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Abstract—Hyperspectral image unmixing is a source separation
problem whose goal is to identify the signatures of the materials
present in the imaged scene (called endmembers), and to estimate
their proportions (called abundances) in each pixel. Usually, the
contributions of each material are assumed to be perfectly rep-
resented by a single spectral signature and to add up in a linear
way. However, the main two limitations of this model have been
identified as nonlinear mixing phenomena and spectral variability,
i.e., the intraclass variability of the materials. The former limi-
tation has been addressed by designing nonlinear mixture mod-
els, whereas the second can be dealt with by using (usually linear)
space varying models. The typical example is a linear mixing model
where the sources can vary from one pixel to the other. In this let-
ter, we show that a recent variability model can also estimate the
abundances of nonlinear mixtures to some extent. We make the the-
oretical connection between nonlinear models and this variability
model, and confirm it with experiments on nonlinearly generated
synthetic datasets.

Index Terms—Endmember variability, hyperspectral imaging,
nonlinear mixtures, remote sensing, spectral unmixing.

1. INTRODUCTION

YPERSPECTRAL imaging allows to acquire informa-
H tion in many narrow and contiguous wavelengths of
the electromagnetic spectrum, usually in the visible and near
infrared domains. Every pixel of the resulting multivariate im-
ages is a complete reflectance spectrum. This fine spectral reso-
lution allows an accurate identification of the materials present
in the observed scene [1].
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However, the spatial resolution of such images is more lim-
ited than conventional color or gray level images. As a result,
several materials of interest are often present in the field of view
of a given pixel. The observed spectrum is then a mixture of the
contributions of each material. The inverse problem which con-
sists in finding, for a new image, the signatures of the materials
of the scene, and to estimate their proportions in each pixel is
called spectral unmixing [2], [3].

Usually, a linear mixing model (LMM) is assumed to model
the relationship between the observed data, the spectra of the
pure materials (called endmembers), and the proportions (called
abundances). The hyperspectral image is represented as a matrix
X € RN where L is the number of considered wavelengths,
and N is the number of pixels in the image. The endmembers are
gathered in the columns of a matrix S € R“*” where P is the
number of considered materials. The abundance coefficients for
each pixel and each material are stored in a matrix A € RPN,
Then, for a given pixel n, the observed spectrum x,, € REZ, the
LMM writes

P
Xpn = Z Qpp Sp + e, (1)
p=1

where e,, is an additive noise, often assumed to be zero mean
Gaussian-distributed, with an isotropic covariance matrix. The
endmembers, being reflectance spectra, are constrained to be
nonnegative. In addition, the abundances are proportions, so
they are usually constrained to be positive, and to sum to one
in each pixel. Geometrically, with the LMM, the data lie in
a simplex spanned by the endmembers. In many cases, the
LMM is a reasonable approximation of the physics of the mix-
tures. However, in more complex cases nonlinear mixture mod-
els are necessary, e.g., when rays of light undergo multiple
reflections before reaching the sensor (e.g., in tree canopies)
(41, [5].

This issue fostered research on nonlinear mixing models and
the corresponding unmixing algorithms (e.g., [6]—[8]). A pop-
ular choice is the class of linear-quadratic models, which takes
into account second-order interactions between materials, under
the form of product spectra s, ® s,, where © is the Hadamard
(elementwise) product

P P P
X, = Zamsp + Z mensp ©s, +e, 2)
p=1

p=1q=p

where b,,, are positive quadratic interaction coefficients for
each pixel n and each pair of materials (p,q). Higher order
interactions are usually omitted, since they are considered to
have a low contribution to the final at-sensor reflectance. The
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data is now bound to lie in a nonlinear manifold which is more
complex than a simplex. A similar, but more restrictive model
is given by the generalized bilinear model (GBM) [9], which
assumes that the coefficient of a nonlinear interaction term is
proportional to the abundances of the materials involved

Z ApnSp + Z Z Ypgn Gpn QqnSp © Sq + €y, (3)

p=1q=p

where the importance of a nonlinear term is now governed by
the abundances and parameter -, ., .

