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Power challenge of the Internet of Things

' @ Less than mW

From mW to W

Increasing Total Energy

Reduce power usage of signal processing chains
thanks to event-based techniques
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Technique 1: Level-crossing sampling

Uniform sampling Level-crossing sampling
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Shannon-Nyquist theorem: Beutler theorem:
fsample > 2 % fmax E(fsample) > 2% 7‘_max
@ Easy to formalize and process @ Less samples
@ Some useless samples @ More complex processing
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Technique 2: Asynchronous circuits
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o Naturally stalls in absence of new data
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The design challenge

@ Event-based sampling and processing are promising but little-known

@ Tailor-made designs for specific applications

High Level Synthesis (HLS)

@ Algorithmic-level design

@ Automated circuit synthesis

@ From the application: Algorithm description and signal information
@ To the circuit: Event-driven ADC and DSP
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@ Proposed flow: from application specifications to chips

© Difficulty 1: Choosing the sampling
@ Level-crossing sampling
@ Which levels?

© Difficulty 2: Asynchronous High-Level Synthesis
@ Our proposition
@ Comparison with existing flows
@ Desynchonization method

@ Results
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@ Proposed flow: from application specifications to chips
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Design flow
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© Difficulty 1: Choosing the sampling
@ Level-crossing sampling
@ Which levels?
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Level-crossing sampling

@ Many possible non-uniform-sampling
(level-crossing, peak, slope, send-on-delta .. .)

@ For practical reasons, we choose the level-crossing sampling scheme
and Allier's tracking ADC
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Which levels?

Previous works

@ Machine learning methods for classifiers (Arslan et al, Le Pelleter)

e Asymptotic convergence toward optimal levels (Guan 2008)

@ Need knowledge about the signal
@ Probably no general framework: classes of applications

@ Probably approximate solution (NP-complete problem)
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© Difficulty 2: Asynchronous High-Level Synthesis
@ Our proposition
@ Comparison with existing flows
@ Desynchonization method
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Synchronous HLS + Desynchronization
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Synchronous HLS + Desynchronization

Algorithm
(C)

Why use a synchronous-dedicated tool?

Synchronous @ More available tools (academic and

HLS tool commercial)
@ State-of the art design space exploration

Y
Synchronous RTL
datapath + FSM

Y . -
@ Basics: loop unrolling, several memory models
FSM Desyn- : & y
T @ Recent features: multicycle paths, branch
probabilities and loop iteration annotation

e @ Open source and readable generated code
Netlist

(DSP Unit)
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Comparison with existing flows

@ Desynchronization (Cortadella et al)
@ Flows using specialized languages:
o Syntax directed translation: Balsa, Haste
o Compilation optimization: Code-to-code optimization, CHP
@ From generic algorithmic language (C-like):
o Venkataramani et al: Map IR from CASH to micropipeline constructs

o Garcia et al: Synchronous-like datapath + centralized locally-clocked
FSM.
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Desynchonization method

Synchronous path (AUGH) Aynchronous path (Desync tool)
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Figure: Stage chronogram.
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@ Results
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Test cases

Gratest common Interpolated FIR
divisor (Aeschlimann et al)
C code lines 20 72
FSM states 8 15
Gates count ~ 600 ~ 6000
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Desycnhronization effects

Synthesis in 40nm TSMC technology (asynchronous cells by Dolphin
Integration)

Small overhead

@ FSM area alone is 2x to 5x bigger
@ Overhead on the entire design is 12% and 5%
@ The datapath size may decrease (no more enables)

Computation speed

Computation speed increases by 25% with desynchronization
@ Under no timing constraints, the ripple carry adders are critical.

@ Asynchronous FSMs can go faster on non-critical states.
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Conclusion
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Conclusion
o Complete event-driven flow from the application to the circuit

@ Desynchronization: Low area overhead for significant speed gain

Perspectives

@ Comparison with synchronous and asynchronous manual designs.

@ Framework definition for choosing the levels.
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Thank you
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© Cell area
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Cell area

Greatest common divisor

FSM Datapath Total
Cell area (um?)|Sync Async A| Sync Async A| Sync Async A
Combinational | 15.1 68.2 x4.5(388.0 310.9 —20%|403.1 379.1 —6%
Registers 26.3 15.4 —42%|316.2 316.1 0[3425 3315 —3%
Total 41.4 131.2 x3.2|704.1 627.0 —11%|745.5 758.2 +2%

Interpolated FIR filter

FSM Datapath Total
Cell area (um?)|Sync Async A |Sync Async A |Sync Async A
Combinational | 30.6 287.0 x9.4(3550 1620 —64%|3592 1907 —47%
Registers 62.6 30.7 —51%|3698 4241 +15% (3751 4272 +14%
Total 93.2 401.0 x4.3|7238 5861 —19%|7342 6262 —15%

High-Level Synthesis of Event-based Systems

2/2



	Proposed flow: from application specifications to chips
	Difficulty 1: Choosing the sampling
	Level-crossing sampling
	Which levels?

	Difficulty 2: Asynchronous High-Level Synthesis
	Our proposition
	Comparison with existing flows
	Desynchonization method

	Results
	Cell area

