Hv ),

where Vv
1 ∈ RF ×N

+ and Vv
2 ∈ RF ×N

+ are the power spectro-
gram matrices of the first and the second lip surface modalities
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TABLE VIII
SEPARATION SNR (dB) FOR THE PROPOSED MULTIMODAL SOFT NMCF

ALGORITHM AND FOR THE SITUATION WHEN THE LIP SURFACE MODALITIES

AND THE AUDIO MIXTURES ARE FACTORIZED SIMULTANEOUSLY

TABLE IX
SEPARATION SNR (dB) FOR THE PROPOSED MULTIMODAL SOFT NMCF, THE

SOFT COUPLING AND THE EM BASED ALGORITHMS FOR A MORE

COMPLICATED MIXTURE

and Wv
1 ∈ RF ×K

+ and Wv
2 ∈ RF ×K

+ are the basis dictionary
matrices resulted from the factorization of Vv

1 and Vv
2 , respec-

tively. Recall that Hv = [Hv
1

T ,Hv
2

T ]T . The other parameters
have been defined earlier. The third and the fourth terms of Csim

correspond to the factorization of the lip surface modalities and
the last two terms correspond to the penalty terms. The penalty
coefficients are set equal to 1. The resulting SNR’s are presented
in Table VIII.

It is clear from the results that, most of the times, the se-
quential factorization of the lip surface signals and the audio
mixtures, which is proposed in this paper, results in a better
source separation performance, compared with the simultane-
ous factorization of the lip surface modalities and the audio
mixtures.

H. More Complicated Mixtures

Finally, we investigate the performance of the proposed al-
gorithm for separating the following more complicated mixing

system:

xl(t) = s1(t) + s2(t),

xr (t) = 0.8s1(t− 0.0019) + 0.4s1(t− 0.0062)

+ 0.2s1(t− 0.0094) + s2(t− 0.0031)

+ 0.3s2(t− 0.0075) + 0.1s2(t− 0.0125).

The proposed algorithm is compared with the soft coupling
algorithm and the Expectation Maximization (EM) based al-
gorithm proposed in [5]. The EM based algorithm proposed
in [5], is based on the maximization of the joint likelihood of
the mixtures using EM algorithm. The results are presented in
Table IX.

It is seen that even for more complicated mixtures, the perfor-
mance of the proposed algorithm is more than the performances
achieved by the soft coupling and the EM based algorithms.

VI. CONCLUSION

In this paper, a multimodal algorithm was proposed for the
separation of the convolutive mixtures of the audio signals when
the video signals of the speakers are also available. The proposed
algorithm was focused on separating the audio sources from the
stereo mixtures, and with the help of the lip surface signal of
each speaker as the second modality. The similarity of the ac-
tivation coefficient matrices of the audio and the lip surface
modalities along with the similarity of the NMF parameters of
the audio signals of the two mixtures were used for convolutive
source separation using the proposed multimodal soft NMCF
approach. The penalty term of the soft NMCF algorithm [15],
which controls the similarity of the activation coefficient ma-
trices of the audio modalities, was split into two penalty terms
that control the similarity of the activation coefficient matrices
of the audio and the lip surface modalities corresponding to a
same speech. In the first step of the algorithm, the activation
coefficient matrices of the lip surface modalities were extracted
and in the second step, the resulting activation coefficient ma-
trices were used for convolutive audio source separation. The
proposed algorithm does not need deriving any prior probability
model for the audio and the lip surface modalities and does not
suffer from the permutation problem. The update rules are de-
rived using a majorization-minimization approach and with the
help of convex auxiliary functions. Although the auxiliary func-
tions are convex, the main cost function is not convex and the
algorithm usually converges to a local minimum of the cost func-
tion. The extraction of the lip surface signals of each speaker
requires a good video quality, but it is a very simple feature,
and the simulation results show that despite this simple fea-
ture, the multimodal algorithm proposed here outperforms the
audio-only algorithms. Future works can be devoted to source
separation by taking into account the delay between the audio
and the lip surface modalities and considering more accurate
video information of each speaker than the lip surface signal.

APPENDIX A
DERIVING THE UPDATE RULES

As mentioned earlier, the update rules are derived using a
majorization-minimization approach and with the help of aux-
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iliary functions [18]. In [18], the following auxiliary function
is used for estimating H in (5) when D is the Itakura-Saito
divergence

G1(H,Ht) =
∑

f ,n

{
v(f, n)

∑

k

ht(k, n)2w(f, k)
h(k, n)v̂(f, n)2

+
∑

k

h(k, n)
w(f, k)
v̂(f, n)

}
+ cst,

where ht(k, n) is the (k, n)-th element of Ht and v̂(f, n) is
the (f, n)-th element of V̂ = WHt . The first term of the above
auxiliary function is derived by using the Jensen’s inequality and
the second term of the above auxiliary function is achieved by
replacing the “log” function by its tangent at the point ht(k, n)
[18]. In this paper, we have used the following auxiliary function
for optimizing the proposed penalty term

G2(H,Ht) =
∑

k,n

1
h(k, n)

+
h(k, n)

hv (k, n)ht(k, n)
+ cst.