The other limitation comes from the representation of a
single endmember by a unique spectral signature. This is
a very convenient approximation, but an endmember is ac-
tually more accurately described by a collection of signa-
tures, which account for the intraclass variability of that ma-
terial [10]. Each pixel can now be explained by different vari-
ants of the materials. Many physical phenomena can induce
variations on the spectra of pure materials, be it a change in
their physico-chemical composition, or the topography of the
scene. This phenomenon is referred to as endmember variability
[11]-[13]. A physics-inspired model to explain illumina-
tion induced variability is the extended linear mixing model
(ELMM) [14]:

P
Xp = Z Apn wpn Sp +e, @

p=1

where 1), is a positive scaling factor whose effect is to rescale
locally each endmember, the variations between variants of the
same material due to changing illumination conditions being
reasonably well explained by a scaling variation. Geometrically,
the data may now lie inside a convex cone spanned by the
endmembers. More specifically, each pixel belongs to a simplex,
whose vertices can slide on lines (passing through the origin)
which correspond to the edges of the convex cone.

Spectral variability and nonlinear mixtures are physically
very different phenomena. Mathematically, spectral variabil-
ity essentially amounts to using a space varying (usually linear)
mixing model, whereas a general nonlinear mixing model is spa-
tially invariant. Both phenomena have been considered simulta-
neously in recent works, e.g., by incorporating scaling factors in
a bilinear mixing model [15], or by considering a residual-based
model for the deviations from the LMM [16]. In [17], the joint
consideration of both nonlinearities (through a linear-quadratic
model) and spectral variability was experimentally shown not to
give substantially better abundance estimation results than con-
sidering endmember variability alone. Since the dataset used
was acquired over a urban area, where both phenomena were
expected to be non-negligible, results of [17] suggest that using
a nonlinear model along with a variability model was not nec-
essary, and that the latter can already handle nonlinear effects
to some extent.

In this letter, following the ideas of [18], we provide theoreti-
cal insight to these results, by showing that there is a mathemat-
ical connection between both approaches. We show that a local
Taylor expansion of a generic nonlinear model can be related
to a variant of the spatially varying ELMM. This derivation, as
well as the experiments, shows that the ELMM has the ability
to recover abundances from nonlinear mixtures, even though
it was derived from physical considerations about endmember
variability in linear mixtures.
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The remainder of this letter is organized as follows:
Section II shows the relationship between a general nonlin-
ear model and the ELMM. Section III presents some results
on synthetic datasets to experimentally confirm the theoretical
derivation, and concluding remarks are gathered in Section I'V.

II. CONNECTION BETWEEN NONLINEAR MODELS AND
VARIABILITY MODELS

A generic (noise free) nonlinear mixing model can be ex-
pressed, for a given pixel n and wavelength [, as

xln = fn(51175127~--751P) (5)

where s, is the value of endmember p at wavelength /, and
fo:RPF - Risa generic nonlinear function, which does not
depend on the considered spectral band. Assuming the nonlin-
ear function f;, is sufficiently smooth, and that the sources are
allowed to vary, we can perform an M th order Taylor expansion
n (0,0,...,0)

w = [n(0)+8 V£ (0)+s.V*f, (0)s). +---

+ o(|si: M) (6)
O (g ",
= )si, + )SipSig + - -
Z 851 p ;qzl 8811)881,1 Ip=lq
+ o(|si: M) @)

where we have discarded the constant term (i.e., we assume
that f,,(0) = 0), and where s;. = [s;1,..., 5] € R”. Note
that even though this expansion is performed in 0, the error
term o(||s;.||*) is likely to be small, because linear-quadratic
and multilinear mixing models approximate the physics of hy-
perspectral imaging well. If the underlying nonlinear function is
close to polynomial, we expect the coefficients of the expansion
to be very close to the actual coefficients of the polynomial. In
addition, even with a more general model, the expansion will
also be valid in the neighborhood of's;. with a high enough order
M of the expansion.

