High-Level Synthesis of Event-based Systems

Jean Simatic, Rodrigo Possamai Bastos, Laurent Fesquet

June 7, 2016

Power challenge of the Internet of Things

' @ Less than mW

From mW to W

Increasing Total Energy

Reduce power usage of signal processing chains
thanks to event-based techniques

High-Level Synthesis of Event-based Systems 2/21

Technique 1: Level-crossing sampling

Uniform sampling Level-crossing sampling

A
[0)) \gxn-1
E \(LO)-(-Q)—()—()—O—O’O'X(J[) g ANEEH ~X(1
3 2
= =
W quantum§
= t ' — t
T, dtx,
Reconstructibility under Reconstructibility under
Shannon-Nyquist theorem: Beutler theorem:
fsample > 2 % fmax E(fsample) > 2% 7‘_max
@ Easy to formalize and process @ Less samples
@ Some useless samples @ More complex processing

v

High-Level Synthesis of Event-based Systems 3/21

Technique 2: Asynchronous circuits

— :)ID:) ;ID:> :)I:)

>I:> $|:>

Reqpn 41

2180 |euon}
-eUIqWOD)

Asynchronous pipeline (bundled-data)

4 3)I oay

Reqp
ACkN

@ Local handshakes between components

2130 |euon
-euiquiod)

Ackpy 1
4_

o Naturally stalls in absence of new data

High-Level Synthesis of Event-based Systems 4/21

The design challenge

@ Event-based sampling and processing are promising but little-known

@ Tailor-made designs for specific applications

High Level Synthesis (HLS)

@ Algorithmic-level design

@ Automated circuit synthesis

@ From the application: Algorithm description and signal information
@ To the circuit: Event-driven ADC and DSP

High-Level Synthesis of Event-based Systems 5/21

@ Proposed flow: from application specifications to chips

© Difficulty 1: Choosing the sampling
@ Level-crossing sampling
@ Which levels?

© Difficulty 2: Asynchronous High-Level Synthesis
@ Our proposition
@ Comparison with existing flows
@ Desynchonization method

@ Results

High-Level Synthesis of Event-based Systems 6/21

@ Proposed flow: from application specifications to chips

High-Level Synthesis of Event-based Systems 7/21

Design flow

(Application }—»

4

4|

Signal
Knowledge

A

4

Circuit

Algorithm | (= Algorithm Algorithm Synchronous
(Matlab) Refinements (&) HLS
Y Y
Level Desynchro-
Placement nization
Y Y
Netlist Standard Netlist
(A-ADC) Flow (DSP Unit)

High-Level Synthesis of Event-based Systems 8/21

© Difficulty 1: Choosing the sampling
@ Level-crossing sampling
@ Which levels?

High-Level Synthesis of Event-based Systems 9/21

Level-crossing sampling

@ Many possible non-uniform-sampling
(level-crossing, peak, slope, send-on-delta .. .)

@ For practical reasons, we choose the level-crossing sampling scheme
and Allier's tracking ADC

Analog ; Digital

upper level @ V(addr+1)
|]

lower level @ V(addr—1)
LI NN

.
reset . .
Time counter time

V(addr) amp/i—
tude

Magnitude

Counter
up/down

High-Level Synthesis of Event-based Systems 10/21

Which levels?

Previous works

@ Machine learning methods for classifiers (Arslan et al, Le Pelleter)

e Asymptotic convergence toward optimal levels (Guan 2008)

@ Need knowledge about the signal
@ Probably no general framework: classes of applications

@ Probably approximate solution (NP-complete problem)

High-Level Synthesis of Event-based Systems 11/21

© Difficulty 2: Asynchronous High-Level Synthesis
@ Our proposition
@ Comparison with existing flows
@ Desynchonization method

High-Level Synthesis of Event-based Systems 12 /21

Synchronous HLS + Desynchronization

Algorithm

(€)

Control part (FSM)

[reg control mux control conditions]

Y
Synchronous a I _ll_e; ___________ ;;; o _I B
HLS > .(
'

tool

Y

datapath + FSM

Y
FSM Desyn-
chronization

Y
Netlist
(DSP Unit)

1
|
1
Synchronous RTL ’ '
1
1
1
1
1

Operative part (Datapath)

High-Level Synthesis of Event-based Systems 13 /21

Synchronous HLS + Desynchronization

Algorithm
(C)

Why use a synchronous-dedicated tool?

