From Local Approximation
to a G^1 Global Representation

Cédric Gérot, Dominique Attali, and Annick Montanvert

Abstract. To represent a complex surface, it is useful to describe it as
a set of simple parametric primitives such as quadrics. But if one wants
to use few primitives, these have to be smoothly blended. To define this
blending, we propose to describe the initial global surface with charts. The
blending surfaces result from a convex combination of primitives whose
weights are defined on open sets of \mathbb{R}^2 given by the charts. We have
established the properties that the weight functions must satisfy to obtain
a G^1 representation of the global surface, and we have constructed such
functions.

§1. Introduction

The abundance of high quality volumetric image data and new performant seg-
mentation methods for multidimensional image data make 3-D objects ready
for analysis. Volumetric objects are basically represented by a binary voxel
representation or by a triangulation of the surface. Because they are based
on huge lists of voxels or surface elements, they are not efficient for capturing
global and local shape features with a view to characterizing shape prop-
ties. The spline surfaces can be very useful, but become difficult to use for
topologically arbitrary surfaces modeling because they require a rectangular
parameterization. On the contrary, any surface can be approximated using
quadric surface patches as in [2]. While they lead to a good shape descrip-
tion, the quadric patches do not define an overall continuous surface. Ideally,
a surface representation for image analysis should allow us to represent con-
tinuously any complex surface with few parameters, and to extract shape
properties as well.

We propose to represent a surface with charts. A chart is composed
of a patch U lying on the surface and a homeomorphism of U onto a 2D-
domain. This notion has already been used, but essentially for image synthesis.
Thus, in [14], it allows texture mapping on a triangulated surface which is too
complex to be described by only one chart. It is also used in [9] to design a
surface with B-splines on any topological polyhedra, and in [15] to generalize
the B-splines for constructing surfaces from irregular control meshes that can
be embedded in the plane. Then, Eck et al. [5] use this notion to design a
subdivision mesh from any triangular mesh.

We use it for image analysis because it allows to unfold a complex surface
(for instance the surface of a brain). It is then an appropriate tool to extract
surface features. Before using it, we first have to construct it. To do so, we
begin by representing the surface by means of a set of simple surfaces called
primitives (quadrics for instance) which approach it locally. (We currently
study new processes to extract primitives from 3D objects). As mentioned
above, the primitives do not define a globally continuous surface in general.
So they have to be smoothly blended. This paper is focused on a solution to
the blending problem.

Several different approaches to surface blending have been suggested.
Firstly to fill a hole on a surface, one can interpolate a position and tangency
conditions network [18,7,16,4], or construct a rational patch to fill a polygonal
hole [10,8]. Our blending problem is not to fill a hole. But our approach solve
this problem too. Secondly, to blend two surfaces, one can apply a rolling-ball
algorithm [1,3,6]. But one cannot blend more than three surfaces at the same
time. One can also meld isopotentials if the primitives are implicitly defined,
[17,11,12]. But this seems to be a too restrictive condition. Our approach
differs from these methods in that we blend any number of primitives at the
same time, provided they can be parameterized.

This paper begins with mathematical definitions which are necessary to
define our representation with charts. Then we present our approach for
surface blending. Next we illustrate the different steps of our approach with
some examples. Finally, we conclude with future work.

§2. Surface Representation with Charts

We begin with some mathematical definitions coming from differential geom-
etry [13].

Definition 1. A n-dimensional manifold is a topological space such that each
point admits a neighborhood homeomorphic to \(\mathbb{R}^n \).

Definition 2. A chart \((U, \psi)\) is composed of an open set \(U\) of an n-manifold
and a homeomorphism \(\psi\) of \(U\) onto an open set of \(\mathbb{R}^n\).

Definition 3. Two charts \((U_i, \psi_i)\) and \((U_j, \psi_j)\) agree with each other if their
transition function

\[\psi_{ij} = \psi_j \circ \psi_i^{-1} : \psi_i(U_i \cap U_j) \to \psi_j(U_j \cap U_i) \]

is a diffeomorphism.

Definition 4. Such a collection of maps charting all of the manifold is called
an atlas.
Remark. Every 2-dimensional manifold admits an atlas.

To give an atlas describing a surface is to give a representation of it with charts. This representation possesses two main advantages. Firstly, it combines local information with global information (\(\psi^{-1}\) is a local parameterization of the surface). That means one can work locally on the surface without undesirable consequences on the global surface because the atlas maintains this consistency by definition. Secondly, an atlas allows to translate problems given on any 2-dimensional manifold into problems given on \(\mathbb{R}^2\).