We change the notation of the coefficients of the expansion,
keeping in mind their dependence with respect to the different
variables of the model, and also change the indexing such that
the identical second-order terms are gathered in only one term

Tip = § apnslp+§ § ﬁpqnslpslq

p=1q=p

oflst:[I"")-
(8)

There is no dependence of the coefficients on the spectral band
since we assumed the nonlinearity affects all spectral bands
equally. If, following the physics of the problem, we assume the
true nonlinear model is close to a multilinear model, that is a
generalization of model (2) to higher order interaction terms,
then we can safely assume that o, ~ ap, and Bygn = bygn,
and then model (2) is a truncation at the second order of

Tip = § Qpn Sip + § § bpqﬂslpSlq

p=1q=p

o[-
)
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On the other hand, if we factorize coefficient o, 57, in the terms

of (8), we obtain
P P 3
T = ap (1 DD R o<||sl:||M>> Sip-
p=1 q=p P"
(10

This factorization assumes that all materials have a nonzero
linear coefficient in pixel n. If the true model is multilinear,
then these coefficients correspond to the abundances, and we
simply have to remove the endmembers with zero abundance in
pixel n. By denoting the factor between the parentheses by 1y, ,
and again by assuming the true model is close to multilinear,
the first-order coefficients are close to the abundances. Then, by
factoring this coefficient and the endmember term sy, the rest
of the expansion can be seen as a scalar factor which depends
on the pixel, band, and material considered

P
Tin = Z apnwlpn Sip (1 1)
p=1

which is formally close to the variability model (4), with the
notable exception that the scaling factor 1;,,, now depends on
the wavelength. The ELMM is essentially a linear model where
each endmember is allowed to vary spatially according to the
law s,,,, = 1,8, where s, is a reference signature for material
p. The scaling factor 1),,, does not depend on the wavelength
here. Note that model (11) is very general and may be too flexible
to provide reliable performance without additional regulariza-
tions. Still, this shows that the space invariant (in terms of the
endmembers) nonlinear model (5) can be locally approximated
by a spatially varying linear model.

Finally, note that model (11) is more general than truncating
model (9) at the second order, since the scaling factor incor-
porates information about the linear and quadratic terms of the
expansion, but also about higher order terms.

III. EXPERIMENTAL RESULTS

In this section, we present experimental evidence of the fact
that in certain situations, the ELMM can indeed estimate the
abundances when the mixing model is nonlinear.

A. Experimental Setup

We generated six different nonlinear synthetic datasets to test
the three different models and different experimental conditions.
First, we randomly selected three endmembers with 224 spec-
tral bands from the United States Geological Survey (USGS)
spectral library [19]. The abundances were generated using
200 x 200 Gaussian random fields and comply with the pos-
itivity and sum-to-one constraints. The endmembers and abun-
dances used (shown in the top row of Fig. 1) are the same for
all the tested models. We considered two levels of nonlinearity
(moderate and high, depending on the magnitude of the coeffi-
cients) for each model.

All the resulting hyperspectral images are then of size 200 x
200 x 224. We used the three following models to generate the
datasets: the linear-quadratic GBM (3), a third-order (trilinear)
model, which extends model (3) to third-order interactions, and
the multilinear mixing (MLM) model of [20].

For each material, all the positive nonlinear interaction coeffi-
cients A, were generated using mixtures of Gaussians. For the
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FCLSU Third order

True abundances

Linear Quadratic

Fig. 1. True abundances (leftmost column) and estimated abundances by the
four tested algorithms on the third-order model data with a moderate level
of nonlinearity (in the columns, from left to right: FCLSU, linear-quadratic
algorithm, third-order algorithm, and ELMM).

third order model, we used the same second order coefficients
as in the previous case.

