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Blind Source Separation in Nonlinear Mixtures:
Separability and a Basic Algorithm
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Abstract—TIn this paper, a novel approach for performing blind
source separation (BSS) in nonlinear mixtures is proposed, and
their separability is studied. It is shown that this problem can be
solved under a few assumptions, which are satisfied in most practi-
cal applications. The main idea can be considered as transforming a
time-invariant nonlinear BSS problem to local linear ones varying
along the time, using the derivatives of both sources and observa-
tions. Taking into account the proposed idea, numerous algorithms
can be developed performing the separation. In this regard, an
algorithm, supported by simulation results, is also proposed in
this paper. It can be seen that the algorithm well separates the
mixed sources, however, as the conventional linear BSS methods,
the nonlinear BSS suffers from ambiguities, which are discussed
in this paper.

Index Terms—Blind source separation, nonlinear mixtures, non-
linear regression, independent component analysis.

1. INTRODUCTION

HE Blind Source Separation (BSS) problem was firstly
T introduced in 1980s [1], [2], and since then, it has been
thoroughly studied in the signal processing community. Roughly
speaking, in this problem there are a number of source signals
that are mixed in some way to make a number (probably not the
same number as the sources) of observation signals. The goal is
to reconstruct the sources having access only to the observations,
i.e., knowing neither the sources nor the mixing model.

BSS problem is formally described as follows. At each time
(more generally, sample) ¢ let us consider m observations x; (t),
i =1,...,m, which are unknown time-invariant functions f; (-)
of unknown sources s;(t),j =1,...,n.Fort =1,...,T mea-
surements, we can write the model as

x(t) = f(s(t)), t=1,...,T (1)
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where x(t) = [z (t), ..., 2, (£)]7 (T stands for matrix transpo-
sition) and s(t) = [s1(t), ..., s, (t)]7 represent the observation
and source vectors, respectively, and f(-) denotes a function
from R” to R™.

The problem is generally ill-posed, but it has been shown
that assuming some particular structure of f, and/or statistical
properties of the sources, it can be solved to some extent and the
sources can be reconstructed with ambiguities in their amplitude
and their order. The book [2] provides a comprehensive survey
on different structures and proposed algorithms. The key idea
to perform separation is trying to recover some characteristics
of the sources by estimating a mapping on the observations
able to inverse f. Mostly the characteristics are at least one
of the “non-properties” (a word borrowed from [3]); e.g. non-
dependence (independence), non-Gaussianity, non-stationarity,
non-whiteness and non-negativity.

A. Background

The simplest form of the problem is when the mixture
model is instantaneous linear and the number of the sources
is equal to the number of the observations so that (1) becomes
x(t) = As(t) where A is an unknown mixing matrix. The ear-
liest approach to this case was in [1], [4] which introduced the
concept of Independent Component Analysis (ICA). The inde-
pendence employed in ICA is in the sense of random variables
assuming that each source consists of Independent and Identi-
cally Distributed (iid) samples, i.e. without taking care of the
sample order.

It should be recalled that if two random variables are mu-
tually independent, the joint probability density function (pdf)
of them factorizes as the product of their marginal pdf’s. On
the other hand, two stochastic processes are said to be mutually
independent iff they are mutually independent for any sequence
of time instants.

Accordingly, the two notions: random variable (RV) inde-
pendence and stochastic process (SP) independence, should be
distinguished. For linear instantaneous mixtures, a very nice re-
sult is that signal separation can be achieved if the sources s; (t)
and s; (), for any pair ¢ # j, are mutually independent random
variables [4]. It is thus outstanding to note that SP independence
is not required in the linear case.

Many algorithms have been designed based on different ap-
proximations of RV independence, e.g. CoM2 [4], INFOMAX
[5], JADE [6], Normalized EASI [7], HOSVD [8], FastICA [9],
and finally AMUSE [10], [11] and SOBI [12] (which exploit

1053-587X © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



4340

the assumption that the source samples are not iid, and consider
the statistical independence of delayed samples). Afterwards,
taking into account any of the mentioned “non-properties”, any
combination of them, or even some other characteristics such as
sparsity, other separation algorithms have been proposed [2].

Nonetheless, in many applications the mixing model of the
sources has to be modeled as nonlinear. Hyperspectral imaging
[13], [14], remote sensing data [15], determining the concentra-
tion of different ions in a combination via smart chemical sensor
arrays [16], and removing show-through in scanned documents
[17] are some well-studied examples of such applications. How-
ever, in contrast to linear BSS, no general theoretical results on
identifiability and separability have been provided for BSS in
nonlinear mixtures so far.

B. ICA in Nonlinear Mixtures

Although for linear mixtures, conventional ICA (i.e. based
on RV independence) ensures identifiability and separability
even for iid sources, it is not sufficient for nonlinear mixtures.
In other words, one can find some nonlinear mixtures (with
non-diagonal Jacobian) of mutually independent sources which
are still mutually independent. In this subsection it is shown
by a counter-example why RV-based ICA does not work for
nonlinear BSS.

In [18, Sec. 3.3], it is shown that even for smooth nonlinear
mixing functions, source independence (in the sense of random
variables) is not a powerful enough criterion for separating the
sources. In the following example, at each sample ¢, the sources

are mixed nonlinearly as
smoz(s(t))} [sl(t)] @

[xl (t)] _ [cos a(s(t))
X9 (t) sina(s(t)) cosa(s(t)) sa(t)

where «(s(t)) is a differentiable function. In this particular
example the determinant of the Jacobian matrix of the nonlinear
transformation always equals to one, hence

(21,02) = Toz s, s, (51, 52)
PX,,X, 1,42) — Idet(Jf(S)”pShSz 1,92

= P55, (81, 82). 3

Particularly, if the source samples are iid and uniformly
distributed between —1 and 1, i.e. pg, g, (s1,52) = 0.25 for
(s1,82) € [=1,1] x [—1, 1] and O elsewhere and given

o(s(t)) {90(1 —r)" if0<r<I1 @

0 ifr>1

where r 2 s7(t) + s3(t) and 6 and n are constant real and
natural numbers respectively, the observations will also fol-
low a joint uniform distribution as px, x, (z1,22) = 0.25 for
(x1,22) € [—1,1] x [-1, 1] and 0 elsewhere, which factorizes.
Thus the observations are instantaneously mutually indepen-
dent, even though each of them is a nonlinear mixture of both
sources. In other words, this counter-example proves that RV
independence is not sufficient for separating nonlinearly mixed
signals.
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As a consequence, except a few dispersed works (e.g. [19]
and [20]), studies in nonlinear BSS were mainly focused on spe-
cific mixing models or specific source signals, which were con-
cerned by practical applications and for which RV independence
is sufficient for ensuring identifiability and separability. Post-
Nonlinear (PNL) [21], [22] and Bi-Linear (or Linear Quadratic)
mixtures [17], [23] are known as the two main classes of nonlin-
ear models investigated [24] and for which ICA leads to source
separation under mild conditions. In addition, Convolutive Post-
Nonlinear mixtures [18], conformal mappings [25], and linear-
transformable mappings [26] are some other categories that have
been addressed so far and for which RV independence leads to
source separation.