§3. Smooth Blend

We have given the mathematical definition of the representation with charts. We now discuss how to use it to construct a \(G^1\) global representation of a surface. Our aim is to represent a 2-dimensional manifold \(V\) by means of a set of simple surfaces called \textit{primitives} (quadrics for instance) which approach \(V\) locally. To be more precise, we assume a family \(\{U_i\}\) of open sets on \(V\) the union of which covers \(V\) and such that each \(U_i\) is approximated by a primitive \(P_i\) in such a way that there is a bijection \(b_i\) of \(U_i\) onto \(P_i\): \(P_i = b_i(U_i)\). The blend we want to construct between the primitives \(P_i\) must be a smooth surface \(S\) which overlaps a closed set of each \(P_i\), called \textit{pure area} and defined by \(b_i(U_i \setminus \bigcup_{j \neq i} U_j)\). So, to be able to construct a smooth blend, the primitives must overlap sufficiently (see §4.1).

The blend is defined as a convex combination of the primitives \(P_i\) which approximate overlapping open sets \(U_i\). The surface \(S\) is defined by an atlas and is a representation of \(V\).

Hypotheses.

- We suppose that \(P_i\) are 2-dimensional manifolds parametrized by \(p_i\), homeomorphisms which are \(C^1\) on an open set \(\Omega_i\) of \(\mathbb{R}^2\): \(P_i = p_i(\Omega_i)\).
- Let \(\Omega_{ij}\) be the open set of \(\Omega_i\) defined by \(\Omega_{ij} = p_i^{-1}(b_i(U_i \cap U_j))\).
- We suppose that there exist some bijective transition functions \(\varphi_{ij}: \Omega_{ij} \to \Omega_{ji}\), such that \(\varphi_{kj} \circ \varphi_{ik} = \varphi_{ij}\). In particular, \(\Omega_{ii} = \Omega_i\) and \(\varphi_{ii}\) is the identity. We write \(\mathcal{P}(\mathbb{N})\) for the set of subsets of \(\mathbb{N}\), and define for all \(i\)

\[
\mathcal{I}_i : \Omega_i \to \mathcal{P}(\mathbb{N})
\]

\[
m \mapsto \{j \in \mathbb{N} : m \in \Omega_{ij}\}
\]

- Let the weight functions \(\alpha_i\) be defined on \(\Omega_i\) and satisfying the following:

\begin{enumerate}
 \item \textbf{Property 1. Convexity}
 \begin{enumerate}
 \item \(\forall i, \forall m \in \Omega_i, 0 \leq \alpha_i(m) \leq 1\)
 \item \(\forall i, \forall m \in \Omega_i, \sum_{j \in \mathcal{I}_i(m)} \alpha_j(\varphi_{ij}(m)) = 1\)
 \end{enumerate}
 \item \textbf{Property 2. Regularity}
 \begin{enumerate}
 \item \(\alpha_i(m) = 1\) if \(p_i(m)\) belongs to the pure area
 \item \(\alpha_i(m) = 0\) if \(m\) does not belong to \(\Omega_i\)
 \end{enumerate}
\end{enumerate}
• We define for all i

$$\varphi_i : \Omega_i \rightarrow \mathbb{R}^3$$

$$m \mapsto \sum_{j \in I_i(m)} \alpha_j(\varphi_{ij}(m)) p_j(\varphi_{ij}(m))$$

Remark. This definition is consistent: $\varphi_j(\varphi_{ij}(m)) = \varphi_i(m)$.

Proposition. With these hypotheses we get:

• If φ_i is bijective, φ_{ij} is C^0 and α_i is C^0, then S is a 2-dimensional manifold for which an atlas is $\{(\varphi_i^{-1}(\Omega_i), \varphi_i^{-1})\}$.

• If φ_{ij} is C^1 and α_i is C^1, then S is described by a C^1-atlas (S is then a C^1-surface).

Property 2a guarantees that $\varphi_i(m) = p_i(m)$ if $p_i(m)$ belongs to the pure area. Properties 2a and 2b can be inconsistent with each other if the pure area is not strictly included in $p_i(\Omega_i)$. But in this case, another primitive can be introduced, which overlaps locally P_i.

On one hand, our representation is more efficient if few primitives are used. On the other hand, S is closer to V when more primitives are used. So the appropriate balance must be found with regard to these needs. But, if the blend is not defined specifically to perform the approximation of V by S, the approximation error is on the same order of magnitude as that due to the local approximation by each primitive. This last property is due to the convexity property followed by the weight functions.