The MLM considers interactions of possibly any order, but
was derived from very different considerations than the linear-
quadratic or third-order models. The derivation of this model
leads to higher order interactions resulting in a decrease of
the total reflectance, rather than in an addition of a positive
term to the linear model. This dataset will be used to test the
performance in situations where the expansion (8) may be a
worse approximation of the data than with a purely polynomial
model. A pixel is generated using the following equation

1—P,)Sa,

Xpn = % +e,
where P, , if positive, represents the probability that, within the
field of view of pixel x,,, any ray of light (after any number
of nonlinear interactions) undergoes an additional nonlinear in-
teraction. In this case, we expect the polynomial-model-based
algorithms to provide poor results, because the constraints on
the parameters cannot model decreases in total reflectance, but
only increased reflectance w.r.t. the linear model. This case is
possible in the MLM, by considering negative values for P,
(see [20] for possible physical explanations). Values for P,
were generated using mixtures of Gaussians, with values in the
range [—0.5, 0] for the low nonlinearity level ([—0.75, 0] for
high nonlinearity level) for negative P, , and in the range [0, 0.5]
([0, 0.75] for the high nonlinearity level) for positive P, . In all
cases, the noise was assumed to be Gaussian distributed with an
isotropic covariance matrix, such that the signal to noise ratio is
30 dB. Values are in the range [0, 0.5] for the low nonlinearity
level ([0, 0.75] for the high nonlinearity level) for all nonlinear
coefficients.

We run and compare four different unmixing algorithms to
estimate the abundances (assuming the endmember matrix S is
known beforehand).

The fully constrained least squares unmixing (FCLSU) algo-
rithm of [21] is a least squares estimation of the abundances,
with the abundance nonnegativity and sum-to-one constraints.

We also use a linear-quadratic unmixing strategy, very close
to the one used in [22]. We store all the second-order inter-
action spectra s, ® s, in a matrix M € REXP(P+1)/2 Then
model (2) can be rewritten in a matrix form, and we can estimate
the abundances and nonlinear coefficients with the following

12)
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. TABLE I
RM SE(A) VALUES FOR ALL CONFIGURATIONS
Model GBM Third order model | MLM (P, <0) | MLM (P, >0
Algorithm ird order mode! (Pn <0) (Pp > 0)

FCLSU 0.2329 [ 0.3483 | 0.3136 0.4190 | 0.1686 [ 0.2271 | 0.1939 0.2730

Linear-Quadratic 0.0311 0.0392 | 0.0766 0.1703 | 0.1261 0.1764 | 0.1939 0.2730

Third order 0.0339 [[ 0.0486 | 0.0637 0.0889 | 0.1256 [| 0.1755 | 0.1941 0.2732

ELMM 0.0395 0.0562 | 0.0583 || 0.0874 | 0.1001 0.1400 | 0.1107 0.1680

The best result for each case is in bold. The left (resp. right) side of each cell corresponds
to a moderate (resp. high) level of nonlinearity.

optimization problem
arg min (13)

1
~|X - SA - MB|%
AcAp B>0 2

where A € Ap means that each column of A belongs to the
unit simplex with P vertices, and || - || is the Frobenius norm,
and B € RP(P+1)/2xN gathers all the nonlinear interaction co-
efficients, for all possible pairs of materials and all pixels. This
problem is convex, and separable with respect to those two vari-
ables, so we can obtain the global minimum by using an iterative
procedure: we alternate a minimization of the function w.r.t. A,
keeping B fixed and vice versa. Each minimization amounts to
solving a either a nonnegative or fully constrained least-squares
problem. This model does not exactly correspond to (3), because
here the nonlinear coefficients do not depend on the abundances.

We also adapt the previous algorithm to the third-order case.
By simply augmenting matrix B to include third-order end-
members, we can handle this case using the same algorithm.

The ELMM unmixing algorithm, which, in its simplest
form [23], solves the following optimization problem:

N

1
arg min - Z (II%n — Sna, 15 + As
Aedp .S 2=

Sn — S, [[7) (14)

where S € RE*P*N gathers all the endmember signatures, for
all pixels and all materials, S,, € RE*P is a slice of S cor-
responding to the local endmember matrix for pixel n, and
¥, € RP*P is a diagonal matrix whose diagonal elements are
the scaling factors corresponding to pixel n, for all the materials.
Ag is a regularization parameter forcing the local endmembers
to be more or less close to scaled versions of the references. The
optimization is performed by iterating minimization steps w.r.t.
each of the three blocks of variables.