C. Our Contribution

However, the above limitations are mainly due to the fact that
the temporal information of the sources is not exploited. For
example in [27] it is shown that even if for each time instant ¢,
x1(tp) and x5 (t() are independent random variables, stochastic
processes 21 (t) and x5 (t) might not be independent stochastic
processes, and random variables x; (to) and 25 (o — 1) could
be dependent. Taking this fact into account, previous ‘“‘counter-
examples” lose their validity for proving that general nonlinear
mixtures are not separable.

Therefore in this work, using a more general definition of in-
dependence than RV independence used in ICA, but simpler than
SP independence, we address a more general problem without
being restricted to any specific mixture or parametric model. We
will provide a method, based on which different algorithms can
be developed for solving nonlinear BSS problems. We propose
a general approach for performing the separation in nonlinear
mixtures as well as the necessary conditions on the model. In
this work, we also provide a separation algorithm, efficiency of
which is proved by simple simulations as a proof of concept.

It should be mentioned that this work, as well as other gen-
eral nonlinear BSS methods [2], [28]-[30], suffers from the
ambiguity of a nonlinear transformation that cannot be re-
solved. However, it is important to differentiate between source
separation and source reconstruction. In fact, once the sources
are separated, the task of BSS is done. Source reconstruction is
a more general task that is out of the scope of this work.

Although source separation can be sufficient and efficient in
the cases where BSS is used as a first step before classification,
in practical applications of source reconstruction, the proposed
method of this paper, as well as most other papers on nonlinear
BSS, serves as a first step which separates the sources and
maybe needs to be followed by a reconstruction method. For
this last step, simple and weak priors on a source like sparsity
[31], bandwidth [32], zero-crossing [33], etc. can be used for
reconstructing it without knowing the nonlinear distortion. This
point is more elaborated in the following sections.

Parts of this work have already been presented in the confer-
ence paper [34]. The present paper not only extends the example
proposed in that one, but also elaborates, details (with mathe-
matical expressions) and discusses more the proposed method,
and provides simulations with noticeable results.
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Fig. 1. Nonlinear BSS problem basic model.

The paper is organized as follows. The novel approach for
solving the nonlinear BSS problem is introduced in the next
section. Then a discussion on the separability and the assump-
tions on the model is provided. Section III contains the basic
algorithms proposed for performing the separation. The algo-
rithms are implemented and tested with examples, the results
of which are presented in Section I'V. Finally, conclusions, re-
mained questions and future works are discussed in the last
section.

II. THE MAIN IDEA

The problem model, depicted in Fig. 1, considers that the
number of the sources is equal to the number of the observations.
In this model, we generally expect each of the elements of
y(t) = g(x(t)) to be a function of only one of the source signals
(and each source signal appears in only one entry of y(t)).

Since we are going to exploit only the statistical indepen-
dence of the sources to be retrieved, and since changing the
order of source signals and an invertible component-wise non-
linear transformation do not affect the independence condition,
one may at most expect to obtain a “nonlinear copy” of the
source vector (defined in Section II-A). In other words, for each
source to be estimated, a nonlinear function remains as an ambi-
guity that cannot be resolved. This is discussed in more details
in Section V.

The main idea is based on the fact that the derivatives of
the sources are locally mixed linearly even though the mixture
model is nonlinear in general. Indeed, if the nonlinear mapping
f is differentiable at each point, one can derive a local linear

approximation of it involving the derivatives of sources and
observations. This is easily seen from
d(Ei - afz de
(t) = f; t) = = —_— 5
=560 > G =Y 50O
=% = Jpy(s)S, (6)
where
of I
ds1 0sy
Jei(s) = (7
9fn Ofn
ds1 dsy,

is the Jacobian matrix of the nonlinear mixing function, and
x and s denote the time (or sample) derivatives of x and s
respectively.

It should be noted that the precise definition of the derivative
of a random process p(t) is in the mean square sense, i.e. a
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random process p(t) is the time-derivative of a random process
p(t) iff lim, o B[22 5(3)[2] = 0 where E represents
the expected value. Nonetheless, in the rest of the paper, for the
reason of simplicity, we use the equality symbol “=" for the
equality of random processes in the mean squared sense as well.

It is worth noting that J¢; (s) is the Jacobian of the nonlinear
time-invariant function f and is a function of the sources s,
however, since the source vector is a random process and varies
over the time, the elements of J¢.;(s) change over the time
as well. This is why ¢ does not directly appear in (7) and is
considered as an index of the Jacobian matrix (not an input
argument). Thus, (6) is a locally linear instantaneous mixture
model.

So, one can firstly separate the local linear mixtures of the
source derivatives using a linear (but adaptive) BSS technique,
and then, use an integration step to reconstruct the source signals
themselves. Applying a linear BSS method on derivatives of the
sources imposes some necessary conditions on them, which will
be studied in the following section. Particularly, the DC value
of signals is removed in the first step of any classical linear BSS
method, hence the derivatives in our framework. Nonetheless,
as mentioned earlier, the goal in this work is to reconstruct a
“nonlinear copy” of the sources which can still be achieved
considering this DC-removal pre-processing.

In the following, the problem of interest is formulated and
all the assumptions are mentioned. Then the proposed approach
is described and the separability is discussed. The discussion is
made from two points of view: mathematical expressions and
system analysis.

A. Problem Definition and Assumptions

Definition 1: Let s be an n-dimensional vector. y = c(s) is
called a “nonlinear copy” of s if it has the same dimension as s
and each element y; of it is an invertible nonlinear function of
one and only one of the elements of s. It can be written as

V1i<i<n y =c(sr) )
where ¢; fort = 1, ..., nis an invertible nonlinear function and
(11,72,...,7,) is a permutation of (1,2,...,n). [ |

In this case, the transformation c(-) which only contains
component-wise nonlinear functions and permutations, is called
a “nonlinear copy function” or a “trivial nonlinear mapping”.

Thus, the problem can be defined as follows. Let an obser-
vation vector be an unknown nonlinear mixture of an unknown
source vector s(t) as (1), or equivalently

2i(t) = fi(s(0)): ©)

Source separation consists of finding a nonlinear mapping g as

Vi

find g s.t. gof=c (10)

where ¢ = g o f is a “nonlinear copy” function.