To construct weight functions which satisfy the convexity properties, we first construct functions β_i satisfying the following

Property 3.

3a) $\forall i, \forall m \in \Omega_i, 0 \leq \beta_i(m) \leq 1$

3b) $\forall i, \forall m \in \Omega_i, \sum_{j \in I_i(m)} \beta_j(\varphi_{ij}(m)) \neq 0$

3c) $\beta_i(m) = 1$ if $p_i(m)$ belongs to the pure area

3d) $\beta_i(m) = 0$ if m does not belong to Ω_i

Then, the weight functions α_i defined by the following expression have all the desired properties:

$$\alpha_i(m) = \frac{\beta_i(m)}{\sum_{j \in I_i(m)} \beta_j(\varphi_{ij}(m))},$$

where φ_{ij} is a C^1 transition function.

§4. Applications

In this paper, we detail the construction of the open sets Ω_i, the weight functions α_i, and the functions φ_i. Further work will focus on the construction of domains U_i and the transition functions φ_{ij}.
4.1. Weight Functions

As shown in §3, to construct satisfactory weight functions, we first construct function β_i satisfying Property 3. We suppose the open set Ω is a disc whose radius is R. Let r be the radius of the smaller disc having the same center as Ω and including the set of points $\{m \in \Omega : p(m) \text{ belongs to the pure area}\}$. To simplify the notations, we call this set of points the pure area too. Then we can give a cylindric definition of β, where t is a shape parameter:

$$\beta(\rho, \theta) = b(\rho)$$

with

$$b(\rho) = \begin{cases} 1 & \text{if } \rho \leq r, \\ P(\rho) & \text{if } r < \rho \leq r + t, \\ L(\rho) & \text{if } r + t < \rho \leq R - t, \\ 1 - P(R + r - \rho) & \text{if } R - t < \rho \leq R, \\ 0 & \text{if } R < \rho. \end{cases}$$

where $L(x) = Dx + E$, $P(x) = Ax^2 + Bx + C$ and $D = \frac{-1}{r - r - t}$, $E = \frac{1 - (R + r)D}{2}$, $A = \frac{D}{2r}$, $B = -2Ar$, $C = 1 - Ar^2 - Br$.

Fig. 2 shows the weight function α after normalization, in a case where P is combined with five other primitives.
Fig. 3. Blending paraboloids: an example satisfying the hypotheses \((r = 0.71R)\).

Fig. 4. Blendings with too large \((r = 0.85R)\) and too small \((r = 0.07R)\) pure areas.

In order that the small disc whose radius is \(r\) better fits the pure area, two modifications can be easily implemented. Firstly, we can define the small disc containing the pure area with different center than the center of \(\Omega\). \(\beta\) will have the same definition but with \(R\) depending on \(\theta\). Secondly, we can use ellipses rather than discs.

The parameter \(t\), which belongs to \((0, 0.5)\), controls the nonlinear part of \(b\). The smaller \(t\), the smaller this part is. To avoid a final surface which is visually too sharp, \(t\) must be neither too small nor too large.

The size of the pure area also plays an important role in the surface smoothness. As shown in Fig. 4, if the pure area is too large, then the transitions between the primitives are too sharp in regards with the resolution of a visualization process. On the contrary, a pure area which is too small causes smooth transitions, but the shape of primitives is lost. In the example shown in Fig. 3, we have implemented a case where the pure area is half the area of \(\Omega\). This balance gives a good solution.

We have constructed satisfactory weight functions. To apply our representation we must define the functions \(I_i\), bijective and \(C^1\) transition functions \(\varphi_{ij}\), and check that \(\varphi_i\) is bijective to be sure that \(S\) is a \(G^1\) surface.
4.2. A Simple Case

We first apply our representation in the case where the surface \(V \) to be represented can be described by \(v(x, y) = [x, y, f(x, y)], (x, y) \in D \subset \mathbb{R}^2 \): a land surface in topography for example.

We suppose that a set of open discs \(\Omega_i \) is defined by any local approximation strategy, and parameterizations \(p_i(x, y) = [x, y, p_i^z(x, y)], (x, y) \in \Omega_i \) are given such that \(D \subset \bigcup_i \Omega_i \) and each \(p_i \) is a \(C^1 \) approximation of \(\{v(x, y): (x, y) \in \Omega_i \cap D\} \).

It is easy to check if a point \((x, y) \) is inside a disc \(\Omega_j \), and so to define \(I_i(x, y) \). Besides, the transition functions \(\varphi_{ij} \) are, in this case, the identity, which is \(C^1 \) and bijective. Finally, the functions \(\varphi_i \) constructed by convex combinations of such \(p_i \) are bijective. So, the surface \(S \) described by the atlas \(\{(\varphi_i^{-1}(\Omega_i), \varphi_i^{-1})\} \) is \(G^1 \).