Similar to [18], the above auxiliary function is achieved by
replacing the “log” function by its tangent at the point ht(k, n).

By the above discussions, the following auxiliary functions
are used for optimizing H1l at the point Ht

1l and H2l at the
point Ht

2l :

∑

f ,n

{
vx

l (f, n)
∑

k

ht
1l(k, n)2w1(f, k)

h1l(k, n)v̂l(f, n)2

+
∑

k

h1l(k, n)
w1(f, k)
v̂l(f, n)

}

+ λl

⎛

⎝
∑

k,n

{
1

h1l(k, n)
+

h1l(k, n)
hv

1 (k, n)ht
1l(k, n)

}⎞

⎠+ cst,

∑

f ,n

{
vx

l (f, n)
∑

k

ht
2l(k, n)2w2(f, k)

h2l(k, n)v̂l(f, n)2

+
∑

k

h2l(k, n)
w2(f, k)
v̂l(f, n)

}

+ λl

⎛

⎝
∑

k,n

{
1

h2l(k, n)
+

h2l(k, n)
hv

2 (k, n)ht
2l(k, n)

}⎞

⎠+ cst,

where ht
1l(k, n) and ht

2l(k, n) are the (k, n)-th elements of Ht
1l

and Ht
2l , respectively.

In a similar manner, the following auxiliary functions are
used for optimizing H1r and H2r at the points Ht

1r and Ht
2r ,

respectively:

∑

f ,n

{
vx

r (f, n)
∑

k

ht
1r (k, n)2a1(f, f)w1(f, k)

h1r (k, n)v̂r (f, n)2

+
∑

k

h1r (k, n)
a1(f, f)w1(f, k)

v̂r (f, n)

}

+λr

(
∑

k,n

{
1

h1r (k, n)
+

h1r (k, n)
hv

1 (k, n)ht
1r (k, n)

})
+ cst,

∑

f ,n

{
vx

r (f, n)
∑

k

ht
2r (k, n)2a2(f, f)w2(f, k)

h2r (k, n)v̂r (f, n)2

+
∑

k

h2r (k, n)
a2(f, f)w2(f, k)

v̂r (f, n)

}

+λr

(
∑

k,n

{
1

h2r (k, n)
+

h2r (k, n)
hv

2 (k, n)ht
2r (k, n)

})
+ cst.

The auxiliary functions for optimizing W1 and W2 at the points
Wt

1 and Wt
2 are

∑

f ,n

{
vx

l (f, n)
∑

k

wt
1(f, k)2h1l(k, n)

w1(f, k)v̂l(f, n)2

+
∑

k

w1(f, k)
h1l(k, n)
v̂l(f, n)

}

+
∑

f ,n

{
vx

r (f, n)
∑

k

wt
1(f, k)2a1(f, f)h1r (k, n)

w1(f, k)v̂r (f, n)2

+
∑

k

w1(f, k)
a1(f, f)h1r (k, n)

v̂r (f, n)

}
+ cst,

∑

f ,n

{
vx

l (f, n)
∑

k

wt
2(f, k)2h2l(k, n)

w2(f, k)v̂l(f, n)2

+
∑

k

w2(f, k)
h2l(k, n)
v̂l(f, n)

}

+
∑

f ,n

{
vx

r (f, n)
∑

k

wt
2(f, k)2a2(f, f)h2r (k, n)

w2(f, k)v̂r (f, n)2

+
∑

k

w2(f, k)
a2(f, f)h2r (k, n)

v̂r (f, n)

}
+ cst.

Finally, the following auxiliary functions are used for optimizing
A1 and A2 at the points At

1 and At
2 :

∑

f ,n

{
vx

r (f, n)
at

1(f, f)2h′(f, n)
a1(f, f)v̂r (f, n)2 + a1(f, f)

h′(f, n)
v̂r (f, n)

}
+ cst,

∑

f ,n

{
vx

r (f, n)
at

2(f, f)2h′′(f, n)
a2(f, f)v̂r (f, n)2 + a2(f, f)

h′′(f, n)
v̂r (f, n)

}
+ cst,
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where h′(f, n) and h′′(f, n) are the elements of H′ and H′′

defined after (28). As mentioned earlier, in the above auxiliary
functions, “cst” contains the terms that do not depend on the
target parameter. Setting the derivative of each of the above
auxiliary functions with respect to their target parameters equal
to zero and finding the nonnegative root, result in the mentioned
update rules. Note that the parameters with the superscript “t”
correspond to the previous iteration (t-th iteration) and the re-
sulting parameters using the proposed update rules correspond
to the current iteration ((t + 1)-th iteration).
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