Note that an ambiguity of a permutation and a nonlinear
function in reconstruction of the sources cannot be resolved. It
is evident from the definition of a nonlinear copy function and
(10). In addition, it can also be understood from another point
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of view by looking at the Jacobian of the mixing function (see
Section II-B).

The above source separation problem is ill-posed without ad-
ditional assumptions, either on the nonlinear mapping f or on the
sources. In this paper, we consider the following assumptions:

1) The number of the sources is equal to the number of the

observations,

2) f is invertible,

3) f is memoryless,

4) f is time-invariant,

5) f e C! (i.e. it is differentiable with continuous first-order

derivative),

6) sources s1(t),..., sy (t) are differentiable, hence colored

(this assumption implies continuity and smoothness),

7) derivatives of the sources {$; (¢), ..., $,(t)} are mutually

independent and

8) at most, one of the derivatives of the sources follows the

Gaussian distribution.

These assumptions are satisfied in most practical applications
where the signals and the nonlinear mixing model correspond
to real physical phenomena. In fact, the assumptions 1 to 4
are classical assumptions of BSS that are assumed even in lin-
ear cases. If the source signals have different origins (i.e. their
physical origins are independent), then they will also be mutu-
ally independent stochastic processes, hence assumptions 6 and
7 hold.

As a consequence, all applications introduced in the
Section I-A, including hyperspectral imaging [14] and deter-
mining the concentration of different ions in a combination via
smart chemical sensor arrays [16] satisfy the mentioned assump-
tions. Therefore, nonlinear BSS problems which can be treated
through the proposed approach in this work do not belong to
specific set of functions and are quite general.

The necessity of these assumptions is regarding with the pro-
posed approach which comes in Section II-B. Nevertheless, it is
worth adding some remarks about some of them.

The assumption f € C! imposes the continuity of J¢. More-
over, according to the inverse function theorem [35], if a function
f is invertible on a region in its domain and f € C', 1) its Jaco-
bian J¢ will be non-singular on that region and 2) the Jacobian
of its inverse is equal to the inverse of its Jacobian (J; L=7 £1).
Consequently, assumptions 5 and 2 result in continuity and non-
singularity of J¢, which makes the local linear BSS problem (6)
solvable with ICA.

In addition, f needs to be memoryless and time-invariant, be-
cause otherwise Jy in (6) would also vary along time, hence the
variations of local linear approximation would be too difficult to
be followed by a BSS algorithm. This limitation will be better
understood after Section III in which we utilize it for amending
the initially proposed method.

Moreover, assumption 6, in combination with the differentia-
bility and continuity of f, implies the smoothness of the varia-
tions of the nonlinear function, hence its Jacobian J¢, along the
time so that it is tractable by adaptive local BSS algorithms. In
other words (as it will be elaborated in Section III and simula-
tion results), the performance of the proposed method depends
on the speed of the variations of J¢ along the time, which is
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due to the colorfulness of the sources and the nonlinearity of
f itself.

As mentioned before, the proposed algorithm in this work is
based on the statistical independence of the sources. Therefore,
as assumed in ICA-based classical BSS methods, mixed signals
in (6) need to satisfy certain conditions [4]. This is where the
assumptions 7 and 8 come from.

It should be noticed that the assumptions 7 and 8 concern
derivatives of the sources (because in (6), the mixed signals
are the derivatives of the sources). The assumption 7 can be
expressed as

N

ps(8) =[] or(5r)

k=1

(1)

where pg(8) and py($)) correspond to the joint and marginal
pdf’s of the derivatives of the sources. It should be noted that a
more limiting assumption than (11) was proposed as a nec-
essary and sufficient condition for separability of nonlinear
mixtures in [20] (but without any proof or explanation), which
needed the signals and their derivatives to be jointly statistically
independent.

Note that (11) is a completely different condition from RV
independence of the source signals and is not a result of that.
Generally, a signal and its derivative can be instantaneously
independent: for instance, given the position of a particle at a
time, one cannot say anything about its speed at that time). How-
ever, the derivative of a signal contains some information about
the variations of it (which can be translated to the bandwidth or
the amount of colorfulness).

To summarize, the proposed approach for nonlinear BSS in
this paper is mainly based on local linear approximation of the
nonlinear mixture. So, it is applicable to any nonlinear model
satisfying the mentioned assumptions. In addition, a discussion
is made in Section IV showing how its performance relates with
the amount of the nonlinearity of the mixture (supported by
simulation results).

It should be finally declared that the mentioned assumptions
are not claimed to be necessary for the general separability
of nonlinear mixtures. One may suggest other approaches and
methods for nonlinear BSS, based on other assumptions. How-
ever, in the proposed framework, it is necessary for them to be
satisfied and they are sufficient in the sense that if they hold,
it is possible to separate the sources based on the proposed
approach.

B. Proposed Approach

In order to get x, a component-wise derivative operator should
be applied on the output of the mixing function f(s) of Fig. 1.
Then, in order to cancel the effect of the differentiation op-
erator (so that the separating function g(-) in Fig. 1 remains
unchanged), an integration operator needs to be added right
after the differentiation operator. This will lead to the system
which is depicted in Fig. 2.

Therefore, the problem (10) can be equivalently written as

find g s.t. godlodof=c (12)
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Fig. 2. Nonlinear BSS problem alternative model.
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Fig. 3. Transforming the nonlinear BSS problem model to the linear time-
variant one.

where c is a nonlinear copy function and d and d~! are the
component-wise differentiation and integration operators re-
spectively. For the reason of homogeneity in expressions, we
use the same notation as functions for operators even though it
is not mathematically accurate. It should be noted that d~! o d
is not necessarily equal to identity function because the result of
integration is not unique and it could be added by any constant
(in general, d ! od o f = f + cte). However, since d and d !
operate component-wise, applying them may just add a con-
stant value to each signal, which does not affect the proposed
framework.

However, (6) says that the derivatives of the observations lo-
cally are linear mixtures of the derivatives of the sources. It
means that they can be achieved by mixing the derivatives of
sources via the Jacobian matrix of the nonlinear mixing func-
tion. In other words, considering (6), each half of this new
model (which is nonlinear), can be replaced by an equivalent
one (which is locally linear) shown in Fig. 3.

Mathematically speaking, denoting J¢,, = 0f /0s and J., =
0g/0x the Jacobian matrices of the mixing function f and sep-
arating function g respectively, the equivalence of the systems
of Figs. 2 and 3 can be written as

{ dof=J¢0d

13
god_lzd_lng;t. (13)

This equation says that instead of taking derivatives of a mixture
of sources (i.e. d o f), one can equivalently mix derivatives of the
sources via the Jacobian of the mixing function (i.e., J¢,; o d).

Then, replacing d o f and g o d~! in (12) with their equiva-
lents in (13), the nonlinear BSS problem becomes

Vt, find Jg;  st. dloJgioJpiod=c  (14)

This new model (depicted in Fig. 3) will be used for a discussion
on the separability and proposing an algorithm.