We initialize the last three algorithms with the results of the
LMM, and stop them whenever the relative variation (in Frobe-
nius norms) of the abundance matrix goes below €5 = 1073.
The values of parameter A g for the ELMM were empirically set
(to obtain the best performance) to 1.5 (resp. 5) for the moder-
ately (resp. highly) nonlinear GBM dataset, to 7 (resp. 6) for the
moderately (resp. highly) nonlinear third-order model, to 1 for
the negative P, MLM datasets, and to 0.5 for the positive P,
MLM data.

B. Results

For each dataset and algorithm, we computed the abundance
root-mean-squared errors (RMSE between the true abundances

a,, and the estimated ones a,,) RMSE(A) = ﬁﬁ Z;Yzl la, —

&, ||2. These quantities, for all algorithms and datasets, are
gathered in Table 1. As expected, the LMM-based algorithm
(FCLSU) provides a poor abundance estimation, which gets
worse and worse when nonlinearity or model complexity in-
creases. Not surprisingly, the linear-quadratic based method
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obtains the best abundance estimation results on the GBM data,
for both levels of nonlinearity. This is because both models are
formally similar and just differ in that the coefficients of the
GBM depend on the abundances. The ELMM obtains relatively
good performance on these datasets. Indeed, the values of the
scaling factors are all greater than 1 (whereas they are not ex-
plicitly constrained, and can be either lower or greater than 1
in endmember variability scenarios), which matches (10). The
difference in performance may be explained by the fact that
the ELMM considers scaling factors to be independent of the
spectral band.

When third-order terms are included in the model, the ELMM
obtains better results than the linear-quadratic or the third-order
algorithms. The reason for this is that, following the derivation
of Section II, the scaling factor of the ELMM is able to incopo-
rate information corresponding to higher order terms, whereas
using the polynomial algorithms means truncating the expan-
sion to second- or third-order terms. The third-order algorithm
may require additional regularizations, such as sparsity, to avoid
overfitting the data.

We show in Fig. 1 the true and estimated abundances by the
four tested algorithms with the same third-order model data.
The visual results confirm the quantitative ones on the fact that
the LMM fails because of the nonlinearities. The polynomial
unmixing algorithms obtain better estimations, but far from per-
fect, especially for material two. Finally, the ELMM, even if it
was not designed for this purpose, is able to obtain abundance
maps that match best the true ones. There are still some discrep-
ancies for material one, but the overall abundance estimation is
close to the true abundance maps and visually less noisy than
the polynomial ones.

For the case of the MLLM data, all algorithms obtain relatively
poor results because the MLM has a more general expression
than a polynomial model and is then much less accurately
approximated by the Taylor expansion. The closest abundances
to the ground truth in that case are still those of the ELMM.
This happens both for positive and negative values of P, : In the
former case, the scaling factors are lower than 1 to account for
the decrease in reflectance. The linear, second-, and third- order
models perform equally bad, because the nonlinear coefficients
are all close to 0, so as not to increase the total reflectance. In
the negative case, the scaling factors are always greater than 1
because the total reflectance is increased w.r.t. the LMM.

IV. CONCLUSION

In this letter, we showed that a general nonlinear mixture,
approximated locally by a Taylor expansion, is formally very
similar to the extended linear mixing model, in which scaling
factors model the variability of the endmembers. The similar-
ity only requires that the magnitude of the error in the ex-
pansion is not too large, e.g., if the true model is close to
polynomial. This general theoretical result was experimentally
validated for hyperspectral image unmixing by comparing the
performance of four unmixing algorithms on six datasets gen-
erated by three different nonlinear models in different condi-
tions. Experimental results show the efficacy and accuracy of
the ELMM algorithm for any of the tested nonlinear models,
through a better abundance estimation performance than the
competing algorithms. The ELMM is also proven to handle
general nonlinear mixtures better than polynomial model-based
algorithms.
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