Fig. 3 shows an example of this first case. We deal with six open discs. One of them, \(\Omega_1 \), is centered on the origin. The others are centered on the vertices of a pentagon which encircles \(\Omega_1 \). The primitives are paraboloids. The central one is defined by \(z = k - x^2 - y^2 \), and the others by \(z = (x - k_j^1)^2 + (y - k_j^2)^2 \) where \(k_j^x \) are constant.

This example displays the blend between two primitives quite similar locally around their parts to blend (a central and a peripheral), and between two dissimilar primitives (two peripherals). The surface is smooth even if adjacent primitives are strongly different from each other.

4.3. A More General Case

Most of the surfaces to be represented cannot be described by \([x, y, v^z(x, y)] \).

To deal with any surface \(V \), we require a triangular mesh which is a first approximation of \(V \). To simplify the notations, we name this mesh \(V \) too. We define on it a set of domains \(U_i \). Each \(U_i \) is a set of vertices, edges and faces of \(V \). It is isomorphic to an open disc, and well approximated by a primitive (a plane in Fig. 5).

In this case, we do not give an analytic expression to the functions \(p_i \), \(\varphi_{ij} \) and the open set \(\Omega_{ij} \), but they are defined on a finite set of points. They are described by links between vertices of different meshes (see Fig. 5). For instance, we construct a mesh \(\Omega_i \) lying on \(\mathbb{R}^2 \), using the bijective harmonic map presented in [5], on \(U_i \). Therefore, each vertex \(u \) of \(U_i \) is linked to a vertex \(\omega \) of \(\Omega_i \). Because of these links, \(I_i, \varphi_{ij} \) and \(\Omega_{ij} \) can be defined on the vertices of \(\Omega_i \) as follows:

For every vertex \(u \) of \(V \), we construct \(l(u) \), the list of the vertices linked to \(u \). Each of these vertices lies on a different \(\Omega_j \). \(l(u) \) contains only one vertex \(\omega \) if \(\omega \) belongs to a pure area. Let \(\omega \) be a vertex of an open set \(\Omega_i \). Let \(u \) be the vertex of \(U_i \) (and so \(V \)) linked to it. For all \(i \), if one of the vertices of \(l(u) \), \(\omega' \), belongs to \(\Omega_j \), then \(I_i(\omega) \) includes \(j \), \(\omega \) belongs to \(\Omega_{ij} \) and \(\varphi_{ij}(\omega) = \omega' \); or else \(\omega \) does not belong to \(\Omega_{ij} \).

The functions \(\beta_i \) are calculated as in §4.1, and thanks to \(I_i \), we calculate \(\alpha_i \) on the vertices of \(\Omega_i \).
In the same way, we construct a mesh P_i, which is in bijection with U_i and whose vertices lie on the primitive which approximate U_i. Thanks to the links between the vertices of U_i and Ω_i, we define the links between the vertices of Ω_i and P_i. These links define the parametrization p_i on the vertices of Ω_i.

We then construct a mesh S whose vertices are calculated by φ_i defined on the vertices of Ω_i as in §3.

Assuming there exist C^1 functions φ_{ij} and p_i which interpolate the values set on the vertices of Ω_i, and satisfy the hypotheses given in §3, the vertices of S lie on a G^1 surface.

Remark. Because we do not give an analytic expression for p_i and φ_{ij}, we have to store the meshes Ω_i and P_i. In future work, we will either have to give simple expressions for those functions, or decrease the size of the meshes.

§5. Conclusion

The representation with charts can be used to construct a useful surface model. But, before applying it to real data, we still have two crucial steps: the definition of the domains U, and the definition of transition functions. Then we will apply it to image analysis problems such as registration, surface feature extraction, texture mapping or animation. More precisely, we will begin with the visualization of S by a mesh hierarchy which offers different levels of detail.
Fig. 6. An open set Ω_i.

Fig. 7. The meshed primitives P_i and the mesh S.

References

7. Foley, T. A., S. Danayand, and R. Santhanam, Cross boundary derivatives for transfinite triangular patches, in *Geometric Modelling*, H. Hagen,

Cédric Gérot, Dominique Attali and Annick Montanvert
Laboratoire LIS
ENSIIEG
Domaine Universitaire
38420 St-Martin-d’Hères
FirstName.LastName@lis.inpg.fr