Regarding (14) and Fig. 3, the goal is to find a linear
time-variant system Jg,; such that each of the output signals
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y1(t), ..., yn(t) is a function of only one of the sources, hence
y is a nonlinear copy of the sources.

By left-multiplying both sides of (14) by d, and right-
multiplying them by d~!, we will have

dod71o-]ng,OJf;f,OClOdfl:d.OCOCr1 (15)

:>Jg;toJf;t:doc0d’1 =cy (16)

where the last equation comes from the fact that c is a non-
linear copy function and, therefore, in combination with d and
d~! makes another nonlinear copy function named c,. As a
consequence, the basic problem (10) is equivalent to

VvVt find Jgy S.t. Jgi0Jde = (17)

where ¢y is a nonlinear copy function. This is a traditional linear
BSS problem where the mixing matrix is not constant along
the time, and can be solved via existing adaptive linear BSS
methods (probably, with some modifications). As a conclusion,
any nonlinear BSS problem is equivalent to a time-varying linear
one and if the linear problem is solved correctly, the nonlinear
problem will be solved as well.

It is worth adding two remarks which help better understand-
ing the proposed concept. Firstly, the local linear mixing J¢.;
and separating Jg., matrices are the Jacobian matrices of the
nonlinear mixing f and separating g functions respectively. Ne-
glecting the indeterminacies in reconstructing the sources, it is
obvious from Fig. 3 that the matrix Jg.; should be the inverse
of the matrix J¢,;. Actually, as mentioned in Section II-A, the
inverse of the Jacobian of a function is the Jacobian of the in-
verse function [35]. This can also be easily shown by writing the
equivalency equations of the right half of the systems of Figs. 2
and 3.

Secondly, the proposed approach could also be derived by
trying to linearly approximate the nonlinear function via Taylor
expansion as

x(t) = f(s(t)) =

Vit x(t+e€) =x(t) + %(s(t +¢)—s(t)) +o(e) (18)
= x(t+e) —x(t) ~ Jr.(s) S:S(t)(s(t +e)—s(t)) (19)
= Ax(t) = gy (s) . Ag(t), (20)

where o(¢) represents Higher-Order Terms and Ay (¢) and A (¢)
are the differences (increments) of the observation and source
vectors respectively.

Eq. (20) can also be considered as a discrete-time approxima-
tion of (6) using the difference instead of the derivative. Never-
theless, the proposed framework can also be understood as the
(local) linear approximation of the nonlinear mixing function
at each point, and trying to separate the sources using adaptive
linear BSS methods.

B. Reconstruction Indeterminacies: Linear BSS methods
suffer from ambiguities both in the order of the sources and
their scales. On the other hand, as pointed earlier and will be ex-
plained in the following, the proposed framework in this paper is
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based on the local linear approximation of the nonlinear mixture.
However, there are two well-known ambiguities in traditional
BSS methods: permutation and scaling. So it is important to
understand how these local ambiguities perform globally.

Since the local separating matrix Jg.; is estimated adap-
tively and continuously, the local permutation matrix should
also change continuously. However, a change in permutation
cannot be continuous at all. Therefore, local permutations in
any neighbourhood of observations result in an arbitrary global
permutation, and do not cause any issue about the alignment of
permutations at successive time instants.

Moreover, the time-varying values of the scaling ambiguity
on the whole domain of the signals cause a component-wise non-
linearity which cannot be resolved by the proposed algorithm,
i.e. each output of the algorithm does depend on only one of the
sources but with a time-varying scaling factor (i.e. a nonlinear
function).

This indeterminacy in reconstructing the sources could also
be seen from another point of view. Assume u(-) is a component-
wise nonlinear function as

y(t) = u(y(t)) @D
such that
VIi<k<n ge(t)=w(y(t)) =y (t))

n are 1-dimensional R — R non-

(22)

where 4 (-) for k =1,...,
linear functions.

Obviously, the Jacobian of a component-wise function is
diagonal. As a consequence, if J.; satisfies (17), Jyog = JuJg
will satisfy (17) as well. Indeed, if a function g (resulting in
y as the separated sources) is a separating function, the func-
tion u o g (resulting in y(¢) = u(y(t))) will also separate the
sources. In other words, the proposed approach may result in
any component-wise nonlinear function of the sources.

III. PROPOSED ALGORITHMS

It follows from Fig. 3 that
V() = Tt (x(0)%(1) = Jgi (x()) T4 (s(1))8(2)-

Therefore it is necessary and sufficient for the separation to
find a matrix Jg(x(¢)) such that the off-diagonal elements
of Jg.1 (x(¢))J¢. (s(t)) are zero everywhere and its diagonal
elements are nonlinear copy functions.

In this section, we are going to propose algorithms in order to
perform nonlinear BSS based on the proposed idea. To this end,
firstly an adaptive linear BSS method is recalled in Section I1I-A,
which plays an important role in the proposed algorithms. In this
subsection, the necessity of utilizing an adaptive algorithm is
highlighted and its exact formulation is provided. Then a basic
algorithm is proposed in Section III-B led by the sequencing
steps of the mentioned approach of Section II. Afterwards, in
Section III-C, the main problem of the proposed preliminary
algorithm is discussed and addressed by nonlinear regression of
the separating function. Finally, in subsection III-D a modified
algorithm is proposed employing the “Nonlinear Regression”
technique.

(23)
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A. Adaptive Linear BSS (Normalized EASI)

An adaptive BSS algorithm is an algorithm whose estimation
of mixing/separating matrix is on-line, i.e. adjusted at each new
sample that is observed. Normalized EASI (Equivariant Adap-
tive Separation via Independence) [7] is one of the adaptive
BSS algorithms that is based on the statistical independence of
the sources. This powerful real-time algorithm is used in this
work as the adaptive linear BSS method for estimating the Jg.,
matrix, which cancels the mixture J¢.;. In this purpose, com-
ponents of § must be statistically independent. In other words,
while assumption 7 is necessary because of Normalized EASI,
using other algorithms might impose other assumptions on the
sources.

Since the mixing matrix in (23) (i.e. Jg,;) changes along the
time, an adaptive technique needs to be utilized to perform the
linear BSS (so that it can follows the variations of J.;). Taking
advantage of the equivariancy, good convergence rate and low
computational cost of Normalized EASI, it has been used as the
adaptive linear BSS algorithm in whole this work.

The update formula of the separating matrix Jg.; according
to this algorithm will be as

y(y(®)? —1
L4+ Ay ()7y(t

)
by())y(®)” —y(®)by(®)”
L+ My ()7 h(y (1))l

where )\; is a sequence of positive adaptation steps and h(-) is an
arbitrary component-wise (n-dimensional) nonlinear function.
For a more detailed discussion on the choice of the components
hi(-) of h(-), the reader is invited to refer to [7].