Synchronous @ More available tools (academic and

HLS tool commercial)
@ State-of the art design space exploration

Y
Synchronous RTL
datapath + FSM

Y . -
@ Basics: loop unrolling, several memory models
FSM Desyn- : & y
T @ Recent features: multicycle paths, branch
probabilities and loop iteration annotation

e @ Open source and readable generated code
Netlist

(DSP Unit)

High-Level Synthesis of Event-based Systems 14 /21

Comparison with existing flows

@ Desynchronization (Cortadella et al)
@ Flows using specialized languages:
o Syntax directed translation: Balsa, Haste
o Compilation optimization: Code-to-code optimization, CHP
@ From generic algorithmic language (C-like):
o Venkataramani et al: Map IR from CASH to micropipeline constructs

o Garcia et al: Synchronous-like datapath + centralized locally-clocked
FSM.

High-Level Synthesis of Event-based Systems 15 /21

Desynchonization method

Synchronous path (AUGH) Aynchronous path (Desync tool)

r

preq "\ state activation

Controller (Distributed)

out

5/2 @ Speed insensitive
req

5 /2
ok o/ Fsme o Late-forward
/ vation David cells (Hollaar 82)
MC w/e Burst mode ctrl (Yun 96)
RC capture o Early-acknowledgement

Figure: Stage chronogram.

High-Level Synthesis of Event-based Systems 16 /21

@ Results

High-Level Synthesis of Event-based Systems 17 /21

Test cases

Gratest common Interpolated FIR
divisor (Aeschlimann et al)
C code lines 20 72
FSM states 8 15
Gates count ~ 600 ~ 6000

High-Level Synthesis of Event-based Systems 18 /21

Desycnhronization effects

Synthesis in 40nm TSMC technology (asynchronous cells by Dolphin
Integration)

Small overhead

@ FSM area alone is 2x to 5x bigger
@ Overhead on the entire design is 12% and 5%
@ The datapath size may decrease (no more enables)

Computation speed

Computation speed increases by 25% with desynchronization
@ Under no timing constraints, the ripple carry adders are critical.

@ Asynchronous FSMs can go faster on non-critical states.

High-Level Synthesis of Event-based Systems 19 /21

Conclusion

1
— Algorithm | * [FAlgerithm |* [Algorithm | ![Synchronous
Applicat >
(Matlab) | + | Refinements Hm HLS

¥ :

1
e e : |
Signal [Level : 1 | Desynchro-
Knowledge | 1| Placement , 1| nization
1 .
- - -v -------------- - [pmp—— .* -----
Netlist Standard Netlist
(A-ADC) Flow (DSP Unit)

L]

Conclusion
o Complete event-driven flow from the application to the circuit

@ Desynchronization: Low area overhead for significant speed gain

Perspectives

@ Comparison with synchronous and asynchronous manual designs.

@ Framework definition for choosing the levels.

High-Level Synthesis of Event-based Systems 20 /21

Thank you

High-Level Synthesis of Event-based Systems 21/21

© Cell area

High-Level Synthesis of Event-based Systems 1/2

Cell area

Greatest common divisor

FSM Datapath Total
Cell area (um?)|Sync Async A| Sync Async A| Sync Async A
Combinational | 15.1 68.2 x4.5(388.0 310.9 —20%|403.1 379.1 —6%
Registers 26.3 15.4 —42%|316.2 316.1 0[3425 3315 —3%
Total 41.4 131.2 x3.2|704.1 627.0 —11%|745.5 758.2 +2%

Interpolated FIR filter

FSM Datapath Total
Cell area (um?)|Sync Async A |Sync Async A |Sync Async A
Combinational | 30.6 287.0 x9.4(3550 1620 —64%|3592 1907 —47%
Registers 62.6 30.7 —51%|3698 4241 +15% (3751 4272 +14%
Total 93.2 401.0 x4.3|7238 5861 —19%|7342 6262 —15%

High-Level Synthesis of Event-based Systems

2/2

	Proposed flow: from application specifications to chips
	Difficulty 1: Choosing the sampling
	Level-crossing sampling
	Which levels?

	Difficulty 2: Asynchronous High-Level Synthesis
	Our proposition
	Comparison with existing flows
	Desynchonization method

	Results
	Cell area