Plainly, at each iteration, eq. (24) is followed by an update of
the output vector as

Jg;t+1 = Jg;t -\

+

g:t (24’)

y(t+1)=Jgr1 X(t+1). (25)

B. Preliminary Algorithm

As mentioned earlier, assuming Jg.(x(¢)) in Eq. (23) to
vary slowly enough such that it remains almost constant in
the temporal neighborhood of each point x(¢), a preliminary
algorithm can be suggested simply as locally solving linear
BSS problems at all time instants.

Accordingly, the first algorithm, called Adaptive Algorithm
for Time-Variant Linear mixtures (AATVL), is sketched in
Algorithm 1, where in line (1), EASI or any other adaptive
linear BSS technique can be employed.

The main problem with this algorithm is the issue of con-
vergence: it always needs to be updated at each new sample of
observations. In conventional applications of Normalized EASI,
where the mixing matrix is assumed to be constant, after a num-
ber of iterations the algorithm (hopefully) converges to the exact
separating matrix. However, in our case where J¢.; varies from
one sample to another, the algorithm should not only estimate
the exact separating matrix J 4., at each sample, but it should also
track the variations of J¢., along the time. So the convergence
issue is much more severe than the classic linear problem.
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Algorithm 1: Adaptive Algorithm for Time-Variant Linear
mixtures (AATVL).

1: % < Derivative (difference) of x
2: procedure ADAPTIVE LINEAR BSS METHOD
((t))

3:  Jg,0 « Random Initialization

4: y(0) = Jg;0 %(0)

50 fort=0,...,T—1do

6: Jg.t+1 < Update by eq. (24)
7: y(t + 1) « Update by eq. (25)
8:  end for

9: end procedure

10: y « Integral of y

It is worth noting that the variations of J¢,,(s(¢)) depend on
both the nonlinearity of the mixing model f(-) and the dynamics
of the sources s(t). Thus, even if the nonlinear mixing function
f(-) is smooth, bursty sources may lead to bursty changes in the
mixing values, and consequently, the separating matrix cannot
be tracked by the separating algorithm. This is the reason why
the proposed approach needs both assumptions 4 (the mixture
to be time-invariant) and 6 (the sources to be colored) to impose
the smoothness on J¢.; (s(t)) along the time.

Another issue, which makes the convergence problem even
more severe, is that the output of this adaptive linear BSS algo-
rithm is going to be integrated through a following step to esti-
mate the separated sources. This integration will propagate the
estimation error to the other samples as well. As a consequence,
the AATVL algorithm (algorithm 1) needs to be modified.

C. Nonlinear Regression

In this subsection, the main problem of the proposed pre-
liminary algorithm (i.e. convergence) is addressed by a nonlin-
ear regression technique. The concept is explained in details
providing 2 different methods (Sections III-C1 and III-C2).
The second method (which is actually used in the modified
algorithm 2) is supported by a simulated preliminary example
and a discussion on its performance.

The convergence problem of the algorithm 1 is because it does
not exploit the time-invariance and smoothness of the mixing
function f. In fact, the original nonlinearity f, and its inverse g,
are time-invariant. Therefore the dependence of J¢.; (Jz.;) on's
(x) is not time-varying.

In other words, s and x themselves are time-varying, and Jy;
and Jg ., are evaluated for sources and observations at successive
times as

of

Jea(s(t)) = Os S s=s(t) 0
0

Jgu (x(1)) = Fi(x) x=x(t)’ 7

As aresult, amodification on the algorithm 1 can be suggested
by learning the nonlinear model of J,.; (x) from its estimations
at different samples (say J (x(t)) fort = 1,..., T, the outputs
of the adaptive linear BSS method). It should be noted that
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Jg.1(x) is an n x n matrix and contains n” nonlinear functions
that should be learned in this approach.

For example, let [J 4., (x)]; ; denote the (4, 7)™ element of the
separating matrix. In the “nonlinear regression” stage, we aim at
estimating the nonlinear function [Jg.; (x)];.; from [Jg (x(t))]; ;
fort =1,...,T. In the simplest case, it can be mathematically
expressed as forall 1 <14,5 <n

minimize

(28)
e (9))is

(2 (g (x(0)]i T ()]1))

where di, represents a weighted squared distance of a point and
a manifold defined as

di () = d? () x w(d?(-, ) (29)
and
& ([ (x(0)i g [Tt ()] s)
= | Tt )il yy — He @iy P G0)

~

Since the error in the estimation [J4 (x(¢))]; ; might be large
for some samples (especially due the convergence issue), there
might be some outliers in the data. Although the outliers are
supposed to be rare, due to the power of 2 in (30), they can highly
affect the result of the manifold learning process. Consequently,
using a weighted distance in (28) is essential in order to reduce
the effect of the estimations that are too far from the learned
manifold.

The weighting function is designed such that it is close to 1
for short distances and it tends to zero as the distance increases.
As an example, Gaussian weighting function can be defined as

w(d) = e 31)

where o is a parameter which can be adjusted according to the
data.

The optimization (28), where the cost function should be min-
imized with respect to a nonlinear manifold, can be performed
using either a parametric model (when the nonlinear function is
assumed to belong to a specific set of functions, e.g. polynomi-
als) or a non-parametric one (utilizing an interpolation method
like smoothing splines). One may also modify a dimension re-
duction technique (e.g. ISOMAP [36]) in order to solve (28).

1) Parametric Approach: In this approach, a parametric
model for each [Jg.;(x)]; ; is assumed and then the minimiza-
tion of (28) is performed with respect to those parameters. In
other words, we assume each manifold to be formulated as

Meu (x))ij = Qij(x:60i5)
where 0; ; is a vector of the parameters in nonlinear model of

[Jg;t (X)]w
As a consequence, with this parametric model, (28) becomes

(32)

T
mingmize 3 (3 (Ba (et U )) - 39

where d? ([Jg(x(t))]ij, [Jg:t(x)]i;) can be calculated as

a function of the parameters according to (29) and (30).
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v onn

(b) 300 sample evaluations

(a) Pure function

Fig. 4. The nonlinear function of [Jg(x)]i,1 of (36) with respect to the
observations.

Thus it can be solved, and the optimal parameter vectors Gf)j
will let us formulate the [Jg.¢ (x)]; ;s

2) Non-Parametric Approach: The other approach proposed
for nonlinear regression is non-parametric where no model for
the nonlinearity is assumed. To this end, the nonlinear functions
are learned by fitting curves using a smoothing method (e.g.
smoothing splines [37]) to the estimations [Jg (x(t))]; ; for t =
1,...,T.

In this work, smoothing spline [38] is utilized as the smooth-
ing method, for which a penalty function (the second order
derivative of [Jg.;(x)]; ;) is added to the cost function (28) to
impose the smoothness. In this method, there is a smoothing
parameter, controlling the trade-off between fidelity to the data
and roughness of the function estimate.

This method is explained via studying its performance on an
example with a mixing function f as (2). This model is a rotation
with the angle which depends to the norm of the source vector.
So the inverse function g can be easily achieved by another
rotation with the negative angle as

Y1 (t)
Y2 (t)

where

_ co.s a(x(t)) sina(x(t)) ||z (t) (34)
—sina(x(t)) cosa(x(t)) || z2(t)

a(x(t)) = ap +v x \/22(t) + 23(¢).

Therefore, the exact Jacobian J, (x) is calculated as

(35)

3. () cosa(x) sina(x)
X) =
& —sina(x) cosa(x)
s
da(x) da(x)

dxy GBI

(36)

—I1 1-— X1

Now consider one of the elements of J, (x), say [Jg(x)]1.1.
In this example, n = 2 and the 2-dimensional nonlinear function
of the function [Jg (x)]1,1 with respect to z; and x, (calculated
in (36)) is depicted in Fig. 4(a).

As an example, suppose that the sources s (¢) and sq(t) are
integrals of a triangle (with the amplitude of 6 and the primitive
period of 2007 samples) and a sinusoidal (with the amplitude of
6 and the frequency of v/3/2007 samples) signal respectively.
The trajectory of the observation vector along the time projected
onto the 2-dimensional manifold of [Jg(x)];; for 300 time
instants is plotted in Fig. 4(b). It illustrates the changes in the
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[T (30)]11
I[Jgrlt(x)]l.l

v oo

(a) 300 samples (b) 700 samples

Fig. 5. The estimated (learned) nonlinear model of [Jg(x)]1,1 from 300
(Fig. 5(a)) and 700 (Fig. 5(b)) samples of observations. The circles are the
outputs of the adaptive linear BSS method [J g (x(#))]1 1, and hyper-surface is
the learned manifold using the introduced smoothing spline technique.

—3%— On the whole region
—O— On the regoin of interest

N-RMS Error

0 500 1000 1500

Number of Samples

2000

Fig. 6. The N-RMS error of the estimation of the nonlinear model of
[Jg(x)]1,1 with respect to the number of samples over 1) an M x M square
(the dashed line) and 2) the region of interest in which the samples exist (the
solid line).

value of [J4.;(x)]; 1 along the time. It is nice to see that as time
passes, the observation vector takes different values and may
span its whole range, such that it will be possible to learn the
whole shape of the nonlinear function.

Fig. 5 shows the learned nonlinear model (the hyper-surface)
given 300 and 700 samples of [J4 (x(t))]1 1 using the smoothing
spline technique. It can be seen that the learned nonlinear model
from 700 samples based on smoothing spline is quite accurate
in the region of interest, i.e. where samples are available.

Fig. 6 shows the Normalized Root Mean Squared (RMS)
error in reconstruction of [Jg(x)]; ;1 in (36) with respect
to the number of observation samples. The error FE,,,,,s 1S
calculated as

L
2

(” (19 6r — [3g<x>11-,1)2)
(ff|m|,|xz|<M <[jg(x)]1,1)2>;

Enrms =

(37)
where M = max (max(|z; (t)]), max(|z2(¢)|)) is the maxi-
mum range of variations of the observations.

However, a more meaningful definition of the N-RMS error
is when it is calculated over the region of interest, as

Enrms
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Algorithm 2: Batch Algorithm for Time-Invariant
Nonlinear mixtures (BATIN).

1: % < Derivative (difference) of x

Step Adaptive linear BSS:

2: procedure ADAPTIVE LINEAR BSS METHOD

(%(1))

Je(%x(0)) < Random Initialization

¥(0) = Jg(x(0)) %(0)
fort=0,...,7—1do
Jg(x(t + 1)) < Update by eq. (24)
y(t + 1) < Update by eq. (25)
end for
end procedure
Step Nonlinear Separation:
10:  procedure NONLINEAR REGRESSION
T (x(1)), x(1) )
11:  Jgu(x) < Smoothing Spline of Jg (x(t))
12: end procedure
13: fort=1,...,7Tdo
14:  y(t) — Jgu(x) X(t)
15: end for
16: y « Integral of y

Loodrnhs W

E,ms, as well as E,, .., s, decreases as the number of samples
increases (see Fig. 6).

According to Fig. 6, the accuracy of the estimated model
improves as the number of input samples grows until a certain
number at which the estimation is close enough to the correct
model and the error does not decrease anymore.

It should be added that the utilized algorithm in this exam-
ple (smoothing splines) does not force the model to pass the
input points. Nevertheless, depending on the application, other
smoothing algorithms with different properties (more robust to
noise, forcing to pass the points, and so on) may be exploited
for estimating the function (e.g. Kalman filter, kernel smoother,
Laplacian smoothing, exponential smoothing, etc.).

D. Modified Algorithm

Employing the nonlinear regression idea introduced in
Section III-C in combination with algorithm 1 leads to a sec-
ond algorithm which outperforms the first one. This algorithm
includes 2 steps: 1) an “Adaptive linear BSS” algorithm for es-
timating Jg (x(t)) fort = 1,...,T and 2) a “Nonlinear Separa-
tion” process through which the nonlinear functions J.; (x) are
learned by the proposed smoothing spline method and are used
to separate the sources. Once the nonlinear functions Jg.¢ (%)
are estimated, they are used for separating the derivatives of
the sources. The batch Algorithm for Time-Invariant Nonlinear
mixtures (BATIN) can thus be proposed as algorithm 2.

It should be finally noted that, the Normalized EASI and the
smoothing spline algorithms that are used in algorithm 2, can
probably be replaced by other equivalent algorithms depending
on the application.
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T2
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A x1

(a) Simulation 1 (b) Simulation 2

Fig. 7. Illustration of the nonlinear mappings. 7(a)) the mapping follows
model (2) and (39) for g = 0 and v = 1 and 7(b)) the mapping follows model
(40). In both figures, we represent the grid obtained by applying the nonlinear
mapping (2) or (40) to the regular grid in the domain [—1, +1] x [—1, +1], and
the input domain is mapped to nonlinear grids in the output domain which are
shown.

IV. SIMULATIONS

In this section, simulation results of both proposed algorithms
for two different nonlinear functions are shown as proof of
concept. The data model, nonlinear functions, the parameters
and the details of the simulations come in Section IV-A. Af-
terwards, the results of the simulations and their performance
evaluation are reported in Section I'V-B.

A. Simulated Data and Mixture Models

In the first example, consider the two-input two-output system
of (2) where instead of (4), a(s(t)) is defined by the parametric
model

a(s(t)) = ap +7 x /s (t) + s2(t) (39)

where o and 7y are some parameters.

In our first simulation, (39) is considered for oy = 0 and
v = 1. Secondly, the proposed method is applied to another
mixing model defined as

Z1 esl (t) _ esz(t)
x(t) = l (t)] =1f(s(t)) = L

2o (t) —s1(t) + efsg(t)

which is a nonlinear but invertible mixing model, as well as the
first one.

The function mappings of the two simulated models are il-
lustrated in Fig. 7: the figure shows how a regular grid in the
input domain is transformed through the functions. As it can be
understood from this figure as well as (2) and (40), both models
are nonlinear but bijective (one-to-one) in the input range.

In both simulations, the two sources that are mixed are the
integrals of a sine wave

1 (40)

$1(t) = sin(v/3t/100) = s () u/él(t)dt (41)

and a triangle wave
$9(t) = saw(t/100) = so(t) /ég(t)dt (42)
where saw(t) is defined as a sawtooth wave with period 27

passing through the points (0,0), (7/2,1), (37/2,—1) and
(2m,0). The sources are chosen well-known simple signals with
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Fig.8. The sources s (t) and sz () (the integral of a sine and a triangle wave)

in the top row, and the observations 1 (¢) and x2 (¢) for the two simulations
with the nonlinear model (2) in the middle and with the nonlinear model (40)
in the bottom.

1
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Samples Samples
Fig. 9. Variations of the elements of the Jacobian matrix of (2) along the

samples.

different frequencies avoiding any coherence, and satisfying
assumptions on s, and especially independence of the derivatives
(assumption 7).

It should be noted that the integral can be practically approx-
imated by either a recursive summation s(¢) = $(¢) + s(t — 1)
or a continuous function estimation based on an interpolation
method. Simulations (not presented in this paper) show that
these two approaches result in almost the same estimation.
Thus the summation is used as an approximation of the integral
everywhere.

The observations are then calculated by (2) and (40), and are
depicted in Fig. 8 as well as the sources themselves.

In order to see the time-variations of the mixing matrix, each
of the elements of the Jacobian matrix of the first simulation (2)
for oy = 0 and v = 0.1 is plotted separately in Fig. 9. It can be
seen that their variations along the time is periodic (because of
the dynamics of the source). As mentioned earlier, variations of
the value of the Jacobian are due to both time-variations of the
sources and nonlinearity of the mixing function (which make
the Jacobian dependent on the value of sources).

AATVL and BATIN algorithms are applied on the obser-
vations of Fig. 8 to separate the sources. As mentioned ear-
lier, smoothing spline is the algorithm that is utilized for
the nonlinear regression step of algorithm 2. Note that the
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Fig. 10.  The results of AATVL and BATIN algorithm in the mixture (2).
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Fig. 11.  The results of AATVL and BATIN algorithm in the mixture (40).

smoothing parameter, which determines the smoothness of the
learned manifold in smoothing spline method, is adjusted heuris-
tically in this work. It should be noted that similarly with the
integral, the difference between two successive time samples is
used as an approximation of the time-derivative everywhere in
this paper.

In the implementation of Normalized EASI (24) in this work,
h(-) is chosen as h(y) = y?>. In addition, the adaptation step \;
in (24) is chosen as

1/t, 1< ¢ <1000
N = 43)
1/1000, 1000 < t.

Even though a decreasing adaptation step (tending to zero as ¢
moves forward) is usually taken in order to stabilize the algo-
rithm after the convergence, in this case it does not go below a
threshold. This is because the mixing matrix J.; is not constant
and should be followed by the algorithm.

B. Simulation Results

Applying AATVL and BATIN algorithms on the observa-
tions, we get the results shown in Fig. 10 for the first simulation
(mapping of Eq. (2)), and Fig. 11 for the second one (mapping of
Eq. (40)). As expected, BATIN surpasses AATVL in estimating
the separated sources in both simulations. Especially, the late
convergence problem with AATVL has been almost completely
resolved by BATIN.
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Fig. 12.  The result of performing adaptive linear BSS (Normalized EASI
method) on the sources which are mixed through (40).

Additionally, in order to see that adaptive linear BSS
algorithms are not able to separate the sources (since the mix-
ture is nonlinear), we have also implemented the same algorithm
Normalized EASI for separating the mixture (40). It can be seen
from Fig. 12 that the nonlinear mixture is not separated at all
since EASI never converges.

C. Performance Evaluation

As mentioned earlier in Section II-A, unlike linear BSS where
the sources may be estimated up to a scaling (and a permutation),
in nonlinear problem, they can be estimated up to a nonlinear
transformation (and a permutation). Depending on the applica-
tion, there should be some known characteristics of the sources
(e.g. band-limited, sparse in some domain, bounded amplitude,
and so forth) allowing the exact reconstruction of the sources. As
a consequence, traditional performance index (e.g. Normalized
RMS error) cannot be applied in nonlinear BSS.

Without loosing generality, assume that the sources are sepa-
rated as y; (t) = ¢;(s;(t)) fori = 1,...,n where ¢;’s are nonlin-
ear functions. Therefore, the pairs (s; (t), y; (t)) fort =1...,T
lie on a 1-dimensional manifold in a 2-dimensional space. How-
ever, if y; depended on another source s; (i # ), it would not be
a mathematical function of s; which would make the scatter plot
of (s;(t), y; (t)) thick instead of a 1-dimentional manifold. This
fact is also illustrated in Fig. 13. Since the pairs (s1(¢), 1 (¢))
(similarly (s2(t),y2(t))) approximately lie on a 1-dimensional
manifold, one concludes that y; (y2) is only a function of
51 (82).

If the separation is perfect, y; (y2) will be exactly just a
function of s; (s2), hence the pairs (s1(t),y1(t)) (similarly
(s2(t),y2(t))) exactly make a 1-dimensional manifold. The
thicker the plot of the pairs (s;(t),y;(t)) is, the more separa-
tion error we have. So the thickness of the scatter plot indicates
whether there is a dependence to another signal or not.

We thus propose this error as an index for evaluating the
performance of a nonlinear BSS method. It can also be un-
derstood by modeling each output y; (t) as y; (t) = h;(s;(¢)) +
inter ference. This model highlights that the proposed index
approximates the normalized interference to signal ratio of the
output.
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Y1
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S1 52

Fig. 13. The estimated sources y; (¢) and y2 (t) against the actual sources
s1(t) and s (t), where the thickness of a plot indicates how much the estimated
signal (vertical axis) depends on the other source.

Although the thickness of data in linear 2-dimensional cases
can be easily represented by the second eigenvalue of the auto-
correlation matrix, it is not trivial in nonlinear problems. In
this work, estimating the index, firstly a nonlinear curve is fit-
ted to the data and then the RMS error of this fitting (similar
to (37) but for a 1-dimensional manifold fitting) is introduced
as the performance indicator (named as Normalized Error of
Nonlinear Fit (N-ENF)). Normalized ENF of the i™ source sep-
aration can be formulated as

(s @) —wm))
Enenf =
(Zimrr @lsi))?)

where ¢;(s;(t)) is a nonlinear curve which is best fitted to the
pairs (s;(t), y; (t)). In this work, the curve is fitted using smooth-
ing splines [37] as

ro|—

(44)

1
2

min(i?“mize ZT: (yb (t) — éi(si(t)))Q

w5 Y ()’
t=1,....,T

where & (s;(t)) is the second-order time-derivative of ¢; (s;(t))
and J is a smoothing parameter. It could have also been approx-
imated by splitting the data to small bins and summing up the
linear RMS errors over different bins.

Simulation results of the algorithms are also compared in
terms of Normalized ENF error and can be found in Table I.

These results show that the proposed idea is able to separate
the sources that are mixed nonlinearly, which proves the pro-
posed concept. However, as mentioned earlier, the performance
of the proposed approach depends on the amount of the non-
linearity of the mixing function, i.e. as the mixing model gets

(45)
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TABLE I
N-ENF ERROR FOR AATVL AND BATIN IN THE SIMULATIONS

AATVL  BATIN
N-ENF for the Source 1 in the mixture (2) & (39)  0.0030 0.0019
N-ENF for the Source 2 in the mixture (2) & (39)  0.0084 0.0031
N-ENF for the Source 1 in the mixture (40) 0.0025 0.0023
N-ENF for the Source 2 in the mixture (40) 0.0064 0.0040
g x10°
- o © S o
* First Source 00 ¥ 7
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© *
o *
*
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Fig. 14.  The normalized ENF error in separating the mixture (2) for different
levels of nonlinearity (represented by ~y in (39)) using BATIN algorithm.

distant from a linear mixture, the performance of the algorithm
decreases. In order to show how the performance changes ac-
cording to the nonlinearity level, a 3™ experiment is provided
as follows.

Recall the example (2) with «(s(t)) defined as (39), letting
ap = /6 and the parameter + vary. In this example, if v = 0,
the mixture will be linear (a 7 /6 rotation). But as  grows, the
mixture will become more nonlinear. Thus « can be considered
as a level of nonlinearity of this parametric model.

Finally, the algorithm BATIN is employed for separating two
sources of (41) and (42) mixed by (2), for different values of v
in (39). The normalized ENF error of BATIN for both sources
is calculated and plotted in Fig. 14. Evidently, the more the
mixture is nonlinear, the less efficient the proposed method is in
separating the sources.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, a novel approach for performing nonlinear BSS
is proposed. Through this approach, itis shown that the nonlinear
mixtures are generally separable under a few assumptions (see
Section II-A). So the counter-examples provided in the literature
to show that nonlinear mixtures are not separable, are not valid
any more.

The key idea is to regard the time-derivative of the observed
signals as a time-varying linear mixture of the (mutually in-
dependent) time derivatives of the sources. As a consequence,
the model (6) will be obtained, where the mixing matrix is a
function of the sources (not to be confused with a time-variant
mixing matrix which is a function of time).

Assuming both sources as functions of the time and nonlinear
mapping as a function of the sources to be smooth enough yields
asufficiently smooth mixing matrix which can be considered as a
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time-variant model (AAT VL algorithm). However, the model (6)
being a function of sources instead of conventional time-variant
mixing models, enables performing the nonlinear regression
(as explained in Section III-C) and dramatically improves the
performance of the separation, which resulted in proposing the
second algorithm (BATIN).

Once the sources are separated, BSS has been performed.
However, aiming at exactly estimating the sources (not only
separating them), the problem reduces to compensating an
unknown nonlinear distortion. In other words, in order to
precisely estimating the source signals (compensating the
nonlinear function), each of the separated signals should be
considered separately.

Numerous algorithms have been proposed for blind restora-
tion of nonlinearly distorted signals (e.g. [32], [33]). The pro-
posed methods are fundamentally based on retrieving some
characteristics of the signal which are affected by nonlinear
distortions. For example, nonlinear functions generally widen
the bandwidth of signals. Thus, given a distorted band-limited
signal, one may recover the original signal by trying to minimize
its bandwidth via a nonlinear (compensating) function.

Moreover, assuming that the nonlinearly distorted signal is
sparse in some domain, it can be blindly reconstructed [31],
[39]. Since nonlinear distortions generally tend to reduce the
sparsity, the proposed algorithms compensate the distortion via
a sparse recovery procedure.

Nonetheless, depending on the application, there should be
some known characteristics of the sources (e.g. band-limited,
sparse in some domain, bounded amplitude, and so forth) al-
lowing the exact reconstruction of the sources.

The basic idea proposed in this work is to utilize time-
derivatives of the signals. Working with time-derivatives im-
plicitly utilizes temporal information in the signals. This fact
also supports the proposition in [27], which says that although
we may mix two sources so that the mixtures are instantaneously
independent of each other, it is highly probable that their de-
layed versions are not mutually independent when each of them
is temporally correlated. In other words, it is implied in the pa-
per that utilizing the temporal information of the sources may
leads to solve nonlinear BSS problems.

It is worth noting that the proposed idea is quite different
with respect to the previous works in the literature on nonlinear
mixtures; it is more theoretic and general and does not assume
any specific mixing model or source signals. Two basic meth-
ods, AATVL and BATIN are provided in this work to show
how the idea is to be employed. Nevertheless, many different
separation algorithms can be suggested based on the proposed
approach and they can be optimized to deal with more complex
signals/mixtures of practical applications.

However, there are several issues to be considered in the
future. Firstly, the statistical characteristics of the derivative of
a signal with respect to those of the signal, itself, should be
investigated. This might be the key to better understanding of
the key feature of derivatives that lets perform the separation,
and accordingly, it may lead to new algorithms of nonlinear
BSS.
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Secondly, the “Nonlinear Regression” used in the proposed
algorithm should be improved. The main objective of this step
is to accumulate the information of the separation at each sam-
ple. For example, if at two different times, the source vector
takes the same value, the mixing matrix will remain the same
as well.

The problem in this work is considered in the simplest form
where there is no noise added to the signals. Since all the signals
in practical applications are noisy, and considering the fact that
taking the derivatives may dramatically amplifies the noise, new
methods should be developed which are more robust to noise. It
may also enforce some modifications on “Adaptive Linear BSS”
procedure of the algorithms as well.

Last but not least, finding out the relations between autocor-
relation functions of the sources (i.e. how much colored they
are) and the performance of the proposed approach and trying
to quantify it is also an interest for future studies.
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